
Fuzzy Particle Swarm Optimization Algorithms for the Open

Shortest Path First Weight Setting Problem

Mohammad A. Mohiuddin · Salman A. Khan ·

Andries P. Engelbrecht

Abstract The open shortest path first (OSPF) routing protocol is a well-known approach

for routing packets from a source node to a destination node. The protocol assigns weights

(or costs) to the links of a network. These weights are used to determine the shortest paths

between all sources to all destination nodes. Assignment of these weights to the links is

classified as an NP-hard problem. The aim behind the solution to the OSPF weight set-

ting problem is to obtain optimized routing paths to enhance the utilization of the network.

Mohammad A. Mohiuddin

Department of Computer Science, University of Pretoria, Pretoria 0002, South Africa E-mail:

waseem aijaz@yahoo.com

Salman A. Khan

Department Computer Engineering Department, College of IT, University of Bahrain, Sakhir, Bahrain

Department of Computer Science, University of Pretoria, Pretoria 0002, South Africa E-mail:

sakhan@uob.edu.bh, skhan@cs.up.ac.za

Andries P. Engelbrecht

Department of Computer Science, University of Pretoria, Pretoria 0002, South Africa

E-mail: engel@cs.up.ac.za

2

This paper formulates the above problem as a multi-objective optimization problem. The

optimization metrics are maximum utilization, number of congested links, and number of

unused links. These metrics are conflicting in nature, which motivates the use of fuzzy logic

to be employed as a tool to aggregate these metrics into a scalar cost function. This scalar

cost function is then optimized using a fuzzy particle swarm optimization (FPSO) algorithm

developed in this paper. A modified variant of the proposed PSO, namely, fuzzy evolutionary

PSO (FEPSO), is also developed. FEPSO incorporates the characteristics of the simulated

evolution heuristic into FPSO. Experimentation is done using 12 test cases reported in liter-

ature. These test cases consist of 50 and 100 nodes, with the number of arcs ranging from

148 to 503. Empirical results have been obtained and analyzed for different values of FPSO

parameters. Results also suggest that FEPSO outperformed FPSO in terms of quality of solu-

tion by achieving improvements between 7% and 31%. Furthermore, comparison of FEPSO

with various other algorithms such as Pareto-dominance PSO, weighted aggregation PSO,

NSGA-II, simulated evolution, and simulated annealing algorithms revealed that FEPSO

performed better than all of them by achieving best results for two or all three objectives.

Keywords Open Shortest Path First Routing Algorithm, Particle Swarm Optimization,

Swarm Intelligence, Multi-objective Optimization, Fuzzy Logic

1 Introduction

The use of web based applications has resulted in rapid increase of internet traffic [1]. Effi-

cient utilization of network resources, such as network bandwidth, is essential to deal with

this high volume of traffic. The main objective of network traffic engineering is efficient

mapping of traffic on the available network resources to prevent traffic imbalance, if it ex-

ists [2].

3

Routers serve as the main interconnection points of the internet and forward data pack-

ets between source and destination nodes via multiple paths. These paths exist between a

given source and destination pair. The internet is huge and very complex and is divided into

autonomous systems (AS) for managing its complexity. An AS represents a collection of

networks under the control of one single entity or organization with a specific routing pol-

icy. These policies are determined by a class of routing protocols, namely, interior gateway

protocols (IGPs) [3]. Routing across ASs is performed by another class of protocols, namely,

exterior gateway protocols (EGPs) [3].

Open shortest path first (OSPF) [3] is an IGP and has received notable attention by re-

searchers for efficient traffic engineering since OSPF is considered the best backbone routing

protocol used in the internet [4,5]. The protocol has shown remarkable performance through

significant reduction in maximum utilization over pure shortest path routing [6]. OSPF is

based on Dijkstra’s algorithm [7], which determines a shortest path between a source and

destination pair. Each link in the network is given a measurable entity called a link weight

or OSPF weight. The cost of a path between a given source and destination pair is found

by the summation of OSPF weights on the links in that path. The path with minimal cost is

labelled as the shortest path.

This paper considers the open shortest path first weight setting (OSPFWS) problem,

classified as an NP-hard problem [8]. The OSPFWS problem requires a set of weights to be

determined, so as to efficiently utilize network resources. The objectives of this problem are

to minimize maximum utilization, minimize the number of congested links, and to minimize

the number of unused links. These objectives conflict with each other, i.e. if one objective

is improved, at least one of the other objectives may deteriorate. To address this NP-hard

problem with conflicting objectives, this paper proposes to apply a fuzzy particle swarm

optimization (FPSO) algorithm. The paper also proposes a hybrid PSO, namely, fuzzy evo-

4

lutionary PSO, where characteristics of simulated evolution algorithm [9] are combined with

the fuzzy PSO. The performance of these two variants is empirically assessed and compared.

The rest of the paper is organized as follows: Section 2 provides the necessary back-

ground and related work on the OSPFWS problem. Section 3 provides the formal definition

of the OSPFWS problem. A brief discussion on fuzzy logic and the Unified And-OR opera-

tor is given in Section 4. Section 5 describes the formulation of a fuzzy logic based objective

function for the OSPFWS problem. Section 6 presents the proposed fuzzy PSO algorithm,

and a variant of the fuzzy PSO, the fuzzy evolutionary PSO, is proposed and discussed in

Section 7. The experimental methodology is described in Section 8. Results are provided and

discussed in Section 9. A comparative analysis of the fuzzy evolutionary PSO with other al-

gorithms, namely, Pareto-dominance PSO, weighted aggregation PSO, NSGA-II, simulated

evolution, and simulated annealing is provided in Section 10. The paper is concluded in

Section 11. Finally, the symbols and terminology used in this paper are given in Appendix

A. Some additional results related to the analysis of swarm size (discussed in Section 9) are

provided in Appendix B.

2 Literature review

Notable research in optimizing OSPF weights has been reported in the literature [2,4,6,

10–28]. The pioneering work on the OPSF weight setting problem was done by Fortz and

Thorup [8,10,29] who used maximum utilization as the optimization objective. The term

“maximum utilization” refers to the maximum of all utilization values over all the links in

the network. A cost function based on utilization ranges was first formulated by Fortz and

Thorup [2], who applied tabu search [30] to minimize “maximum utilization”.

The cost function of Fortz and Thorup was formally defined as

5

minimize Φ =
∑

a∈A

Φa(la) (1)

subject to the constraints:

la =
∑

(s,t)∈N×N

f
(s,t)
a a ∈ A, (2)

f
(s,t)
a ≥ 0 (3)

where Φ is the cost function, Φa is the cost associated with arc a, la is the total traffic load

on arc a, f
(s,t)
a represents traffic flow from node s to t over arc a, N defines the set of nodes,

and A represents the set of arcs. Equation (2) indicates that the total load (traffic) on arc a is

equal to the sum of the traffic load on arc a and the traffic load on all incoming arcs to arc

a. The constraint in Equation (3) implies that the traffic flow from node s to t over arc a can

be greater than or equal to zero.

In Equation (1), Φa represents piecewise linear functions, with Φa(0) = 0 and a deriva-

tive, Φ
′

a(la) given by

Φ
′

a(l) =



















































































1 for 0 ≤ l/ca < 1/3,

3 for 1/3 ≤ l/ca < 2/3,

10 for 2/3 ≤ l/ca < 9/10,

70 for 9/10 ≤ l/ca < 1,

500 for 1 ≤ l/ca < 11/10,

5000 for 11/10 ≤ l/ca < infinity

(4)

6

The above function indicates that the utilization (which represents the load to capacity ratio)

of a link is acceptable within 100% of the link’s capacity. According to the function in

Equation (4), links with utilization levels less than or equal to 1 (or 100%) have a low

cost, proportional to the level of utilization. These values are 1, 3, 10, or 70. Furthermore,

links exceeding 100% utilization are assigned high costs of 500 and 5000. For example,

if utilization is less than one third of a link’s capacity, then a cost of 1 is assigned. For

utilization between 1/3 and 2/3 of a link’s capacity, a cost of 3 is assigned, and so on. On

the other hand, if the utilization of a link is beyond 1 (which indicates that the number of

incoming packets to a link exceed the maximum capacity of the link) then such an over-

utilization is not desirable, since it will result in packet loss. Therefore, the cost assigned to

the links beyond 100% utilization is much higher (i.e. 500 for utilization of equal to or more

than 100% but less than 110%, and 5000 for more than 110%). Note that as per Equation (4),

a link with utilization greater than 100% and less than 110% is still preferable compared to a

link with utilization greater than 110%. Fortz and Thorup employed a dynamic shortest path

algorithm [31–33] to obtain multiple equidistant shortest paths between a source-destination

pair. By this mechanism, traffic load was distributed equally across the links.

Subsequent to the work of Fortz and Thorup, many other researchers attempted to solve

the OSPF weight setting problem with different algorithms and different objective func-

tions. Ramakrishnan and Rodrigues [12] proposed a local search procedure using the same

cost function as that of Fortz and Thorup. The main difference between the two approaches

was that for a heavily used link, Rodrigues and Ramakrishnan’s technique increases the

link metric (i.e. the OSPF weight assigned to a link). Ericsson et al. [13] developed a ge-

netic algorithm [34] to solve the OSPFWS problem also using the cost function by Fortz

and Thorup. Kandula et al. [6] compared the performance of three OSPF weight optimiz-

ers while considering maximum link utilization as the optimization objective. Bhagat [4]

7

also assumed link utilization as weights and used a genetic algorithm for OSPF weight

setting while using the cost model of Fortz and Thorup with a minor modification. Abo

Ghazala et al. [35] performed a survey of various algorithms applied to the OSPFWS prob-

lem, and also proposed a technique based on iterative local search, while considering link

utilization as the optimization objective. The underlying cost function was the same as pro-

posed by Fortz and Thorup. In a subsequent research article, Aboghazala et al. [15] assumed

maximization of unused bandwidth as the optimization objective and employed simulated

annealing and hybrid genetic algorithms for weight optimization. Parmar et al. [16] formu-

lated the OSPF weight setting problem as mixed-integer linear programming problem and

developed a branch-and-cut algorithm while assuming minimization of network congestion

as the optimization objective. Pioro et al. [22] considered the maximum load on any link in

the network as the measure of congestion and proposed two heuristic approaches for weight

setting. Srivastava et al. [17] also considered minimization of maximum load on any link

and proposed heuristic algorithms based on Lagrangian relaxation to determine feasible so-

lutions for the weight setting problem. Buriol et al. [18] extended the genetic algorithm

proposed in [13] to a memetic algorithm by adding a local search procedure while using the

same cost function as that of Fortz and Thorup. Bley [19,20] proposed unsplittable shortest

path routing (UPSR) and claimed that the proposed approach can be applied to other routing

schemes such as OSPF, while considering minimization of maximum congestion over all

arcs. Zagozdzon et al. [14] proposed a two-phase algorithm for resolving the OSPF weight

setting problem while considering the residual capacity as the optimization objective. This

residual capacity resulted from setting the link weights proportional to the inverse of their

capacity. Reis et al. [36] proposed a memetic algorithm for weight setting in OSPF and

DEFT algorithms while considering minimization of total link utilization. Lin and Gen [21]

proposed a priority-based genetic algorithm for shortest path routing in OSPF. Their results

8

indicated that the proposed GA could be used for weight setting in OSPF and other rout-

ing algorithms. Retvari et al. [23,24] studied the OSPF weight setting problem considering

maximization of network throughput and proposed some algorithms that could efficiently

optimize the link weights. Nucci et al. [25] proposed a Tabu-search heuristic for choosing

link weights that takes into account both service level agreement (SLA) requirements and

link failures with the objective of optimization link utilizations. Shirmali et al. [26] devised

an approach based on Nash bargaining and decomposition. It was claimed that the proposed

approach could be easily modified to yield a mechanism for setting link weights for ISPs

using OSPF in a way similar to that of Fortz and Thorup. Riedl [27] presented an algorithm

based on simulated annealing to optimize link metrics in OSPF networks. The algorithm

took into account the original routing configuration and allowed tradeoff considerations be-

tween routing optimality and adaptation impact. Lee et al. [28] modelled the optimal link

weight assignment problem as an integer linear programming problem while considering

minimization of sum of energy consumption of all links.

It is noteworthy of mentioning that, generally, the aforementioned approaches consid-

ered a single objective in the optimization process. For example, the cost function proposed

by Fortz and Thorup (Equation (1)) on which many subsequent attempts were based [12,13,

37,4,35,18,26] considered minimization of maximum link utilization. Other researchers [6,

22,17] also assumed minimization of maximum link utilization. Other objectives considered

in the optimization process were maximization of unused link bandwidth [15], minimization

of network congestion [16,19,20], residual capacity of link [14], minimization of total link

utilization [36], maximization of network throughput [23,24], and minimization of sum of

energy consumption of all links [28]. Exceptions from these single-objectives optimization

approaches were Nucci et al. [25] where link failure and link no-failure states were used as

the optimization objectives, and Sqalli et al. [11,38] who used minimization of maximum

9

link utilization as well as minimization of congested links as the optimization objectives

while using a simulated annealing (SA) algorithm [39].

A cost function developed by Sqalli et al. [11,38] evolved from the earlier work by

Fortz and Thorup. The reason for using the cost function of Fortz and Thorup was that

the function was employed in many studies as mentioned above. One novel aspect of the

work of Sqalli et al. was the addition of another optimization objective (i.e. minimization of

congested link) on top of minimization of maximum link utilization. This resulted in better

distribution of traffic in the network since this is one fundamental requirement of network

traffic engineering. The function employed by Sqalli et al. is defined as

Φ = MU +

∑

a∈SetCA (la − ca)

E
(5)

where MU is the maximum utilization of the network. SetCA defines the set of congested

links, E represents the total number of links in the network, ca refers to the capacity of link

a, and la is the total traffic on link a.

The second term of Equation (5) after the plus sign defines the extra load on the net-

work. This extra load is found by taking all the congested links, divided by the total number

of links present in the network to normalize the entire function. For an uncongested network,

the term after the plus sign results in a zero. Thus, Equation (5) results in minimization of

maximum utilization provided that there is no congestion in the network. If congestion ex-

ists, then the function results in the minimization of maximum utilization as well as the

minimization of the number of congested links. Sqalli et al. concluded that the cost function

in Equation (5) results in more efficient minimization of the number of congested links com-

pared to the cost function of Fortz and Thorup [2]. Furthermore, Sqalli et al. discovered that

the results for maximum utilization with their method were comparable to those obtained

10

by the approach of Fortz and Thorup. Using the cost function of Equation (5), Sqalli et al.

applied the simulated evolution (SimE) algorithm [40] to the OSPFWS problem and com-

pared the results with the results of SA [38]. Tabu search using the cost function of Sqalli et

al. [11] has also been applied to the OSPFWS problem [41].

A limitation of the cost function of Fortz and Thorup is that it minimizes “maximum

utilization” only. This may lead to the existence of links which are either congested or un-

used. The cost function proposed by Sqalli et al. (Equation (5)) was aimed at simultaneous

optimization of maximum utilization and the number of congested links, without any consid-

eration of unused links. It is, therefore, not guaranteed that optimizing maximum utilization

and number of congested links would implicitly optimize the number of unused links as

well. This observation points to the fact that to have a more stable traffic flow, traffic from

congested links should be shifted to unused links. Therefore, in order to overcome this issue,

Mohiuddin et al. [42] proposed a fuzzy logic based cost function that addresses the simul-

taneous optimization of maximum utilization, number of congested links, and number of

unused links through fuzzy logic based aggregation. Mohiuddin et al. used their fuzzy cost

function with three iterative heuristics, namely, simulated evolution, simulated annealing,

and NGSA-II, and performed a mutual comparison of the three algorithms.

3 Open Shortest Part First Weight Setting Problem Definition

This section provides the details of the OSPFWS problem. More specifically, the section

provides a formal definition of the OSPFWS problem, followed by a discussion of the cal-

culation of traffic load on links.

11

3.1 Open Shortest Path First Weight Setting Problem

The OSPFWS problem is formulated as follows. Given a network topology and predicted

traffic demands, find a set of OSPF weights that optimizes network performance. More

precisely, given a directed network G = (N, A), a demand matrix D, and capacity Ca for

each arc a ∈ A, determine a positive integer weight qa ∈ [1, qmax] for each arc a ∈ A

such that the objective function or cost function Φ is minimized. The maximum value of this

weight, qmax, is a user-defined upper limit. Fortz and Thorup [29] discovered that a small set

of weight values significantly reduces the overhead of the algorithm. By experimentation,

they set wmax to 20. The chosen weights on arcs determine the shortest paths, which in turn

completely determine the routing of traffic flow, the loads on the arcs, and the value of the

cost function. The quality of OSPF routing is highly dependent on the selection of weights.

Figure 1 shows a topology with weights assigned to each arc. These weights are in the range

[1, 20]. A solution for this topology can be (18, 1, 7, 15, 3, 17, 14, 19, 13, 18, 4, 16, 16). The

weights are arranged through a breadth-first traversal of the graph. For example, for node A,

the weights on the outgoing links are 18 and 1. For node B, the weights on outgoing links

are 7 and 15, and so on.

For the purposes of this paper, three objectives are considered. These objectives are

maximum utilization, number of congested links, and number of unused links, all of which

need to be minimized simultaneously. Minimizing maximum utilization will lead to better

distribution of network traffic across all the links such that congestion can be avoided and

the network can be utilized well as per its capacity [8]. Network administrators desire less

congested links. However, if a network is highly congested, then the preference is to reduce

the congestion by at least minimizing the total number of congested links. For example,

assume a network with 50 congested links and 20 unused links. It would be preferred to

12

A

F

B

C
 E

G

D

5

3

19
14

17

16

16

4

15

13

1

18

18

7

Fig. 1 Representation of a topology with assigned weights.

accommodate the traffic of the 50 congested links additionally on the 20 unused links. This

indicates that minimizing the number of unused links also affects the performance of the

network. This positive effect on the performance is due to traffic distribution across the

links of the networks which depends on the routing paths established [42]. Therefore, a

new solution might create new routing paths such that traffic on congested links may be

distributed on unused links.

3.2 Traffic Load Calculation

This section provides details of the steps to calculate arc (or link) loads. Given a weight

setting {wa}a∈A, the arc loads la are calculated in five steps. For all demand pairs dst ∈ D,

consider one destination t at a time and compute partial arc loads lta ∀ t ∈ N̄ ⊆ N , where N̄

is the set of destination nodes. The steps are as follows:

13

1. Compute the shortest distances dt
u from each node u ∈ N to t, using Dijkstra’s short-

est path algorithm [7]. Dijkstra’s algorithm usually computes the distances away from

source s, but since it is required to compute the distance to the sink node t, the algorithm

is applied on the graph obtained by reversing all arcs in G.

2. Compute the set At of arcs on shortest paths to t as,

At = {(u, v) ∈ A : dt
u − dt

v = w(u,v)}

3. For each node u, let δt
u denote its outdegree in Gt = (N, At), i.e.,

δt
u =| {v ∈ N : (u, v) ∈ At} |

If δt
u > 1, then traffic flow is split at node u to balance the load.

4. The partial loads lta are computed as follows:

(a) Nodes v ∈ N are visited in order of decreasing distance dt
v to t.

(b) When visiting a node v, for all (v, w) ∈ At, set

lt(v,w) = 1/[δt
v(dvt +

∑

(u,v)∈At lt(u,v))]

5. The arc load la is now summed from the partial loads as:

la =
∑

t∈N̄ lta

4 Fuzzy Logic and Aggregation Operators

In general terms, a crisp set X is defined as a collection of objects x ∈ X, where each object

can either belong to the set or not. However, in many practical situations, certain objects do

not fulfil this “crisp” membership requirement. In such situations, a need arises for another

set theory which could deal with uncertain data. One possible approach is fuzzy set theory

(FST), which aims to represent vague information.

14

The basis of the theory of fuzzy sets [43,44] is multi-valued logic wherein a statement

can be partly false and partly true at the same time. Formally, a fuzzy set is characterized by

a membership function, µ, in the range [0,1]. The membership function provides a measure

of the degree of presence for every element in the set [45]. A value of µ = 1 indicates that

the statement is true, while µ = 0 indicates that the statement is false.

Similar to crisp sets, set operations such as union, intersection, and complement are

also defined on fuzzy sets. A number of operators exist for fuzzy union and fuzzy inter-

section. Fuzzy intersection operators are referred to as t-norm operators while fuzzy union

operators are known as s-norm operators. Generally, the t-norm is implemented using “min”

and the s-norm using “max”. However, in the formulation of multi-criteria decision func-

tions, the simple AND (pure “min” function) and simple OR (pure “max” function) does

not work well, due to the fact that the simple AND or OR operations consider the effect of

only one objective while neglecting the effects of other objectives. This deficiency of the

simple AND and simple OR operators resulted in the development of a number of “soft-

AND” and “soft-OR” operators, such as the Werners operator [46], Einstein’s operator [46],

Hamacher’s operator [47], Frank’s operator [48], Weber’s operator [49], Dubois and Prade’s

operator [50], and the Unified And-Or operator [51], among others. These operators allow

easy adjustment of the degree of “anding” and “oring” embedded in the aggregation.

Khan and Engelbrecht showed that the Unified And-Or (UAO) operator [51] satisfies the

monotonicity, symmetry, and idempotency conditions. One important characteristic of the

UAO operator is that a single equation is used to adjust the degree of “anding” and “oring”.

Yet, the operator is capable of behaving either as the soft-AND or the soft-OR operator.

This is in contrast to other aggregation operators listed above, which use separate equations

for AND and OR functions. The behavior of ANDing and ORing of UAO is controlled by

15

a variable, ν ≥ 0, whose value decides whether the function behaves as AND or OR. The

operator is defined as:

f(a, b) =
ab + ν max{a, b}

ν + max{a, b}
=















I? = µA∪B(x) if ν > 1

I∗ = µA∩B(x) if 0 ≤ ν ≤ 1

(6)

where a represents the membership value of µA (i.e. a = µA), b represents the membership

value of µB (i.e. b = µB), and f(a, b) represents the value of the overall objective function

(i.e. f(a, b) = µAB). I∗ represents the AND operation using the UAO operator, and I? de-

notes the OR operation using the UAO operator. For more details of the UAO operator, the

interested reader is referred to Khan and Engelbrecht [51].

5 Fuzzy Logic Approach for the Open Shortest Path First Weight Setting Problem

Although the approach has been previously proposed and explained in Mohiuddin et al.

[42], it is again summarized below for the sake of completeness. Details can be found in

Mohiuddin et al. [42].

The solution to the OSPFWS problem is to assign a set of weights to network links.

The best solution is one which optimizes the network resources efficiently. The design ob-

jectives of the OSPFWS problem include maximum utilization (MU), number of congested

links (NOC) and number of unused links (NUL). These objectives individually on their own

do not provide adequate information for deciding the quality of a solution. The conflicting

nature of these objectives further amplifies the complexity of the problem. With this com-

plexity, a mechanism is required to find a solution that provides the best tradeoff covering

all the objectives. Fuzzy logic is one approach that can conveniently and efficiently handle

the tradeoff issues between multiple objectives.

16

The rest of this section details the employment of fuzzy logic for combining the three

conflicting objectives into a single overall objective. This overall objective assesses the qual-

ity of a solution in terms of membership of a given set of weights. A set of weights providing

efficient utilization of network resources consists of low MU, low NOC and low NUL.

To formulate the overall objective function, the values of individual objectives need to be

determined first, through membership functions. This needs the formulation of membership

functions for each individual objective. This process is described below.

To define the membership function of maximum utilization, two extreme values, the

minimum and maximum, are determined first. These values could be found mathematically

or from prior knowledge. Figure 2 shows the membership function of the objective to be

optimized (maximum utilization in this case). Point ‘A’ refers to minimum MU (MinMU)

and point ‘B’ refers to maximum MU (MaxMU). The membership value for MU, µMU , is

determined as follows:

µMU (x) =































1 if MU ≤ MinMU

MaxMU−MU
MaxMU−MinMU if MinMU < MU ≤ MaxMU

0 if MU > MaxMU

(7)

The membership function for NOC, µNOC , is defined in a similar way. In Figure 2, point

‘A’ then refers to minimum NOC (MinNOC) and ‘B’ refers to maximum NOC (MaxNOC).

The membership function of NOC is defined as follows:

µNOC(x) =































1 if NOC ≤ MinNOC

MaxNOC−NOC
MaxNOC−MinNOC if MinNOC < NOC ≤ MaxNOC

0 if NOC > MaxNOC

(8)

17

1.0

0.8

0.6

0.4

0.2

0

µ

A B

Fig. 2 Membership function of the objective to be optimized

Finally, the membership function for NUL, µNUL, is defined as

µNUL(x) =































1 if NUL ≤ MinNUL

MaxNUL−NUL
MaxNUL−MinNUL if MinNUL < NUL ≤ MaxNUL

0 if NUL > MaxNUL

(9)

where minimum (MinNUL) and maximum (MaxNUL) values correspond to ‘A’ and ‘B’,

respectively in Figure 2.

A good solution to the OSPFWS problem is one that is characterized by a low MU, low

NOC, and low NUL. In fuzzy logic, this can be stated by the following fuzzy rule:

Rule 1: IF a solution X has low MU AND low NOC AND low NUL THEN it is a good

solution.

The words ‘low MU’, ‘low NOC’ and ‘low NUL’ are linguistic values, each defining a

fuzzy subset of solutions. Using the UAO operator [51], the above fuzzy rule reduces to the

following equation.

µ(x) =
µ1(x)µ2(x)µ3(x) + ν × max{µ1(x), µ2(x), µ3(x)}

ν + max{µ1(x), µ2(x), µ3(x)}
(10)

18

where µ(x) is the membership value for solution x in the fuzzy set “good OSPF Weight set”

and ν is a constant in the range [0,1]. Moreover, µi for i = {1, 2, 3} represents the member-

ship values of solution x in the fuzzy sets low MU, low NOC, and low NUL respectively.

The solution which results in the maximum value for Equation (10) is reported as the best

solution.

As an example, consider an arbitrary solution S1, having µMU = 0.19, µNOC = 0.2,

and µNUL = 0.17. Also assume that ν = 0.5. Then, Equation (10) results in a value of

0.152. Similarly, consider µMU = 0.22, µNOC = 0.23, and µNUL = 0.0.09 associated

with another arbitrary solution S2. Again assume that ν = 0.5. Then, Equation (10) evaluates

to 0.164. Thus, solution S2 is better than solution S1 in terms of quality. Equation (10) is

employed as a fuzzy cost function for solving the OSPFWS problem using the fuzzy PSO

and the fuzzy PSO with simulated evolution algorithms. In this paper, the fuzzy cost function

is denoted as FuzzyCF.

6 Fuzzy Particle Swarm Optimization for the Open Shortest Path First Weight

Setting Problem

The fuzzy PSO (FPSO) algorithm navigates the search space by maintaining a swarm of

candidate solutions, with each candidate solution referred to as a particle. Each particle ex-

plores new positions in the search space through its own history, and from the experience of

other particles. With respect to the OSPFWS problem, each particle reaches a new candidate

solution by changing a few weights on the links of the network. As with the basic PSO [52],

the guidance in changing these weights is provided by the particle‘s current position, its own

best position so far, and the global best position obtained so far by the entire algorithm. Each

step of the proposed FPSO algorithm is discussed in the following subsections in detail.

19

6.1 Particle Position and Velocity Representation

The standard PSO uses floating-point vectors to represent positions and velocities. For the

OSPFWS problem, this study uses a set representation for particles. Therefore, for an arbi-

trary network with nodes from a to q, each particle position is defined as a set,

Xi(t) = {wab, wac, ..., waq, wbc..., wpq}

where wab is the weight assigned to the link between any two nodes a and b in the network.

A constant, W , is also defined as the number of weights in the solution, i.e. |Xi(t)| = W .

The velocity of particle i is represented as

Vi(t) = wab ⇔ w′

ab

which represents a sequence of replacements operators where the weight of link (a, b) is

replaced with a new value, w′

ab, and |Vi(t)| gives the total number of changes to particle i.

Example 1: Consider the topology given in Figure 1. Note that the total number of

links is 14. The assigned weights in this figure represent a possible configuration at time t,

whereas the configuration represents a solution (i.e. a particle). A solution for this topology

can be (18, 1, 7, 15, 3, 17, 5, 14, 19, 13, 18, 4, 16, 16). This current solution is represented as

Xi(t)={18AB , 1AF , 7BC , 15BD, 3CE , 17CF ,

5DA, 14EA, 19EG, 13FB , 18FD, 4FG, 16GB , 16GD}.

Also assume that at time t, Vi(t) = {(19 ⇔ 18)AB , (2 ⇔ 1)AF , (4 ⇔ 7)BC , (12 ⇔

15)BD, (4 ⇔ 3)CE , (15 ⇔ 17)CF , (6 ⇔ 5)DA, (12 ⇔ 14)EA, (13 ⇔ 19)EG, (10 ⇔

13)FB , (11 ⇔ 18)FD, (9 ⇔ 4)FG, (17 ⇔ 16)GB , (17 ⇔ 16)GD} where the symbol “⇔”

represents a replacement of weights on the links. That is, the above solution, Xi(t), was

obtained when weight 19 on link AB was replaced with a weight of 18, weight 2 on link AF

20

was replaced with a weight of 1, and so on. The solution Xi(t) is then updated in subsequent

steps as discussed in the following subsections.

6.2 Velocity Update

The velocity of particle i is updated using

Vi(t + 1) = w ⊗ Vi(t) ⊕ c1r1(t) ⊗ [Pi(t) � Xi(t)] ⊕ c2r2(t) ⊗ [Pg(t) � Xi(t)] (11)

where Pi(t) represents the particle’s own best position, and Pg(t) represents the global best

position.

In Equation (11), the operator ⊗ is implemented as follows: The number of elements

to be selected is determined as bw × |Vi(t)| c, where 0 < w < 1. Then, the result is the

above number of elements randomly selected from Vi(t). The same approach is applicable

to other terms where the operator ⊗ is used.

The operator � is implemented as a ‘replacement’ operator. For example, the weights in

Xi(t) are replaced with the weights in Pi(t).

The term c1r1(t) ⊗ [Pi(t) � Xi(t)] is implemented by randomly sampling bc1r1(t) ×

|Pi(t) � Xi(t)| c elements from the set Pi(t) � Xi(t), as follows:

c1r1(t) ⊗ [Pi(t) � Xi(t)] = bc1r1(t) × |Pi(t) � Xi(t)| c (12)

where |Pi(t) � Xi(t)| represents the cardinality of the set. The result of Equation (12)

indicates the number of elements that are randomly selected from the set Pi(t) � Xi(t);

c2r2(t) ⊗ [Pg(t) � Xi(t)] has the same meaning.

The operator ⊕ implements the set addition (union) operator. Vmax is used to limit the

number of elements selected from a set.

21

Example 2: Continuing with Example 1, assume the following parameter values:

w = 0.5, Vmax = 2, c1 = c2 = 0.5, r1 = 0.52 (randomly generated), r2 = 0.75 (randomly

generated). Further assume that the best goodness so far for particle i was generated by the

following position as

Pi(t) = {18AB , 12AF , 7BC , 15BD, 3CE , 16CF ,

5DA, 13EA, 19EG, 13FB , 8FD, 4FG, 12GB , 16GD}.

Also assume that the best solution so far generated by the entire swarm was achieved

by:

Pg(t) = {18AB , 2AF , 7BC , 15BD, 3CE , 15CF ,

5DA, 13EA, 19EG, 13FB , 9FD, 4FG, 1GB , 16GD}.

The inertia weight, w, determines the number of replacements that will be randomly

selected from Vi(t) (mentioned in Example 1 above). Since w = 0.5, and |Vi(t)| = 14, the

number of randomly selected replacements is 0.5×|Vi(t)| = 7. Thus, any seven replacements

from the set Vi(t) can be taken randomly. Consider that those replacements are {(2 ⇔

1)AF , (4 ⇔ 7)BC , (4 ⇔ 3)CE , (6 ⇔ 5)DA, (12 ⇔ 14)EA, (13 ⇔ 19)EG, (10 ⇔ 13)FB}

The difference between the particle’s current position and its own best position, Pi(t)�

Xi(t), is calculated by replacing each link in Xi(t) with the link in the corresponding posi-

tion in Pi(t) as:

Pi(t) � Xi(t) = {(18 ⇔ 18)AB , (1 ⇔ 12)AF , (7 ⇔ 7)BC , (15 ⇔ 15)BD, (3 ⇔

3)CE , (17 ⇔ 16)CF , (5 ⇔ 5)DA, (14 ⇔ 13)EA, (19 ⇔ 19)EG, (13 ⇔ 13)FB , (18 ⇔

8)FD, (4 ⇔ 4)FG, (16 ⇔ 12)GB , (16 ⇔ 16)GD}.

Therefore, c1×r1⊗(Pi(t)�Xi(t)) = 0.5×0.52×|Pi(t)�Xi(t)|. Since the cardinality

of Pi(t) � Xi(t) is 5, this implies that 0.5 × 0.52 ⊗ |Pi(t) � Xi(t)| = 1.3 = 1. This

22

means that any one of the five elements in Pi(t) � Xi(t) is randomly chosen. Assume that

c1 × r1 ⊗ (Pi(t) � Xi(t)) = {(18 ⇔ 8)FD}.

Similarly,

Pg(t) � Xi(t) = {(18 ⇔ 18)AB , (1 ⇔ 2)AF , (7 ⇔ 7)BC , (15 ⇔ 15)BD, (3 ⇔

3)CE , (17 ⇔ 15)CF , (5 ⇔ 5)DA, (14 ⇔ 13)EA, (19 ⇔ 19)EG, (13 ⇔ 13)FB , (18 ⇔

9)FD, (4 ⇔ 4)FG, (16 ⇔ 1)GB , (16 ⇔ 16)GD}.

The cardinality of the above set is 5, since replacements involving new and old weights

having the same value are ignored. Therefore, 0.5×0.75⊗ (Pg(t)�Xi(t)) = 0.5×0.75×5

= 1.3 = 1 replacement. Assume {(17 ⇔ 15)CF } is randomly chosen.

Substituting the above calculations in Equation (11) gives Vi(t + 1) containing three

elements, i.e.

Vi(t + 1) = {(2 ⇔ 1)AF , (4 ⇔ 7)BC , (4 ⇔ 3)CE , (6 ⇔ 5)DA, (12 ⇔ 14)EA, (13 ⇔

19)EG, (10 ⇔ 13)FB , (18 ⇔ 8)FD, (17 ⇔ 15)CF }

Since Vmax = 2, only two replacements from Vi(t + 1) are randomly chosen. Assume

that ((18 ⇔ 8)FD and (17 ⇔ 15)CF are chosen. Then,

Vi(t + 1) = {(18 ⇔ 8)FD, (17 ⇔ 15)CF }

6.3 Particle Position Update

The position Xi(t) of a particle i is updated using

Xi(t + 1) = Xi(t)
⊎

Vi(t + 1) (13)

where
⊎

is a special operator that updates the links in Xi(t) on the basis of weight replace-

ments in Vi(t + 1), to get the new position Xi(t + 1).

Example 3: Consider Example 2, for which

23

Xi(t + 1) = Xi(t)
⊎

Vi(t + 1) = {18AB , 1AF , 7BC , 15BD, 3CE , 17CF ,

5DA, 14EA, 19EG, 13FB , 18FD, 4FG, 16GB , 16GD}
⊎

{(18 ⇔ 8)FD, (17 ⇔ 15)CF } =

{18AB , 1AF , 7BC , 15BD, 3CE , 15CF , 5DA, 14EA, 19EG, 13FB , 8FD, 4FG, 16GB , 16GD}

Thus, in the new solution, weight 18 on link FD is replaced by 8 and weight 17 on link

CF is replaced by 15.

6.4 Fitness Evaluation

Each iteration performs a few weight replacements. Because of weight changes, the routes

within the network will change. The next step is to calculate the traffic on each link as a result

of the new routes. Finally, the cost of the new solution is computed using Equation (10) as

discussed in Section 5.

7 Fuzzy Evolutionary Particle Swarm Optimization Algorithm for Open Shortest

Path First Weight Setting Problem

In addition to the fuzzy PSO algorithm for OSPFWS (described in Section 6), a hybrid vari-

ant of the fuzzy PSO using the simulated evolution (SimE) algorithm is presented in this

section. This hybrid variant is referred to as fuzzy evolutionary PSO (FEPSO). Section 7.1

presents a brief discussion on SimE. This is followed by a discussion on FEPSO in Sec-

tion 7.2.

7.1 Simulated Evolution Algorithm

Simulated evolution (SimE) is a search strategy proposed by Kling and Banerjee [9,53,54].

Throughout the search, SimE maintains a single solution which is perturbed to generate a

24

new solution. Each solution is comprised of a set of individuals, known as elements. SimE

iteratively executes three steps:

– The evaluation step, which calculates the goodness of each element of the solution.

The goodness of an element quantifies the nearness of the element with respect to its

optimal value, and is a value in the range [0, 1]. The optimal value is problem specific

and is determined theoretically or through some empirical analysis. A higher value of

goodness indicates that the element is near to its optimal value.

– The selection step, in which a subset of elements are selected based on their goodness

and removed from the current solution. The lower the goodness of a particular element,

the higher its selection probability. A bias parameter B in the range [-1, 1] is used to

control the number of elements selected. A negative value of B increases the number

of elements selected in each iteration, thus favoring exploration. This may result in a

high quality solution but at the expense of higher computational time. A positive value

of B inflates the goodness of an element, thus reducing the number of elements being

selected for reallocation. This may result in reduced execution time, but at the risk of

premature convergence to sub-optimal (or local optimal) solution.

– The allocation step, in which the selected elements are allocated to new positions, with

the intention of improving the existing solution. Each element selected in the selection

step is removed from the solution and trial allocations are performed. The goodness of

the solution resulting from each trial allocation is calculated, and the allocation which

results in the highest goodness of the solution is accepted. This process of allocation and

goodness calculations is repeated for each selected element. At the end of the allocation

step, a new solution is obtained.

Further details about the SimE algorithm can be found in [9,53,54].

25

7.2 Fuzzy Evolutionary Particle Swarm Optimization

Particles of the fuzzy PSO algorithm proposed in Section 6 perform weight replacements.

These replacements involve replacing an old weights with a new weights on the links. Fur-

thermore, the total number of performed replacements is limited by the parameter Vmax. It

is possible that, for a link i, a replacement may remove a weight (to be replaced with another

weight) which might already be the optimum (or near-optimum) weight for that link. Note

that this replacement is done ‘blindly’. That is, the value of the new weight is chosen ran-

domly. If these blind replacements continue for other links having optimum weights, then

it will take a significant amount of time for the algorithm to converge. Rather than having

a blind replacement, it would be more appropriate to replace a weight based on its quality.

A weight with low quality will have a high probability of being removed from its current

position, and vice versa. The question is how to measure the quality of a weight. This can be

answered by incorporating the evaluation and selection phases of the SimE algorithm into

the FPSO algorithm, as discussed below.

Recall from Section 7.1 that a solution in SimE is comprised of elements. For the

OSPFWS problem, elements are the link weights, whose goodness need to be evaluated.

In this paper, the function defined by Sqalli et al. [38] is employed to evaluate the goodness

of a weight, as given below:

gij =















1 − uij if MU ≤ 1

1 − uij/MU + uij/MU2 if MU > 1

(14)

where uij represents the utilization on link connecting nodes i and j, and MU refers to the

maximum utilization. The evaluation is performed for all current weights which are part of

the set Vi(t + 1) as defined by Equation (11).

26

Once the goodness of each existing weight in Vi(t+1) is evaluated, the selection phase

chooses the weights that would be replaced with new weights. This selection is done proba-

bilistically based on the quality of existing weights in Vi(t+1). A random number Random

in the range [0,1] is generated. If Random ≤ 1 − gij + B, then the existing weight is se-

lected for replacement, otherwise no replacement is done. In the above expression, gij refers

to the goodness of current weight on the link connecting nodes i and j, and B is the selection

bias. Figure 3 provides the pseudo-code of the selection function for FEPSO. The selection

process is illustrated by the following example.

Example 4: In Example 2, Vi(t + 1) was found as follows:

Vi(t + 1) = {(2 ⇔ 1)AF , (4 ⇔ 7)BC , (4 ⇔ 3)CE , (6 ⇔ 5)DA, (12 ⇔ 14)EA, (13 ⇔

19)EG, (10 ⇔ 13)FB , (18 ⇔ 8)FD, (17 ⇔ 15)CF }

Since Vmax = 2, only two replacements from Vi(t+1) were randomly chosen in FPSO.

However, in FEPSO, the replacements will be done based on the goodness of weights. As-

sume that (4 ⇔ 3)CE , (10 ⇔ 13)FB and (17 ⇔ 15)CF were selected based on the selection

procedure. However, since Vmax = 2, only two replacements will be selected randomly out

of the three. So, a possible result could be

Vi(t + 1) = {(10 ⇔ 13)FB and (17 ⇔ 15)CF }

Although the proposed hybridization between PSO and SimE seems promising in gener-

ating high quality results, the approach also has some negative aspects. One major complex-

ity is associated with tuning of another parameter, namely, bias B, on top of tuning of various

parameters associated with the PSO algorithm. This adds extra effort and time to find the

best combination out of many possible combinations of all design parameters. Another is-

sue is that the complexity of the code increases, thus increasing the execution time. A single

iteration of FEPSO will take more time than a single iteration of FPSO. In a broader perspec-

tive and with consideration of applying the proposed hybrid algorithm to other optimization

27

Function Selection (B);

/* B: Selection Bias; */

Get the set of possible replacements Vi(t + 1) from Equation (1)

For all the current weights in the set Vi(t + 1) do

Calculate the goodness gij of weight on link between nodes i and j using Equation (2)

If Random ≤ 1 − gij + B Then

Allow the replacement of the old weight with new weight;

Else

Don’t allow the replacement of the old weight with new weight;

End If

End For

End Selection;

Fig. 3 Weight replacement function of FEPSO

problems, it can be argued that the proposed hybridization will allow faster convergence of

FEPSO to an optimal or sub-optimal solution as compared to FPSO. However, this is not

always guaranteed and can only be established after thorough experimentation and analysis.

8 Experimental methodology

This paper uses test cases from [2] which have been used by many other researchers as

discussed in Section 2. Table 1 summarizes the characteristics of the test cases. For each test

case, the table lists its network type, the number of nodes (N), and the number of arcs or

edges (a). The 2-level hierarchical networks are generated using the GT-ITM generator [55],

based on the model of Calvert [56] and Zegura [57]. In hierarchical networks, local access

arcs have capacities equal to 200, while long distance arcs have capacities equal to 1000. In

Random networks and Waxman networks, capacities are set at 1000 for all arcs. Fortz and

28

Thorup generated the demands to force some nodes to be more active senders or receivers

than others, thus modelling hot spots on the network. More specifically, higher demands

were assigned to closely located node pairs. Further details can be found in [8].

Experiments were done with different combinations of PSO parameters for each test

case. Thirty independent runs were executed for each parameter setup, and the average of

the best solutions found in each run was reported, with the associated standard deviation.

Furthermore, results were validated for statistical significance through non-parametric test-

ing. For this purpose, the Wilcoxon’s rank-sum test was used with confidence level set at

95%. After experimenting with different values, it was found that 100 iterations were rea-

sonable to observe the trends. Therefore, each run was executed for 100 iterations.

Table 1 Test cases for the OSPFWS problem. N = number of nodes, a = number of arcs

Test Code Network type N a

h100N280a 2-level hierarchical graph 100 280

h100N360a 2-level hierarchical graph 100 360

h50N148a 2-level hierarchical graph 50 148

h50N212a 2-level hierarchical graph 50 212

r100N403a Random graph 100 403

r100N503a Random graph 100 503

r50N228a Random graph 50 228

r50N245a Random graph 50 245

w100N391a Waxman graph 100 391

w100N476a Waxman graph 100 476

w50N169a Waxman graph 50 169

w50N230a Waxman graph 50 230

29

Table 2 PSO parameter settings used in the experiments

Parameter Name Parameter Values

swarm size 20, 40, 60, 80, 100

Vmax 5, 10, 15, 20

w 0.3, 0.5, 0.72, 0.85, 0.99

c1, c2 0.7 and 1.4, 1.4 and 0.7, 1.49 and 1.49, 2 and 2. 0.5 and 3, 3 and 0.5

9 Results and Discussion

The proposed PSO algorithm was evaluated with respect to all the PSO parameters. These

parameters are the swarm size, acceleration coefficients c1 and c2, inertia weight w, and

velocity clamping Vmax. Table 2 lists all the parameter combinations used. The following

parameters were used as default: swarm size = 40, Vmax = 15, w = 0.72, and c1 = c2 =

1.49. The values c1 = c2 = 1.49 (along with w = 0.72) were specifically selected, since

they are frequently used in the literature due to the fact that they enhance the probability of

convergence [58].

9.1 Effect of Swarm Size

The effect of swarm size was investigated with 20, 40, 60, 80, and 100 particles, as listed in

Table 2. Other parameter values were kept at the defaults. Figures 4 and 5 provide a graphical

representation of the effect of varying the swarm size on the quality of solutions obtained

for test cases with 50 nodes and 100 nodes, respectively (detailed results are presented in

Appendix B). It is observed from the figures that for all test cases, increasing the number

of particles enhanced the quality of solution. More specifically, the highest average overall

goodness was obtained with the highest swarm size consisting of 100 particles, while the

lowest average overall goodness was obtained with the minimum value of swarm size, i.e.

30

��������������� �

��

�

���������������� �

����������������� � � � ��

�

������������������ �

������ � � ���	��

����

�

���

���

���

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

 ��!
�	�

���

���

���

���

���

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

 ��!�
��

����

����

����

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

���!��	�

����

����

����

����

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

���!����

����

����

����

��"�

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

� ��!
�#�

����

����

����

����

����

��"�

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

� ��!����

Fig. 4 Effect of swarm size on overall goodness for test cases with 50 nodes: (a) h50N148a (b) h50N212a

(c) r50N228a (d) r50N245a (e) w50N169a (f) w50N230a

31

�������������� ��

��

�

�������������� �

�������������� � � � ���

�

�������������� �

��	��

����

�

����

����

����

����

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

��!�	��

����

����

����

����

��"�

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

��!����

����

����

����

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

�
��!����

����

����

����

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

�
��!����

����

����

����

����

����

��"�

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

�
��!�#
�

���

���

���

��"

�� �� �� 	�
��

�
�
�

�
�
��

�� ��� �����

������������ ��� ��������������������
������

�
��!�"��

Fig. 5 Effect of swarm size on overall goodness for test cases with 100 nodes: (a) h100N280a (b) h100N360a

(c) r100N503a (d) r100N403a (e) w100N391a (f) w100N476a

32

20 particles. Furthermore, the figures show a logarithmic decrease in the gains in quality with

increase in swarm size. A validation with Wilcoxon’s test with 95% significance level for

the average overall goodness obtained with different swarm sizes was also performed for the

results reported in Tables 14 to 25 (refer to Appendix B). The hypothesis testing was done

to check whether the average goodness value obtained with 100 particles was statistically

significantly better than those obtained with other swarm sizes. The results confirmed that a

swarm size of 100 gave the best results for all test cases.

Another important observation from Tables 14 to 25 is that, for most test cases, swarms

of 80 and 100 particles resulted in no significant difference with respect to solution quality.

This happened for the test cases h100N280a, h100N360a, h50N212a, r100N503a, r50N228a,

r50N245a, w50N169a, and w50N230a. The test case w50N169a was an exception, where

swarm sizes 60, 80, and 100 particles resulted in the same quality of solutions. Therefore,

the smaller swarm size was preferred over larger swarm size due to lower computational

cost.

Diversity is defined as a measure of the average distance of each particle from the cen-

ter of the mass. Diversity is calculated at each iteration during the execution of the algo-

rithm [59]. The effect of increase in swarm size on diversity was also studied. The purpose

was to observe whether bigger swarm sizes reduced the possibility of getting trapped in lo-

cal minima (preventing premature convergence), thus resulting in solutions of higher quality.

As an example, Figure 6 shows the diversity plots for different number of particles for the

test case w100N476a. The figure suggests that the algorithm did not converge immediately

after initialization for all the swarms. Diversity increased until around iteration number 50.

The reduction in diversity is seen when the algorithm started converging. Swarms with 20

particles maintained diversity at a higher level compared to other swarm sizes, and quickly

converged at around iteration 225. This is followed by swarms with 40 and 60 particles,

33

��������������� �

��

�

� ��������������� �

����������������� � � � ��

�

�

������ � � ��

����

�

�

����

����

����

����

����

���	

���

����

����

�

�
	

�
�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

	

�
�
�

�
�

������
��

	
���

������������� ����������
�����������
���
�

�
���� �������
�����
��

�

����

����

����

����

����

���	

���

����

����

�

�
	

�
�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

	

�
�
�

�
�

������
��

	
���

������������� ����������
���!������
���
��
��

�� �������
�����
��

�

����

����

����

����

����

���	

���

����

����

�

�
	

�
�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

	

�
�
�

�
�

������
��

	
���

������������� ����������
����������
���
�

�
���� �������
�����
��

�

����

����

����

����

����

���	

���

����

����
�

�
	

�
�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

	

�
�
�

�
�

������
��

	
���

������������� ����������
����������
���
�

�
���� �������
�����
��

�

����

����

����

����

����

���	

���

����

����

�

�
	

�
�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

�
�
	

�
�
�

�

	

�
�
�

	

�
�
�

�
�

������
��

	
���

������������� ����������
���"������
���
�

�
���� �������
�����
��

Fig. 6 Diversity plots for w100N476a using (a) 100 particles (b) 80 particles (c) 60 particles (d) 40 particles

and (e) 20 particles

34

which converged nearly at the same time, at around iteration number 326. Followed by this,

swarm with 80 particles converged at iteration 380. Finally, the swarm with 100 particles

converged in the last, after 400 iterations.

9.2 Effect of Acceleration Coefficients

The impact of the acceleration coefficients on the algorithm’s performance was also evalu-

ated. Table 3 gives the average overall goodness for different combinations of acceleration

coefficients, as given in Table 2. Other algorithm parameters were kept as their defaults.

As observed in Table 3, a dominant trend was that the best results were obtained when

the value of c1 was much higher than that of c2. That is, for seven out of twelve test cases, the

best overall goodness was obtained when c1 = 3.0 and c2 = 0.5. Furthermore, there were two

other test cases (r100N403a and w100N391a) where the best overall goodness was obtained

with c1 = 1.4 and c2 = 0.7. These results indicate that in general, the algorithm resulted in

highest overall goodness values when the cognitive component dominated the social com-

ponent. There were only three test cases (h100N280a, h100N360a and w50N169a) which

deviated from the above trend.

The above observations are further supported by the results given in Table 4 which gives

the percentage improvements in terms of the best and worst overall goodness values. The

results show that the level of improvements achieved ranged between 2.61% and 11.74%. In

most instances, the average overall goodness was around 4% or above. Statistical validation

with the Wilcoxon’s test proved that in a majority of the cases, the improvements were sta-

tistically significant (highlighted in boldface). It is clear from these results that for eight test

cases, best overall goodness values were obtained when the value of c1 was greater than c2.

There were three exceptions, namely, h100N280a, w50N169a, and h100N360 (highlighted

35

in asterisk) which deviated from the above trend. Furthermore, improvements in one test

case (r50N245a) turned out to be statistically insignificant. In view of the above results and

discussion, it can be fairly concluded that higher quality results produced by PSO were

governed by the cognitive component.

Table 3 Effect of different acceleration coefficients combinations on overall goodness for different test cases.

Best overall goodness for each test case is in boldface

Test Case c1 = 1.49 c1 = 0.7 c1 = 1.4 c1 = 2.0 c1 = 0.5 c1 = 3.0

c2 = 1.49 c2 = 1.4 c2 = 0.7 c2 = 2.0 c2 = 3.0 c2 = 0.5

(Set 1) (Set 2) (Set 3) (Set 4) (Set 5) (Set 6)

h100N280a 0.471±0.018 0.494±0.029 0.473±0.027 0.486±0.023 0.464±0.022 0.468±0.031

h100N360a 0.480±0.034 0.470±0.052 0.478±0.029 0.480±0.032 0.493±0.044 0.484±0.021

h50N148a 0.400±0.019 0.401±0.019 0.409±0.023 0.404±0.017 0.403±0.033 0.427±0.022

h50N212a 0.469±0.022 0.445±0.038 0.460±0.051 0.450±0.052 0.484±0.011 0.494±0.021

r100N403a 0.425±0.031 0.432±0.02 0.437±0.016 0.430±0.019 0.410±0.017 0.418±0.052

r100N503a 0.474±0.029 0.467±0.024 0.474±0.021 0.473±0.021 0.485±0.019 0.486±0.027

r50N228a 0.487±0.022 0.485±0.02 0.490±0.023 0.492±0.026 0.488±0.012 0.504±0.035

r50N245a 0.499±0.03 0.509±0.023 0.507±0.022 0.501±0.026 0.500±0.022 0.512±0.022

w100N391a 0.490±0.063 0.512±0.048 0.514±0.07 0.507±0.086 0.500±0.044 0.482±0.118

w100N476a 0.578±0.026 0.572±0.03 0.568±0.025 0.570±0.022 0.567±0.025 0.595±0.010

w50N169a 0.541±0.019 0.551±0.03 0.536±0.029 0.552±0.028 0.523±0.028 0.530±0.010

w50N230a 0.504±0.038 0.501±0.043 0.477±0.079 0.513±0.042 0.460±0.087 0.514±0.049

9.3 Effect of Inertia Weight

The effect of the inertia weight was assessed with respect to the five values listed in Table

2. Other algorithm parameters were kept at their defaults. Table 5 gives the average overall

36

Table 4 Results for best and worst overall goodness and their corresponding values of c1 and c2. Statistically

significant improvements are given in boldface.

Test case Best c1, c2 Worst c1, c2 % difference

overall overall

goodness goodness

h100N280a 0.494 0.7, 1.4 0.464 0.5, 3 6.47 *

h100N360a 0.493 0.5, 3 0.480 0.7, 1.4 4.89 *

h50N148a 0.427 3, 0.5 0.400 1.49, 1.49 6.75

h50N212a 0.494 3, 0.5 0.445 0.7, 1.4 11.01

r100N403a 0.437 1.4, 0.7 0.410 0.5, 3 6.59

r100N503a 0.486 3, 0.5 0.467 0.7, 1.4 4.07

r50N228a 0.504 3, 0.5 0.485 0.7, 1.4 3.92

r50N245a 0.512 3, 0.5 0.499 1.49, 1.49 2.61

w100N391a 0.514 1.4, 0.7 0.482 3, 0.5 6.64

w100N476a 0.595 3, 0.5 0.567 0.5, 3 4.94

w50N169a 0.552 2, 2 0.523 0.5, 3 5.54 *

w50N230a 0.514 3, 0.5 0.460 0.5, 3 11.74

goodness for the different values of the inertia weight. It is observed from this table that,

in general, higher values of the inertia weight (w = 0.85 and w = 0.99) tend to show better

results than the tried smaller values.

In order to validate the above observations, statistical testing was done and results are

shown in Table 6. This table shows the percentage improvements obtained when results

with two different inertia weights were compared. Although the results show improvements

in terms of percentages, statistical testing revealed that in general, improvements were sta-

tistically insignificant. Only few improvements were significant which are highlighted in

boldface. Based on these observations, it can be confidently claimed that with respect to

37

the five values tried, the inertia weight did not have a notable impact on the output results

produced by the algorithm.

Table 5 Average overall goodness values achieved with different inertia weights. Best overall goodness val-

ues are given in boldface.

Test Case w = 0.3 w = 0.5 w = 0.72 w = 0.85 w = 0.99

h100N280a 0.469±0.025 0.469±0.029 0.471±0.018 0.477±0.013 0.479 ±0.024

h100N360a 0.467±0.051 0.468±0.041 0.48±0.034 0.495±0.026 0.462±0.019

h50N148a 0.406±0.027 0.391±0.025 0.400±0.019 0.373±0.027 0.396±0.035

h50N212a 0.466±0.028 0.447±0.03 0.469±0.022 0.483±0.014 0.461±0.014

r100N403a 0.431±0.025 0.421±0.028 0.425±0.031 0.423±0.008 0.409±0.025

r100N503a 0.465±0.026 0.465±0.021 0.474±0.029 0.473±0.011 0.462±0.041

r50N228a 0.495±0.021 0.491±0.022 0.487±0.022 0.495±0.034 0.502±0.023

r50N245a 0.500±0.02 0.509±0.022 0.499±0.03 0.524±0.027 0.504±0.026

w100N391a 0.474±0.071 0.509±0.052 0.490±0.063 0.513±0.023 0.417±0.137

w100N476a 0.586±0.027 0.57±0.023 0.578±0.026 0.572±0.055 0.584±0.048

w50N169a 0.542±0.027 0.550±0.023 0.541±0.019 0.552±0.033 0.559±0.023

w50N230a 0.501±0.033 0.501±0.043 0.504±0.038 0.518±0.046 0.526±0.024

9.4 Effect of Velocity Clamping

The effect of velocity clamping was also investigated. Apart from the default value of Vmax

= 15, other values of velocity clamping 5, 10, and 20, were tried as listed in Table 2. Other

algorithm parameters were kept as defaults. The inspiration for taking the aforementioned

values of Vmax comes from the concept of mutation rates in genetic algorithms. Note that

the function of Vmax in PSO and mutation in GA is somewhat similar; both parameters

control the level of perturbation in the solution. Although the mutation rate is problem spe-

38

Table 6 Comparison of different inertia weights given in Table 5 in terms of percentage differences. Statisti-

cally significant differences are highlighted in boldface.

Test Case 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.72 0.72 0.85

vs 0.5 vs 0.72 vs 0.85 vs 0.99 vs 0.72 vs 0.85 vs 0.99 vs 0.85 vs 0.99 vs 0.99

h100N280a 0.00 0.43 1.71 2.13 0.43 1.71 2.13 1.27 1.70 0.42

h100N360a -0.21 2.78 6.00 -1.07 2.56 5.77 -1.28 3.13 -3.75 -6.67

h50N148a 3.69 -1.48 -8.13 -2.46 2.30 -4.60 1.28 -6.75 -1.00 6.17

h50N212a 4.08 0.64 3.65 -1.07 4.92 8.05 3.13 2.99 -1.71 -4.55

r100N403a 2.32 -1.39 -1.86 -5.10 0.95 0.48 -2.85 -0.47 -3.76 -3.31

r100N503a 0.00 1.94 1.72 -0.65 1.94 1.72 -0.65 -0.21 -2.53 -2.33

r50N228a 0.81 -1.62 0.00 1.41 -0.81 0.81 2.24 1.64 3.08 1.41

r50N245a -1.80 -0.20 4.80 0.80 -1.96 2.95 -0.98 5.01 1.00 -3.82

w100N391a -7.38 3.38 8.23 -12.03 -3.73 0.79 -18.07 4.69 -14.90 -18.71

w100N476a 2.73 -1.37 -2.39 -0.34 1.40 0.35 2.46 -1.04 1.04 2.10

w50N169a -1.48 -0.18 1.85 3.14 -1.64 0.36 1.64 2.03 3.33 1.27

w50N230a 0.00 0.60 3.39 4.99 0.60 3.39 4.99 2.78 4.37 1.54

cific, a number of studies [59–63] have used the mutation rate of up to 20%. Therefore, the

motivation for choosing the given range of Vmax is the above observation. For the problem

in hand, since the size of the solution string varies between 148 and 503 (corresponding to

the number of edges on which the weights are varied), the values of Vmax ranging from 5

to 20 correspond to perturbation rates of 1% to around 12%.

Table 7 shows the average overall goodness for the four values of Vmax investigated.

It is observed from the table that Vmax = 5 produced the highest values of average overall

goodness for almost all test cases, with the exception of r100N403a, where Vmax = 10

produced the highest value of average overall goodness. Another deviation from the trend

39

was the case w100N391a where both Vmax = 5 and Vmax = 10 produced the same level of

average overall goodness.

The best performance of Vmax = 5 was further confirmed by statistical testing which

showed that the results produced by Vmax = 5 were indeed significant for all test cases

when compared with Vmax = 15 and Vmax = 20, as depicted in Table 8. Furthermore, when

compared with Vmax = 10, the results produced by Vmax = 5 were statistically significant

for 9 out of the 12 test cases. The above observations and analysis clearly indicate that Vmax

= 5 resulted in the highest quality of solutions compared to the other values of Vmax tested.

It is obvious from the above discussion and analysis that Vmax had a significant impact

on the quality of final solutions produced by the proposed PSO algorithm. The results also

indicate that better overall goodness values were obtained when velocity clamping was kept

low. This can be attributed to the fact that, with larger values of Vmax, the algorithm was

biased towards exploration which rather resulted in more randomized search. A lower value

of Vmax was therefore able to better balance exploration and exploitation.

9.5 Comparison of Fuzzy Particle Swarm Optimization and Fuzzy Evolutionary Particle

Swarm Optimization

Table 9 summarizes the comparison of the proposed fuzzy PSO and the fuzzy evolutionary

PSO. The table shows the results of the best parameter combination for FPSO and the corre-

sponding results for FEPSO for the same parameter combination. Thirty runs were executed

for each test cases and results were statistically validated through Wilcoxon’s rank-sum test.

The execution time (not the number of iterations) for both versions was also kept the same.

It is clearly observed from the table that the improvements achieved by FESPO were sta-

tistically significant for all test cases, with the exception of h100N280a (for which FEPSO

40

Table 7 Analysis of velocity clamping. Best overall goodness is in boldface.

Test Case Vmax=15 Vmax=5 Vmax=10 Vmax=20

Set (1) Set (2) Set (3) Set (4)

h100N280a 0.471±0.018 0.531±0.018 0.489±0.028 0.454±0.021

h100N360a 0.48±0.034 0.539±0.025 0.482±0.051 0.45±0.039

h50N148a 0.4±0.019 0.437±0.021 0.414±0.022 0.387±0.023

h50N212a 0.469±0.022 0.502±0.02 0.489±0.019 0.436±0.038

r100N403a 0.425±0.031 0.447±0.025 0.45±0.014 0.415±0.017

r100N503a 0.474±0.029 0.535±0.023 0.51±0.023 0.462±0.02

r50N228a 0.487±0.022 0.543±0.019 0.517±0.021 0.473±0.023

r50N245a 0.499±0.03 0.557±0.019 0.53±0.024 0.485±0.023

w100N391a 0.49±0.063 0.538±0.103 0.538±0.05 0.456±0.083

w100N476a 0.578±0.026 0.641±0.023 0.615±0.03 0.544±0.053

w50N169a 0.541±0.019 0.595±0.021 0.57±0.033 0.519±0.026

w50N230a 0.504±0.038 0.591±0.029 0.557±0.028 0.478±0.041

had a slightly inferior performance with degradation of 0.91% in the average overall good-

ness). However, statistical analysis suggested that this deteriorated result was not significant.

Therefore, it can be confidently claimed that FEPSO outperformed FPSO in terms of quality

of the average overall goodness.

The superior performance of FEPSO can be attributed to its design. Recall from Section

7.2 that an existing solution is perturbed by performing moves as governed by Equation (11).

These moves result in randomly replacing existing weights on links with new weights. It is

quite possible that some of these moves may result in removing a near-optimum (or even

optimum) weight from a certain link and introducing an unsuitable weight. In order to avoid

this from happening, the concept of “intelligent” move was introduced in FEPSO, which

41

Table 8 Comparison of different values of velocity clamping. Significant differences are highlighted in bold-

face.

Test Case Vmax=15 vs Vmax=15 vs Vmax=15 vs Vmax=5 vs Vmax=5 vs Vmax=10 vs

Vmax=5 Vmax=10 Vmax=20 Vmax=10 Vmax=20 Vmax=20

h100N280a -11.3 -3.68 3.74 8.59 16.96 7.71

h100N360a -10.95 -0.41 6.67 11.83 19.78 7.11

h50N148a -8.47 -3.38 3.36 5.56 12.92 6.98

h50N212a -6.57 -4.09 7.57 2.66 15.14 12.16

r100N403a -4.92 -5.56 2.41 -0.67 7.71 8.43

r100N503a -11.4 -7.06 2.6 4.9 15.8 10.39

r50N228a -10.31 -5.8 2.96 5.03 14.8 9.3

r50N245a -10.41 -5.85 2.89 5.09 14.85 9.28

w100N391a -8.92 -8.92 7.46 0 17.98 17.98

w100N476a -9.83 -6.02 6.25 4.23 17.83 13.05

w50N169a -9.08 -5.09 4.24 4.39 14.64 9.83

w50N230a -14.72 -9.52 5.44 6.1 23.64 16.53

allows the algorithm to converge in less amount of time, or alternatively speaking, producing

higher quality results when executed for the same amount of time as that of FPSO.

10 Comparison of Fuzzy Evolutionary Particle Swarm Optimization with other

algorithms

Since fuzzy evolutionary PSO algorithm (FEPSO) performed better than fuzzy PSO (FPSO)

algorithm, it was compared with other iterative heuristics, namely, Pareto-dominance PSO

(PDPSO) [64], PSO with weighted aggregation (WAPSO) [65], non-dominated sorting ge-

netic algorithm II (NSGA-II)[66,42], simulated evolution (SimE)[40,42], and simulated

42

Table 9 Comparison of fuzzy PSO and fuzzy evolutionary PSO. Significant differences are highlighted in

bold. NoP = number of particles, % Imp = percentage improvement. Runtime is in seconds.

Test Case NoP C1 C2 W Vmax Run FPSO FEPSO %

Time Imp

h100N280a 40 1.49 1.49 0.72 5 12460.7 0.531±0.018 0.526±0.015 -0.91

h100N360a 100 1.49 1.49 0.72 15 30679.8 0.543±0.036 0.605±0.012 11.40

h50N148a 40 1.49 1.49 0.72 5 808.9 0.437±0.021 0.469±0.019 7.22

h50N212a 100 1.49 1.49 0.72 15 2291.2 0.504±0.015 0.528±0.013 4.94

r100N403a 100 1.49 1.49 0.72 15 62095.1 0.481±0.017 0.595±0.011 23.73

r100N503a 100 1.49 1.49 0.72 15 78408.6 0.543±0.013 0.710±0.012 30.83

r50N228a 100 1.49 1.49 0.72 15 3112.4 0.543±0.019 0.610±0.016 12.27

r50N245a 40 1.49 1.49 0.72 5 1586.8 0.557±0.019 0.644±0.014 15.67

w100N391a 100 1.49 1.49 0.72 15 48083.9 0.609±0.029 0.725±0.010 18.94

w100N476a 100 1.49 1.49 0.72 15 71213.2 0.657±0.025 0.757±0.011 15.24

w50N169a 40 1.49 1.49 0.72 5 1084.5 0.595±0.021 0.640±0.012 7.47

w50N230a 40 1.49 1.49 0.72 5 1653.0 0.591±0.029 0.711±0.022 20.48

annealing (SA) [39,42]. PDPSO and WAPSO were adapted for the underlying problem,

whereas NSGA-II, SimE, and SA have already been applied to the same problem by Mo-

hiuddin et al. [42]. Details of implementation and comparative analysis of NSGA-II, SimE,

and SA can be found in Mohiuddin et al. [42]. Thirty runs were made for each test cases for

each algorithm, and average results and standard deviations were reported. All algorithms

were run for the same amount of time for fair comparisons.

Tables 10, 11, and 12 present the results obtained for FEPSO, PDPSO, WAPSO, NSGA-

II, SimE, and SA for the three objectives, respectively. Since the multi-objective assessment

approach for the algorithms is not the same, the overall objective function that shows the

43

combined effect of all three objectives cannot be directly used for comparison. Therefore,

each objective was evaluated individually. Table 10 indicates that for the maximum utiliza-

tion objective, FEPSO obtained the best results for four test cases (h100N360a, r100N503a,

r50N245a, w50N230a). For two test cases (r100N403a and r50N228a), both FEPSO and

SimE produced the best results. For four cases (h100N280a, h40N212a, w100N391a, and

w100N476a), SimE generated the best (minimum) values. For two test cases (h50N148a and

w50N169a), SA obtained the best results. As for the objective of number of congested links,

the results in Table 11 indicate that FEPSO obtained the best results for nine test cases. The

exception was three test cases of h100N280a, h50N148a, and w50N169a where SimE, SA,

and NSGA-II were able to achieve the best values, respectively. Finally for the objective of

number of unused links, the results in Table 10 indicate that FEPSO was able to achieve op-

Table 10 Comparison of Maximum Utilization (MU) achieved by FEPSO, PDPSO, WAPSO, NSGA-II,

SimE, and SA. Best (minimum) values are shown in bold.

Test Case FEPSO PDPSO WAPSO NSGA-II SimE SA

h100N280a 1.44±0.06 1.42±0.07 1.44±0.10 1.42±0.07 1.41±0.06 1.50±0.35

h100N360a 1.69±0.08 1.86±0.07 1.82±0.12 1.84±0.08 1.72±0.09 2.01±0.53

h50N148a 1.54±0.09 1.71±0.09 1.67±0.13 2.90±1.12 1.62±0.12 1.51±0.1

h50N212a 1.71±0.05 1.76±0.05 1.80±0.05 1.71±0.08 1.67±0.1 1.68±0.08

r100N403a 1.86±0.07 2.35±0.18 2.32±0.12 4.13±1.93 1.86±0.07 2.72±0.58

r100N503a 1.95±0.08 3.40±0.24 2.85±0.25 3.48±0.21 2.19±0.17 3.58±0.42

r50N228a 1.80±0.11 2.09±0.14 2.04±0.21 2.05±0.16 1.80±0.12 2.02±0.13

r50N245a 2.44±0.19 2.99±0.28 2.66±0.21 2.90±0.29 2.60±0.19 2.83±0.24

w100N391a 1.49±0.02 1.68±0.13 1.69±0.13 1.65±0.11 1.42±0.03 1.75±0.71

w100N476a 1.54±0.07 1.95±0.14 1.94±0.15 2.17±0.2 1.46±0.07 2.24±0.22

w50N169a 1.44±0.08 1.60±0.11 1.67±0.06 1.43±0.07 1.44±0.08 1.41±0.09

w50N230a 1.36±0.09 1.71±0.16 1.61±0.12 1.65±0.10 1.44±0.09 1.55±0.15

44

Table 11 Comparison of Number of Congested Links (NOC) achieved by FEPSO, PDPSO, WAPSO, NSGA-

II, SimE, and SA. Best (minimum) values are shown in bold.

Test Case FEPSO PDPSO WAPSO NSGA-II SimE SA

h100N280a 9.00±1.26 9.00±1.20 9.00±1.49 8.65±1.04 8.50±1.43 8.93±1.39

h100N360a 12.80±1.99 16.60±3.27 15.90±2.38 16.80±2.35 16.13±2.24 21.03±6.30

h50N148a 9.80±1.15 11.10±2.08 9.20±2.20 16.45±3.99 10.37±2.03 8.4±1.67

h50N212a 4.70±0.66 5.20±0.79 4.80±0.42 5.80±0.83 4.93±0.74 5.17±0.79

r100N403a 32.95±2.76 54.50±5.82 58.80±3.16 72.25±19.06 44.73±2.49 62.6±6.58

r100N503a 31.45±2.95 73.80±5.05 69.40±4.74 73.75±3.18 52.80±2.81 82.33±26.21

r50N228a 16.65±1.57 22.10±2.08 24.60±2.37 19.95±2.11 19.77±1.30 22.03±2.25

r50N245a 20.25±1.48 27.50±2.32 28.30±2.00 26.05±2.54 26.20±1.97 28.77±2.62

w100N391a 3.25±1.12 16.50±3.60 12.50±4.62 14.15±3.72 7.17±2.69 42.1±19.92

w100N476a 11.25±1.89 23.30±3.13 24.30±3.06 30.00±4.12 17.07±2.36 41.7±15.65

w50N169a 7.70±0.92 9.70±1.16 8.80±2.04 7.65±1.35 8.37±1.19 8.8±1.81

w50N230a 6.00±1.21 13.40±3.66 11.70±2.06 11.25±2.10 9.13±1.50 14.4±9.08

timum values (i.e., no link was left unused) in all test cases, with the exception of r50N245a.

However, it should also be noted that there are many instances where other algorithms also

achieved the optimum levels.

Although the discussion above provides a fair picture of the performance of FEPSO with

respect to individual objectives, an overall view of FEPSO‘s performance is desired. Table

13 accumulates the results with regard to the three objectives and displays the best and worst

achievers for each objective. The results given in Table 13 are based on results of Tables

10, 11, and 12. The table signifies that in five cases (h100N360a, r100N403a, r100N503a,

r50N228a, and w50N230a), FEPSO achieved the best results for all three objectives, while

there are four cases (h50N212a, r50N245a, w100N391a, and w100N476a) where FEPSO

45

Table 12 Comparison of Number of Unused Links (NUL) achieved by FEPSO, PDPSO, WAPSO, NSGA-II,

SimE, and SA. Best (minimum) values are shown in bold.

Test Case FEPSO PDPSO WAPSO NSGA-II SimE SA

h100N280a 0.00±0.00 0.00±0.00 0.10±0.32 0.00±0.00 1.23±0.90 0.7±3.31

h100N360a 0.00±0.00 0.10±0.32 0.00±0.00 0.20±0.52 0.93±1.01 0.2±0.48

h50N148a 0.00±0.00 0.00 ±0.00 0.00±0.00 0.30±0.66 0.07±0.25 0.00±0.00

h50N212a 0.00±0.00 1.90±1.91 2.60±2.55 0.05±0.22 2.77±1.92 0.07±0.25

r100N403a 0.00±0.00 0.00±0.00 0.00±0.00 0.60±0.60 0.13±0.35 0.03±0.18

r100N503a 0.00±0.00 0.50 ±0.71 0.00±0.00 0.85±0.67 0.17±0.38 6.57±16.08

r50N228a 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.31 0.03±0.18

r50N245a 0.05±0.22 0.30±0.48 0.00±0.00 0.35±0.49 0.80±0.89 0.23±0.50

w100N391a 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.03±0.18 7.23±6.18

w100N476a 0.00±0.00 0.00±0.00 0.00±0.00 0.45±0.69 0.60±0.81 4.73±11.69

w50N169a 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.03±0.18 0.00±0.00

w50N230a 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.27±0.49 1.37±4.54

was dominant through achievement of best results in two objectives. In contrast, algorithms

used for comparison with FEPSO achieved best results mostly in only one objective. There

are some exceptions where other algorithms achieved best results in two objectives, but

achieved worst results in the third objective, which, to some extent, negatively affects their

best achievement in two objectives. Such instances are h100N280a, where SimE gets best

results for MU and NOC objectives, but shows worst results for the NUL objective. Another

example is h50N148a where NSGA-II shows the same trends as that of SimE. There is

only one test case of w50N169a where NSGA-II achieved the best results for two objectives

(NOC and NUL) but did not achieve worst results for the MU objective. Note that in all

results, there is only one instance where FEPSO showed the worst performance (NOC for

46

Table 13 Summary of test cases where different algorithms achieved best and worst results for the three

objectives. Test cases where FEPSO achieved best results for two or all three objectives are highlighted in

bold.

Test Case MU NOC NUL

Best Worst Best Worst Best Worst

h100N280a SimE SA SimE FEPSO FEPSO, PDPSO, NSGA-II SimE

h100N360a FEPSO SA FEPSO SA FEPSO, WAPSO SimE

h50N148a SA NSGA-II SA NSGA-II FEPSO, PDPSO, WAPSO,SA NSGA-II

h50N212a SimE WAPSO FEPSO NSGA-II FEPSO SimE

r100N403a FEPSO, SimE NSGA-II FEPSO NSGA-II FEPSO, PDPSO, WAPSO NSGA-II

r100N503a FEPSO SA FEPSO SA FEPSO, WAPSO SA

r50N228a FEPSO, SimE PDPSO FEPSO WAPSO FEPSO, PDPSO, WAPSO, NSGA-II SimE

r50N245a FEPSO PDPSO FEPSO SA WAPSO SimE

w100N391a SimE SA FEPSO SA FEPSO, PDPSO, WAPSO, NSGA-II SA

w100N476a SimE SA FEPSO SA FEPSO, PDPSO, WAPSO SA

w50N169a SA WAPSO NSGA-II PDPSO FEPSO, PDPSO, WAPSO, NSGA-II, SA SimE

w50N230a FEPSO PDPSO FEPSO SA FEPSO, PDPSO, WAPSO, NSGA-II SA

h100N280a). Based on the above discussion and observations, it can be fairly claimed that,

overall, FEPSO showed the best performance compared to all other algorithms considered.

The overall better performance of FEPSO lies in its design, which combines the strong

searching capabilities of PSO, augmented by the simulated evolution algorithm which al-

lows a more intelligent local search capability. In contrast to this hybrid design of FEPSO,

both SimE and SA lack efficient traversing of the whole search space, since both of them are

local search algorithms after all. Furthermore, when compared with NSGA-II, PDPSO, and

WAPSO, again the intelligent local search capability of FEPSO allowed it to outperform the

three algorithms.

47

11 Conclusion

This paper proposed and investigated a multi-objective particle swarm optimization algo-

rithm to efficiently solve the open shortest path first weight setting problem. Three opti-

mization objectives, namely, maximum utilization, number of congested links, and number

of unused links were considered in the optimization process. These conflicting objectives

were aggregated into a scalar optimization function using the unified and-or fuzzy aggrega-

tion operator. The performance of the proposed algorithm was analyzed with regard to dif-

ferent algorithm parameters including swarm size, acceleration coefficients, inertia weight,

and velocity clamping. Results revealed that swarm size, acceleration coefficients, and ve-

locity clamping have a significant effect on the quality of results, but the algorithm was

insensitive to variation in the inertia weight. Furthermore, a modified version of the fuzzy

PSO, namely, fuzzy evolutionary PSO, was also proposed which incorporated character-

istics of the simulated evolution algorithm. A comparison among the basic and modified

versions of the PSO revealed that the fuzzy evolutionary PSO was able to produce results

of higher quality compared to its basic counterpart. Furthermore, a comparison of fuzzy

evolutionary PSO with Pareto-dominance PSO, weighted aggregation PSO, NSGA-II, sim-

ulated evolution, and simulated annealing algorithms revealed that the fuzzy evolutionary

PSO outperformed the other five algorithms.

Appendix A

Nomenclature

G Graph

N Set of nodes

48

n A single element in set N

A Set of arcs

At Set of arcs representing shortest paths from all sources to destination node t

a A single element in set A. It can also be represented as (i, j)

s Source node

v Intermediate node

t Destination node

D Demand matrix

D[s, t] An element in the demand matrix that specifies the demand from source node s

to destination node t; It can also be specified as dst

wij Weight on arc (i, j); if a = (i, j), then it can also be represented as wa

cij Capacity on arc (i, j); if a = (i, j), then it can also be represented as ca

Φ Cost function

Φi,j Cost associated with arc (i, j); if a = (i, j), then it can also be represented as Φa

δt
u Outdegree of node u when destination node is t

δ+(u) Outdegree of node u

δ−(u) Indegree of node u

lta Load on arc a when destination node is t

la Total traffic load on arc a

f
(s,t)
a Traffic flow from node s to t over arc a

SetCASet of congested arcs

11.1 Terminology

1. A single element in the set N is called a “Node”. It is represented as n.

49

2. A single element in the set A is called an “Arc” or “Link”. It is represented as a.

3. A set G = (N, A) is a graph defined as a finite nonempty set N of nodes and a collection

A of pairs of distinct nodes from N .

4. A “directed graph” or “digraph” G = (N, A) is a finite nonempty set N of nodes and a

collection A of ordered pairs of distinct nodes from N ; each ordered pair of nodes in A

is called a “directed arc”.

5. A digraph is “strongly connected” if for each pair of nodes i and j there is a directed

path (i = n1, n2, ..., nl = j) from i to j. A given graph G must be strongly connected

for this problem.

6. A “demand matrix” is a matrix that specifies the traffic flow between s and t, for each

pair (s, t) ∈ N × N .

7. (n1, n2, ..., nl) is a “directed walk” in a digraph G if (ni, ni+1) is a directed arc in G for

1 ≤ i ≤ l − 1.

8. A “directed path” is a directed walk with no repeated nodes.

9. Given any directed path p = (i, j, k, ..., l, m), the “length” of p is defined as wij +wjk +

... + wlm.

10. The “outdegree” of a node u is a set of arcs leaving node u i.e., {(u, v) : (u, v) ∈ A}.

11. The “indegree” of a node u is a set of arcs entering node u i.e., {(v, u) : (v, u) ∈ A}.

12. The input to the problem will be a graph G, a demand matrix D, and capacities of each

arc.

13. The term MU refers to the maximum utilization. It is the highest load/capacity ratio of

the network.

14. The term NOC refers to the number of congested links.

15. The term NUL refers to the number of unused links.

16. The term E refers to the total number of links in the network.

50

Appendix B

Tables 14 to 25 provide the quality of solutions obtained with respect to the associated swarm

size for all test cases. Column 1 represents the number of particles in the swarm. Column 2

represents the average overall goodness using the UAO operator. Column 3 represents the

percentage difference between the average overall goodness of the corresponding number

of particles and the highest average overall goodness (given in boldface) of the solutions.

Note that the swarm size resulting in the highest average overall goodness is taken as the

reference, and the difference for other swarm sizes is calculated with respect to the reference

value. The differences were also statistically tested using Wilcoxon’s rank sum test.

Table 14 Effect of swarm size on overall cost for h100N280a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.433±0.037 16.41∗

40 0.471±0.018 9.07∗

60 0.493±0.029 4.83∗

80 0.504±0.019 2.7

100 0.518±0.025 NA

Table 15 Effect of swarm size on overall cost for h100N360a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.424±0.037 21.92∗

40 0.48±0.034 11.6∗

60 0.514±0.028 5.34∗

80 0.529±0.027 2.58

100 0.543±0.036 NA

51

Table 16 Effect of swarm size on overall cost for h50N148a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.381±0.019 12.81∗

40 0.4±0.019 8.47∗

60 0.416±0.022 4.81∗

80 0.422±0.019 3.43∗

100 0.437±0.022 NA

Table 17 Effect of swarm size on overall cost for h50N212a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.399±0.06 20.83∗

40 0.469±0.022 6.94∗

60 0.483±0.026 4.17∗

80 0.5±0.018 0.79

100 0.504±0.015 NA

Table 18 Effect of swarm size on overall cost for r100N403a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.385±0.019 19.96∗

40 0.425±0.031 11.64∗

60 0.448±0.022 6.86∗

80 0.47±0.014 2.29∗

100 0.481±0.017 NA

12 Compliance with Ethical Standards

The authors declare that they have no conflict of interest. This article does not contain any

studies with human participants or animals performed by any of the authors. Informed con-

sent was obtained from all individual participants included in the study.

52

Table 19 Effect of swarm size on overall cost for r100N503a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.41±0.014 24.49∗

40 0.474±0.029 12.71∗

60 0.506±0.022 6.81∗

80 0.53±0.02 2.39

100 0.543±0.013 NA

Table 20 Effect of swarm size on overall cost for r50N228a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.444±0.018 18.23∗

40 0.487±0.022 10.31∗

60 0.512±0.023 5.71∗

80 0.532±0.02 2.03

100 0.543±0.019 NA

Table 21 Effect of swarm size on overall cost for r50N245a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.444±0.025 19.86∗

40 0.499±0.03 9.93∗

60 0.54±0.021 2.53∗

80 0.55±0.025 0.72

100 0.554±0.021 NA

References

1. K. G. Coffman and A. M. Odlyzko. Internet Growth: Is there a Moore’s Law for Data Traffic? Handbook

of Massive Data Sets, pages 47–93, 2001.

2. B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing OSPF Weights. IEEE Conference

on Computer Communications(INFOCOM), pages 519–528, 2000.

53

Table 22 Effect of swarm size on overall cost for w100N391a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.409±0.071 32.84∗

40 0.49±0.063 19.54∗

60 0.566±0.038 7.06∗

80 0.582±0.044 4.43∗

100 0.609±0.029 NA

Table 23 Effect of swarm size on overall cost for w100N476a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.489±0.025 25.57∗

40 0.578±0.026 12.02∗

60 0.618±0.032 5.94∗

80 0.638±0.022 2.89∗

100 0.657±0.025 NA

Table 24 Effect of swarm size on overall cost for w50N169a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.508±0.03 13.31∗

40 0.541±0.019 7.68∗

60 0.573±0.02 2.22

80 0.582±0.022 0.68

100 0.586±0.027 NA

3. J. F. Kurose and K.W. Ross. Computer Networking: A Top-Down Approach Featuring the Internet.

Prentice Hall Series, 2002.

4. N. H. Bhagat. A New Hybrid Approach to OSPF Weight Setting Problem. International Journal on

Recent and Innovation Trends in Computing and Communication, 1(5):443–450, 2013.

54

Table 25 Effect of swarm size on overall cost for w50N230a with UAO.

No. of particles Fuzzy Cost (UAO) % Difference

20 0.4±0.084 31.51∗

40 0.504±0.038 13.7∗

60 0.538±0.044 7.88∗

80 0.564±0.036 3.42

100 0.584±0.043 NA

5. F.Bizri and B. Sanso. Corouting: an IP Hybrid Routing Approach. In Fourth International Conference

on Networking and Services, pages 46–52, 2008.

6. S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the Tightrope: Responsive Yet Stable Traffic

Engineering. In ACM 2005 conference on applications, technologies, architectures, and protocols for

computer communications, pages 253–264, 2005.

7. E. W. Dijkstra. A Node on Two Problems in Connection of Graphs. Numerical Mathematics, 1959.

8. B. Fortz and M. Thorup. Increasing Internet Capacity using Local Search. Technical Report IS-MG,

2000.

9. R. Kling and P. Banerjee. Optimization by Simulated Evolution with Applications to Standard Cell

Placement. In Proceedings of 27th Design Automation Conference, pages 20–25, 1990.

10. B. Fortz and M. Thorup. Optimizing OSPF/IS-IS Weights in a Changing World. IEEE Journal on

Selected Area in Communications, 20(4):756–767, September 2006.

11. M. H. Sqalli, S. M. Sait, and M. A. Mohiuddin. An Enhanced Estimator to Multi Objective OSPF Weight

Setting Problem. Network Operations and Management Symposium, NOMS, 2006.

12. M. Rodrigues and K. G. Ramakrishnan. Optimal Routing in Data Networks. Bell Labs Technical Journal,

6(1):117–138, 2002.

13. M. Ericsson, M. G. C. Resende, and P. M. Pardalos. A Genetic Algorithm for the Weight Setting Problem

in OSPF Routing. J. Combinatorial Optimisation conference, 2002.

14. M. Zagozdzon, M. Dzida, and M. Pioro. Traffic Flow Optimization in Networks with Combined

OSPF/MPLS Routing. In IEEE 15th International Conference on Advanced Computing and Communi-

cations, pages 131–137, 2007.

55

15. A. Abo Ghazala and A. El Sayed. Open Shortest Path First Weight Setting (OSPFWS) solving algorithms

comparison and new method for updating weights. International Journal of Computer Science and

Network Security, 9(5):191–197, May 2009.

16. A. Parmar, S. Ahmed, and J. Sokol. An integer programming approach to the OSPF weight setting

problem. NSF Technical Report no. DMI-0457066, 2006.

17. S. Srivastava, G. Agarwal, D. Medhi, and M. Pioro. Determining feasible link weight systems under

various objectives for OSPF networks. IEEE eTransactions on Network and Service Management, 2(1),

2005.

18. L. Buriol, M. Resende, C. Rebeiro, and M. Thorup. TA memetic algorithm for OSPF routing. In 6th

INFORMS Telecom, pages 187–188, 2002.

19. A. Bley. On the approximability of the minimum congestion unsplittable shortest path routing problem.

In Integer Programming and Combinatorial Optimization (IPCO 2005), Lecture Notes in Computer

Science LNCS, pages 97–210, 2005.

20. A. Bley. Approximability of unsplittable shortest path routing problems. Networks, 54(1):23–46, 2009.

21. L. Lin and M. Gen. Priority-Based Genetic Algorithm for Shortest Path Routing Problem in OSPF.

Intelligent and Evolutionary Systems, Studies in Computational Intelligence, 187:91–104, 2009.

22. M. Pioro, A. Szentsi, J. Harmatos, A. Juttner, P. Gajownicczek, and S. Kozdrowski. On open shortest

path first related network optimization problems. Performance Evaluation, 48(4):201–223, 2002.

23. G. Retvari and T. Cinkler. Practical ospf traffic engineering. IEEE Commununications Letters, 8:689–

691, 2004.

24. G. Retvari, J. Biro, and T. Cinkler. On Improving the Accuracy of OSPF Traffic Engineering. In NET-

WORKING 2006, Lecture Notes in Computer Science (LNCS), Vol. 3976, pages 51–62, 2006.

25. A. Nucci, S. Bhattacharyya, N. Taft, and C. Diot. Igp link weight assignment for operational tier-1

backbones. IEEE/ACM Transactions on Networking, 15(4):789–802, 2007.

26. G. Shrimali, A. Akella, and A. Mutapcic. Cooperative interdomain traffic engineering using nash bar-

gaining and decomposition. IEEE/ACM Transactions on Networking, 18(2):341–352, 2010.

27. A. Riedl. Optimized routing adaptation in IP networks utilizing OSPF and MPLS. In IEEE International

Conference on Communications, pages 1754–1758, 2003.

28. S. Lee, T. Po-Kai, and A. Chen. Link weight assignment and loop-free routing table update for link state

routing protocols in energy-aware internet. Future Generation Computer Systems, 28:437–445, 2012.

56

29. B. Fortz, J. Rexford, and M. Thorup. Traffic Engineering with Tradional IP Routing Protocols. IEEE

Communications Magazine, pages 118–124, 2002.

30. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

31. D. Frigioni, M. loffreda, U. Nanni, and G. Pasqualone. Experimental Analysis of Dynamic Algorithms

for the Single Source Shortest Paths Problem. ACM Journal of Experimental Algorithms, 1998.

32. G. Ramalingam and T. Reps. An Incremental Algorithm for a Generalization of the Shortest Path Prob-

lem. Journal of Algorithms, pages 267–305, 1996.

33. B. Fortz. Combinatorial Optimization and Telecommunications.

http://www.poms.ucl.ac.be/staff/bf/en/COCom-5.pdf.

34. J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor,

1975.

35. A. Abo Ghazala, A. El Sayed, and M. Mousa. A Survey for Open Shortest Path First Weight Set-

ting (OSPFWS) Problem. The 2nd International Conference on Information Security and Assurance

(ISA2008), pages 24–26, April 2008.

36. R. Reis, M. Ritt, L. Buriol, and M. Resende. A memetic algorithm for the weight setting problem in

DEFT. In COMCEV 2007, pages 1–6, 2007.

37. A. Abo Ghazala, A. El Sayed, and M. Mousa. A New Approach for Open Shortest Path Weight Setting

(OSPFWS) Problem. Convergence and Hybrid Information Technology, pages 188 – 193, November

2008.

38. S. M. Sait, M. H. Sqalli, and M. A. Mohiuddin. Engineering Evolutionary Algorithm to Solve Multi

Objective OSPF Weight Setting Problem. Australian Conference on Artificial Intelligence, pages 950–

955, 2006.

39. P. Laarhoven and E. Aarts. Simulated Annealing: Theory and Applications. Kluwer Academic, Norwell,

Massachusetts, 1987.

40. R. Kling and P. Banerjee. Empirical and Theoretical Studies of the Simulated Evolution Method Applied

to Standard Cell Placement. IEEE Transactions on Computer-Aided Design, 10(10):1303–1315, October

1991.

41. M. Houssaini Sqalli, S. Mohammed Sait, and S. Asadullah. Minimizing the Number of Congested Links

in OSPF Routing. ATNAC, December 2008.

57

42. M. Mohiuddin, S. A. Khan, and A. P. Engelbrecht. Simulated evolution and simulated annealing algo-

rithms for solving multi-objective open shortest path first weight setting problem. Applied Intelligence,

Springer, 40(3):1–20, 2014.

43. L. A. Zadeh. Fuzzy Sets. Information Control, 8:338–353, 1965.

44. L. A. Zadeh. The Concept of a Linguistic Variable and its Application to Approximate Reasoning.

Information Sciences, 8:199–249, 1975.

45. L. A. Zadeh. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes.

IEEE Transaction Systems, Man, and Cybernetics, 3(1):28–44, 1973.

46. H. Li and V. Yen. Fuzzy Sets and Fuzzy Decision-Making. CRC Press, USA, 1995.

47. H. Hamacher. Ueber Logische Verknupfungen Unschalfer Aussagen und deren Zugehoerige

Bewertungs-funktione. Progress in Cybernetics and Systems Research, 3:276–288, 1978.

48. M. Frank. On the Simultaneous Associativity of F (x, y) and x + y −F (x, y). Aequationes Mathemat-

icae, 19:194–226, 1979.

49. S. Weber. A General Concept of Fuzzy Connectives, Negations and Implications Based on t-Norms and

t-Conorms. Fuzzy Sets & Systems, 11:115–134, 1983.

50. D. Dubois and H. Prade. Operations in Fuzzy-valued Logic. Information and Control, 43:224–240,

1979.

51. S. A. Khan and A. P. Engelbrecht. A New Fuzzy Operator and its Application to Topology Design of

Distributed Local Area Networks. Information Sciences, 177(12):2692–2711, 2007.

52. J. Kennedy and R. C. Eberhart. Particle Swarm Optimization. Proceedings of the IEEE International

Conference on Neural Networks, pages 1942–1948, 1995.

53. R. Kling and P. Banerjee. Empirical and Theoretical Studies of the Simulated Evolution Method Applied

to Standard Cell Placement. IEEE Transactions on Computer-Aided Design, pages 1303–1305, October

1991.

54. R. Kling and P. Banerjee. ESP: Placement by Simulated Evolution. IEEE Transactions on Computer-

Aided Design, pages 245–255, March 1989.

55. E. W. Zegura. GT-ITM: Georgia Tech Internetwork Topology Models (software).

http://www.cc.gatech.edu/faq/Ellen.Zegura/gt-itm/gt-itm.tar.gz, 1996.

56. K. Calvert, M. Doar, and E. W. Zegura. Modeling Internet Toplogy. IEEE Communications Magazine,

(35):160–163, 1997.

58

57. E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How To Model An Internetwork. 15th IEE Conference

on Computer Communications (INFOCOM), pages 594–602, 1996.

58. F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD Thesis, University of Pretoria, 2001.

59. S. A. Khan and A. P. Engelbrecht. A fuzzy particle swarm optimization algorithm for computer commu-

nication network topology design. Applied Intelligence, 36:161–177, 2012.

60. H. Cho, B. Wang, and S. Roychowdhury. Automatic Rule Generation for Fuzzy Controllers using Ge-

netic Algorithms: A Study on Representation Scheme and Mutation Rate. In IEEE World Congress on

Computational Intelligence, pages 1290–1295, 1998.

61. R. Haupt. Optimum Population Size and Mutation Rate for a Simple Real Genetic Algorithm that Opti-

mizes Array Factors. In IEEE Antennas and Propagation Society International Symposium, pages 1034

– 1037, 2000.

62. M. Lim, S. Rahardja, and B. Gwee. A GA Paradigm for Learning Fuzzy Rules. Fuzzy Sets & Systems,

82:177–186, 1996.

63. J. Liska and S. S. Melsheimer. Complete Design of Fuzzy Login System using Genetic Algorithms. In

3rd IEEE International Conference on Fuzzy Systems, pages 1377–1382, 1994.

64. J. Alvarez-Benitez and R. Everson and J. Fieldsend. A MOPSO Algorithm Based Exclusively on Pareto

Dominance Concepts. In 3rd International Conference on Evolutionary Multi-criterion Optimization,

Lecture Notes in Computer Science (LNCS), 3410:459–473, 2005.

65. K. Parsopoulos and M. Vrahatis. Particle swarm optimization method in multiobjective problems. In

ACM Symposium on Applied Computing, pages 603–607, 2002.

66. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjective Genetic Algorithm:

NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

