Skip to main content

Advertisement

Log in

A genetic algorithm(GA)-based method for the combinatorial optimization in contour formation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Object recognition methods that are based on geometric features are intrinsic to solving the visual pattern recognition problem, where contour feature is one of the most important geometric clues. The biological visual cortex can collect fragmentary edge data, which can be combined into longer, more integrated edges. This is a typical combinatorial optimization problem. Because genetic algorithm (GA) is suitable to solve such problems, it is here used to integrate short line segments into long contour lines by using a graph-based genetic representation and improved genetic operations. The results of the present experiments show that the proposed method can significantly increase the effectiveness of forming long contour lines, which strongly facilitate the realization of the recognition invariance. Longer line contour representation contributes significantly to the formation of the structured semantics of objects, explicit knowledge representation of object recognition, and realization of top-down processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Melanie M An introduction to genetic algorithms. Cambridge, Massachusetts London, England, Fifth printing 3

  2. Bala J, De Jong K, Huang J, Vafaie H, Wechsler H (1996) Using learning to facilitate the evolution of features for recognizing visual concepts. Evol Comput 4(3):297–311

    Article  Google Scholar 

  3. Trujillo L, Olague G (2006) Synthesis of interest point detectors through genetic programming. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation, ACM, pp 887–894

  4. Trujillo L, Olague G (2008) Automated design of image operators that detect interest points. Evol Comput 16(4):483–507

    Article  Google Scholar 

  5. Mitra SK, Murthy C, Kundu MK (1998) Technique for fractal image compression using genetic algorithm. IEEE Trans Image Process 7(4):586–593

    Article  MATH  MathSciNet  Google Scholar 

  6. Wu M-S, Jeng J-H, Hsieh J-G (2007) Schema genetic algorithm for fractal image compression. Eng Appl Artif Intell 20(4):531–538

    Article  Google Scholar 

  7. Jampour M, Yaghoobi M, Ashourzadeh M (2010) Fractal images compressing by estimating the closest neighborhood with using of schema theory. J Comput Sci 6(5):591

    Article  Google Scholar 

  8. Harding S Evolution of image filters on graphics processor units using cartesian genetic programming. In: CEC IEEE World Congress on Computational Intelligence. IEEE Congress on Evolutionary Computation 2008, pp 1921–1928

  9. Krishna KSR, Reddy AG, Prasad MG, Rao KC, Madhavi M (2010) Genetic algorithm processor for image noise filtering using evolvable hardware. Int J Image Process 4(3):240–250

    Google Scholar 

  10. Bhanu B, Lee S, Ming J (1995) Adaptive image segmentation using a genetic algorithm. IEEE Trans Syst Man Cybern 25(12):1543–1567

    Article  Google Scholar 

  11. Awad M, Chehdi K, Nasri A (2009) Multi-component image segmentation using a hybrid dynamic genetic algorithm and fuzzy c-means. IET Image Process 3(2):52–62

    Article  Google Scholar 

  12. Tian G, Xia Y, Zhang Y, Feng D (2011) Hybrid genetic and variational expectation-maximization algorithm for gaussian-mixture-model-based brain mr image segmentation. IEEE Trans Inf Technol Biomed 15(3):373–380

    Article  Google Scholar 

  13. Bandyopadhyay S, Maulik U (2002) Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recog 35(6):1197–1208

    Article  MATH  Google Scholar 

  14. Maulik U, Bandyopadhyay S (2003) Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans Geosci Remote Sens 41(5):1075–1081

    Article  Google Scholar 

  15. Liu Z, Liu A, Wang C, Niu Z (2004) Evolving neural network using real coded genetic algorithm (ga) for multispectral image classification. Futur Gener Comput Syst 20(7):1119–1129

    Article  Google Scholar 

  16. Song A, Ciesielski V (2008) Texture segmentation by genetic programming. Evol Comput 16(4):461–481

    Article  Google Scholar 

  17. Lorena LAN, Furtado JC (2001) Constructive genetic algorithm for clustering problems. Evol Comput 9(3):309–327

    Article  Google Scholar 

  18. Jaśkowski W, Krawiec K, Wieloch B (2008) Multitask visual learning using genetic programming. Evol Comput 16(4):439–459

    Article  Google Scholar 

  19. Ivekoviċ Ṡ., Trucco E, Petillot YR (2008) Human body pose estimation with particle swarm optimisation. Evol Comput 16(4):509–528

    Article  Google Scholar 

  20. Shyu M-S, Leou J-J (1998) A genetic algorithm approach to color image enhancement. Pattern Recog 31(7):871–880

    Article  Google Scholar 

  21. Hashemi S, Kiani S, Noroozi N, Moghaddam ME (2010) An image contrast enhancement method based on genetic algorithm. Pattern Recog Lett 31(13):1816–1824

    Article  Google Scholar 

  22. Zhang C, Wang X, Duanmu C (2010) Adaptive typhoon cloud image enhancement using genetic algorithm and non-linear gain operation in undecimated wavelet domain. Eng Appl Artif Intell 23(1):61–73

    Article  Google Scholar 

  23. Luke S, Spector L (1996) Evolving graphs and networks with edge encoding. Preliminary report. In: Late breaking papers at the genetic programming 1996 conference. Stanford University Stanford, CA, pp 117–124

  24. Katagiri H, Hirasama K, Hu J (2000) Genetic network programming-application to intelligent agents. In: IEEE international conference on systems, man, and cybernetics, vol 5, pp 3829–3834

  25. Emmerich M, Grötzner M, Schütz M (2001) Design of graph-based evolutionary algorithms. A case study for chemical process networks. Evol Comput 9(3):329–354

    Article  Google Scholar 

  26. Hirasawa K, Okubo M, Katagiri H, Hu J, Murata J (2001) Comparison between genetic network programming (gnp) and genetic programming (gp). In: Proceedings of the 2001 Congress on Evolutionary Computation, IEEE, vol 2, pp 1276–1282

  27. Katagiri H, Hirasawa K, Hu J, Murata J, Kosaka M (2002) Network structure oriented evolutionary model. Genetic network programming-its comparison with genetic programming. Trans Soc Instrum Control Eng 38(5):485–494

    Article  Google Scholar 

  28. Mabu S, Hirasawa K, Hu J, Murata J Online learning of genetic network programming (gnp). In: CEC’02 Proceedings of the 2002 Congress on Evolutionary Computation, IEEE, Vol. 1, 2002, pp. 321–326

  29. Mabu S, Hirasawa K, Hu J (2004) Genetic network programming with reinforcement learning and its performance evaluation. In: Genetic and Evolutionary Computation–GECCO 2004. Springer, pp 710–711

  30. Mabu S, Hirasawa K, Hu J (2007) A graph-based evolutionary algorithm: genetic network programming (gnp) and its extension using reinforcement learning. Evol Comput 15(3):369–398

    Article  Google Scholar 

  31. Monson CK, Seppi KD (2008) A graphical model for evolutionary optimization. Evol Comput 16(3):289–313

    Article  Google Scholar 

  32. Li B, Li X, Mabu S, Hirasawa K Evolving graph-based chromosome by means of variable size genetic network programming with binomial distribution

  33. Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28(1):287–298

    Article  Google Scholar 

  34. Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual cortex. Ann Rev Neurosci 23(1):441–471

    Article  Google Scholar 

  35. Alonso J-M, Usrey WM, Reid RC (2001) Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J Neurosci 21(11):4002–4015

    Google Scholar 

  36. Jin J, Wang Y, Swadlow HA, Alonso JM (2011) Population receptive fields of on and off thalamic inputs to an orientation column in visual cortex. Nat Neurosci 14(2):232–238

    Article  Google Scholar 

  37. Wei H, Ren Y, Wang Z (2012) A group-decision making model of orientation detection. In: The 2012 International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1–8

  38. Wei H, Ren Y (2012) A mathematical model of retinal ganglion cells and its applications in image representation. Neural Process Lett:1–22

  39. Wei H, Ren Y (2012) An orientation detection model based on fitting from multiple local hypotheses. In: Neural Information Processing. Springer, pp 383–391

  40. Masters BR (1999) The image processing handbook. J Microsc 196(1):79–80

    Article  Google Scholar 

  41. Russ JC (2006) The image processing handbook. CRC press

  42. Groningen University http://www.cs.rug.nl/~imaging, website (10 2011)

  43. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522

    Article  Google Scholar 

  44. Lu C, Latecki LJ, Adluru N, Yang X, Ling H (2009) Shape guided contour grouping with particle filters. In: 2009 IEEE 12th International Conference on, Computer Vision, IEEE , pp 2288–2295

  45. Martin DR, Fowlkes CC, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell 26(5):530–549

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Program (Project No. 2010CB327900), the NSFC project (Project No. 61375122, No. 81373556) and the National Twelfth 5-Year Plan for Science & Technology (Project No. 2012BAI37B06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Tang, XS. & Liu, H. A genetic algorithm(GA)-based method for the combinatorial optimization in contour formation. Appl Intell 43, 112–131 (2015). https://doi.org/10.1007/s10489-014-0633-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-014-0633-y

Keywords

Navigation