Skip to main content
Log in

How an epileptic EEG segment, used as reference, can influence a cross-correlation classifier?

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Several neurological disorders, such as epilepsy, can be diagnosed by electroencephalogram (EEG). Data mining supported by machine learning (ML) techniques can be used to find patterns and to build classifiers for the data. In order to make it possible, data should be represented in an appropriate format, e.g. attribute-value table, which can be built by feature extraction approaches, such as the cross-correlation (CC) method, which uses one signal as reference and correlates it with other signals. However, the reference is commonly selected randomly and, to the best of our knowledge, no studies have been conducted to evaluate whether this choice can affect the ML method performance. Thereby, this work aims to verify whether the choice of an epileptic EEG segment as reference can affect the performance of classifiers built from data. Also, a CC with artificial reference (CCAR) method is proposed in order to reduce possible consequences of the random selection of a signal as reference. Two experimental evaluations were conducted in a set of 200 EEG segments to induce classifiers using ML algorithms, such as J48, 1NN, naive Bayes, BP-MLP, and SMO. In the first study, each epileptic EEG segment was selected as reference to apply CC and ML methods. The evaluation found extremely significant difference, evidencing that the choice of an EEG segment as reference can influence the performance of ML methods. In the second study, the CCAR method was performed, in which statistical tests, only in comparisons involving the SMO classifier, showed not-so-good results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.who.int

  2. http://www.bbci.de/competition/iii/

  3. http://www.bbci.de/competition/iv/

  4. http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3

  5. Classifier and predictive model are considered synonymous in this paper.

  6. http://www.oracle.com/technetwork/java/index.html

  7. https://netbeans.org/

  8. https://www.r-project.org/

  9. For example, one classifier could have presented classification errors in just one fold and another classifier could have presented the same number of classification errors, but distributed into the 10 folds.

  10. In the first experimental evaluation, 500 predictive models were built, 100 for each ML algorithm. In the second experimental evaluation, one classifier were built using each of these algorithms, totaling 5 predictive models.

References

  1. Acharya UR, Sree SV, Chattopadhyaya S, Suri JS (2012) Automated diagnosis of normal and alcoholic EEG signals. Int J Neural Syst 22(3):1–11

    Article  Google Scholar 

  2. Acharya UR, Sree SV, Suri JS (2011) Automatic detection of epileptic EEG signals using higher order cumulant features. Int J Neural Syst 21(05):403–414

    Article  Google Scholar 

  3. Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS (2013) Automated EEG analysis of epilepsy: a review. Knowl-Based Syst 45:147–165

    Article  Google Scholar 

  4. Alpaydin E (2015) Introduction to machine learning. MIT Press, Cambridge

    MATH  Google Scholar 

  5. Amin HU, Malik AS, Kamel N, Hussain M (2016) A novel approach based on data redundancy for feature extraction of eeg signals. Brain Topogr 29(2):207–217

    Article  Google Scholar 

  6. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E 64(6):061,907

    Article  Google Scholar 

  7. Brockwell PJ, Davis RA (2016) Introduction to time series and forecasting. Springer, New York

    Book  MATH  Google Scholar 

  8. Bundy A, Wallen L (1984) Zero-crossings. In: Loveland DW, Amarel S, Bundy A, Joshi A, Sandewall E, Reiter R, Biermann A, Gallaire H, Lenat D, Siekmann J, Bolc PHL, Mackworth A, Wahlster W (eds) Catalogue of artificial intelligence tools, symbolic computation, pp 135–136. Springer, New York, USA

  9. Chandaka S, Chatterjee A, Munshi S (2009) Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Syst Appl 36(2):1329–1336

    Article  Google Scholar 

  10. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27

    Article  Google Scholar 

  11. Chaovalitwongse WA, Prokopyev OA, Pardalos PM (2006) Electroencephalogram (EEG) time series classification: Applications in epilepsy. Ann Oper Res 148(1):227–250

    Article  MATH  Google Scholar 

  12. Chiu B, Keogh E, Lonardi S (2003) Probabilistic discovery of time series motifs. In: Proceedings of the 9th international conference on knowledge discovery and data mining, pp 493–498. ACM, Washington, USA

  13. Cohen L (1995) Time-frequency analysis. Prentice Hall, Saddle River, USA

    Google Scholar 

  14. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  15. Das AB, Bhuiyan MIH, Alam SMS (2016) Classification of eeg signals using normal inverse gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection. SIViP 10(2):259–266

    Article  Google Scholar 

  16. Demṡar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  Google Scholar 

  17. Duda RO, Hart PE, Stork DG (2016) Pattern classification, Wiley, Chichester

  18. Dutta S, Chatterjee A, Munshi S (2011) Identification of ECG beats from cross-spectrum information aided learning vector quantization. Measurement 44(10):2020–2027

    Article  Google Scholar 

  19. Easton Jr RL (2010) Fourier methods in imaging. Wiley, Danvers

    Book  MATH  Google Scholar 

  20. Ekong U, Lam HK, Xiao B, Ouyang G, Liu H, Chan KY, Ling SH (2016) Classification of epilepsy seizure phase using interval type-2 fuzzy support vector machines. Neurocomputing 199:66–76

    Article  Google Scholar 

  21. Faust O, Acharya UR, Adeli H, Adeli A (2015) Wavelet-based eeg processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 26:56–64

    Article  Google Scholar 

  22. Fisher RA (1956) Statistical methods and scientific inference. Hafner Publishing Co., New York

    MATH  Google Scholar 

  23. Fredman D, Pisani R, Ourvers R (1988) Statistics. Norton, New York

    Google Scholar 

  24. Freeman WJ, Quian Quiroga R (2013) Imaging brain function with EEG: Advanced temporal and spatial analysis of electroencephalographic signals. Springer, New York

    Book  Google Scholar 

  25. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701

    Article  MATH  Google Scholar 

  26. Geethanjali P, Mohan YK, Sen J (2012) Time domain feature extraction and classification of EEG data for brain computer interface. In: Proceedings of the 9th international conference on fuzzy systems and knowledge discovery, pp 1136–1139. IEEE, Sichuan, China

  27. Han J, Kamber M, Pei J (2011) Data mining: Concepts and techniques. Morgan kaufmann, San francisco

    MATH  Google Scholar 

  28. Haykin S (2009) Neural networks and learning machines. Pearson Education, Upper Saddle River, USA

    Google Scholar 

  29. Hecht E (1987) Optics. Addison wesley, Boston

    Google Scholar 

  30. Hosmer Jr DW, Lemeshow S (2013) Applied logistic regression, Wiley, Chichester

  31. Hsu C, Shih P (2011) A novel sleep apnea detection system in electroencephalogram using frequency variation. Expert Syst Appl 38(5):6014–6024

    Article  MathSciNet  Google Scholar 

  32. Huang NE (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the 454th royal society on mathematical, physical and engineering sciences, pp 903–995. The Royal Society, London, UK

  33. Hudgins B, Parker P, Scott RN (1993) A new strategy for multifunction myoelectric control. Trans Biomed Eng 40(1):82– 94

    Article  Google Scholar 

  34. Iscan Z, Dokur Z, Demiralp T (2011) Classification of electroencephalogram signals with combined time and frequency features. Expert Systems with Applications 38(8):10,499–10,505

    Article  Google Scholar 

  35. Jeunet C, N’kaoua B, Subramanian S, Hachet M, Lotte F (2015) Predicting mental imagery-based BCI, performance from personality, cognitive profile and neurophysiological patterns. PloS One 10(12):e0143,962

    Article  Google Scholar 

  36. Krishna DH, Pasha IA, Savithri TS (2016) Classification of EEG motor imagery multi class signals based on cross correlation. Procedia Computer Science 85:490–495

    Article  Google Scholar 

  37. Machine Learning Group The Universisty of Waikato: Weka 3: Data mining software in java (2015). http://www.cs.waikato.ac.nz/ml/weka/. Accessed: jul 21 2016

  38. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60

    Article  MathSciNet  MATH  Google Scholar 

  39. McBride JC, Zhao X, Munro NB, Jicha GA, Schmitt FA, Kryscio RJ, Smith CD, Jiang Y (2015) Sugihara causality analysis of scalp EEG for detection of early Alzheimer’s disease. NeuroImage: Clinical 7:258–265

    Article  Google Scholar 

  40. McLachlan G (2004) Discriminant analysis and statistical pattern recognition. Wiley, Danvers

    MATH  Google Scholar 

  41. McLachlan G, Do K, Ambroise C (2005) Analyzing microarray gene expression data. Wiley, Danvers

    MATH  Google Scholar 

  42. Mitchell TM (1997) Machine Learning, McGraw-Hill, Boston

  43. National Alliance on Mental Illness (2015) Mental health by the numbers. https://www.nami.org/Learn-More/Mental-Health-By-the-Numbers

  44. Nemenyi P (1962) Distribution-free multiple comparisons. Phd thesis, Princeton University, Washington

    Google Scholar 

  45. Nikias CL, Mendel JM (2016) Signal processing with higher-order spectra. IEEE Signal Process Mag 10(3):10–37

    Article  Google Scholar 

  46. Oliva JT (2014) Automating the process of mapping medical reports to estructured database. Master thesis, State University of West Paraná, Foz do Iguaçu, Brazil

  47. Oliva JT, Rosa JLG (2016) Dimensionality reduction effect analysis of EEG signals in cross-correlation classifiers performance. In: Proceedings of the 25th international conference on neural networks, pp 1–8. European Neural Network Society, Barcelona, Spain

  48. Oppenheim AV, Verghese G (2010) Introduction to communication, control, and signal processing. http://ocw.mit.edu

  49. (2016) Oxford Dictionaries: Equivalent width. http://www.oxfordreference.com/view/10.1093/oi/authority.20110803095756206

  50. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    Article  MathSciNet  MATH  Google Scholar 

  51. Phinyomark A, Limsakul C, Phukpattaranont P (2009) A novel feature extraction for robust EMG pattern recognition. J Comput 1(1):71–80

    Google Scholar 

  52. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88(6):2297–2301

    Article  MathSciNet  MATH  Google Scholar 

  53. Proakis JG, Manolakis DK (2013) Digital signal processing: principles, algorithms, and application. Prentice Hall, Saddle River, USA

    Google Scholar 

  54. Quinlan JR (1987) Simplifying decision trees. Int J Man Mach Stud 27(3):221–234

    Article  Google Scholar 

  55. Quinlan JR (2014) C4.5: programs for machine learning. Elsevier, San Francisco

    Google Scholar 

  56. Rahmatian M, Vahidi B, Ghanizadeh AJ, Gharehpetian GB, Alehosseini HA (2013) Insulation failure detection in transformer winding using cross-correlation technique with ANN and k-NN regression method during impulse test. Int J Electr Power Energy Syst 53:209–218

    Article  Google Scholar 

  57. Rathipriya N, Deepajothi S, Rajendran T (2013) Classification of motor imagery ECog signals using support vector machine for brain computer interface. In: Proceedings of the 15th international conference advanced computing, pp 63–66. IEEE, Chennai, India

  58. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049

    Google Scholar 

  59. Saha A, Konar A, Bhattacharya BS, Nagar AK (2015) EEG Classification to determine the degree of pleasure levels in touch-perception of human subjects. In: Proceedings of the 25th International Joint Conference on Neural Networks, pp 1–8. IEEE, Lillarney, Ireland

  60. Shafer PO, Sirven JI (2015) Epilepsy statistics. http://www.epilepsy.com/learn/epilepsy-statistics

  61. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  MathSciNet  MATH  Google Scholar 

  62. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  MathSciNet  MATH  Google Scholar 

  63. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  64. Siuly, Li Y, Wen P (2014) Identification of motor imagery tasks through CC–LR algorithm in brain computer interface. Int J Bioinforma Res Appl 9(2):156–172

    Article  Google Scholar 

  65. Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32(4):1084–1093

    Article  Google Scholar 

  66. Sugihara G, May R, Ye H, Hsieh C, an M, Fogarty ED, Munch S (2012) Detecting causality in complex ecosystems. Science 338(6106):496–500

    Article  MATH  Google Scholar 

  67. Suykens JAK, Vandewalle J (2000) Recurrent least squares support vector machines. IEEE Trans Circuits Syst I, Fundam Theory Appl 47(7):1109–1114

    Article  Google Scholar 

  68. Tkach D, Huang H, Kuiken TA (2010) Study of stability of time-domain features for electromyographic pattern recognition. J Neuroeng Rehabil 7(1):1–13

    Article  Google Scholar 

  69. Tukey JW (1949) Comparing individual means in the analysis of variance. Biometrics 5(2):99–114

    Article  MathSciNet  Google Scholar 

  70. Vidaurre C, Krämer N, Blankertz B, Schlögl A (2009) Time domain parameters as a feature for eeg-based brain-computer interfaces. Neural Netw 22(9):1313–1319

    Article  Google Scholar 

  71. Vijayan AE, Sen D, Sudheer AP (2015) EEG-based emotion recognition using statistical measures and auto-regressive modeling. In: Proceedings of the international conference on computational intelligence & communication technology, pp 587–591. IEEE, Ghaziabad, India

  72. Wen T, Zhang Z, Huang W, Wang M, Li C (2016) Automatic epileptic seizure detection in EEGs based on MF-DFA and SVM. Computerized Medical Imaging and Graphics

  73. Wikipedia: 10-20 system (EEG) (2015). https://en.wikipedia.org/wiki/10-20_system_(EEG)

  74. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  75. Witten I, Frank E, Hall MA (2011) Machine learning: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco

    Google Scholar 

  76. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenom 16(3):285–317

    Article  MathSciNet  MATH  Google Scholar 

  77. World Health Organization (2016) Draft comprehensive mental health action plan 2013-2020. http://apps.who.int/gb/ebwha/pdf_files/EB132/b132_8-en.pdf

  78. Zhang D, Chen S, Zhou ZH (2006) Learning the kernel parameters in kernel minimum distance classifier. Pattern Recogn 39(1):133–135

    Article  MATH  Google Scholar 

  79. Zhang Y, Liu B, Ji X, Huang D (2016) Classification of eeg signals based on autoregressive model and wavelet packet decomposition. Neural Process Lett:1–14

Download references

Acknowledgments

J. T. Oliva would like to thank the Brazilian funding agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support. J. L. G. Rosa is grateful to the Brazilian agency FAPESP (process 2016/02555-8) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefferson Tales Oliva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliva, J.T., Garcia Rosa, J.L. How an epileptic EEG segment, used as reference, can influence a cross-correlation classifier?. Appl Intell 47, 178–196 (2017). https://doi.org/10.1007/s10489-016-0891-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0891-y

Keywords

Navigation