Skip to main content
Log in

Multi-objective hybrid artificial bee colony algorithm enhanced with Lévy flight and self-adaption for cloud manufacturing service composition

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Service composition and optimal selection (SCOS) is a key problem in cloud manufacturing (CMfg). The present study proposed a multi-objective hybrid artificial bee colony (HABC) algorithm to address the SCOS problem in consideration of both quality of service (QoS) and energy consumption, to which an improved solution update equation with multiple dimensions of perturbation was adopted in the employed bee phase. Likewise, a cuckoo search-inspired Lévy flight was employed in the onlooker bee phase to overcome basic artificial bee colony (ABC) drawbacks such as poor exploitation and slow convergence. Moreover, a parameter adaptive strategy was applied to adjust the perturbation rate and step size of the Lévy flight to improve the performance of the algorithm. The proposed algorithm was first tested on 21 multi-objective benchmark problems and compared with four other state-of-the-art multi-objective evolutionary algorithms (MOEAs). The effect of the improvement strategies was then experimentally verified. Finally, the HABC was applied to solve multiscale SCOS problems using comparison experiments, which resulted in more competitive results and outperformed other MOEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li BH, Zhang L, Wang SL, Tao F, Cao JW, Jiang XD, Song X, Chai XD (2010) Cloud manufacturing: a new service-oriented networked manufacturing model. Comput Integr Manuf Syst 16(1):1–16

    Google Scholar 

  2. Tao F, Cheng Y, Xu LD, Zhang L, Li BH (2014) CCIOt-CMfg: Cloud Computing and Internet of Things-Based Cloud Manufacturing Service System. IEEE Trans Ind Inf 10(2):1435–1442

    Article  Google Scholar 

  3. Tianri W, Shunsheng G, Chi-Guhn L (2014) Manufacturing task semantic modeling and description in cloud manufacturing system. Int J Adv Manuf Technol 71(9-12):2017–2031

    Article  Google Scholar 

  4. Luo Y, Zhang L, Tao F, Ren L, Liu Y, Zhang Z (2013) A modeling and description method of multidimensional information for manufacturing capability in cloud manufacturing system. Int J Adv Manuf Technol 69(5-8):961–975

    Article  Google Scholar 

  5. Liu N, Li X, Shen W (2014) Multi-granularity resource virtualization and sharing strategies in cloud manufacturing. J Netw Comput Appl 46:72–82

    Article  Google Scholar 

  6. Tao F, Zuo Y, Xu LD, Zhang L (2014) Iot-based Intelligent Perception and Access of Manufacturing Resource Toward Cloud Manufacturing. IEEE Trans Ind Inf 10(2):1547–1557

    Article  Google Scholar 

  7. Tao F, LaiLi Y, Xu L, Zhang L (2013) FC-PACO-RM: A parallel method for service composition Optimal-Selection in cloud manufacturing system. IEEE Trans Ind Inf 9(4):2023–2033

    Article  Google Scholar 

  8. Huang B, Li C, Tao F (2014) A chaos control optimal algorithm for QoS-based service composition selection in cloud manufacturing system. Enterp Inf Syst 8(4):445–463

    Article  Google Scholar 

  9. Laili Y, Tao F, Zhang L, Cheng Y, Luo Y, Sarker BR (2013) A Ranking Chaos Algorithm for dual scheduling of cloud service and computing resource in private cloud. Comput Ind 64(4):448–463

    Article  Google Scholar 

  10. Seghir F, Khababa A (2016) A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service composition. J Intell Manuf. doi:10.1007/s10845-10016-11215-10840

  11. Wang D, Yang Y, Mi Z (2015) A genetic-based approach to web service composition in geo-distributed cloud environment. Comput Electr Eng 43:129–141

    Article  Google Scholar 

  12. Wang Z, Liu Z, Zhou X, Lou Y (2011) An approach for composite web service selection based on DGQos. Int J Adv Manuf Technol 56(9-12):1167–1179

    Article  Google Scholar 

  13. Huo Y, Zhuang Y, Gu J, Ni S, Xue Y (2015) Discrete gbest-guided artificial bee colony algorithm for cloud service composition. Appl Intell 42(4):661–678

    Article  Google Scholar 

  14. Zhang H, Zhu BC, Li YP, Yaman O, Roy U (2015) Development and utilization of a Process-oriented Information Model for sustainable manufacturing. J Manuf Syst 37:459–466

    Article  Google Scholar 

  15. Dubey R, Gunasekaran A, Childe SJ, Wamba SF, Papadopoulos T (2016) The impact of big data on world-class sustainable manufacturing. Int J Adv Manuf Technol 84(1-4):631–645

    Article  Google Scholar 

  16. Wang Z, Subramanian N, Gunasekaran A, Abdulrahman MD, Liu C (2015) Composite sustainable manufacturing practice and performance framework: Chinese auto-parts suppliers’ perspective. Int J Prod Econ 170:219–233

    Article  Google Scholar 

  17. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  18. Han YY, Liang JJ, Pan QK, Li JQ, Sang HY, Cao NN (2013) Effective hybrid discrete artificial bee colony algorithms for the total flowtime minimization in the blocking flowshop problem. Int J Adv Manuf Technol 67(1-4):397–414

    Article  Google Scholar 

  19. Chaves-Gonzalez JM, Vega-Rodriguez MA, Granado-Criado JM (2013) A multiobjective swarm intelligence approach based on artificial bee colony for reliable DNA sequence design. Eng Appl Artif Intel 26(9):2045–2057

    Article  Google Scholar 

  20. Metlicka M, Davendra D (2015) Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems. Swarm Evol Comput 25:15–28

    Article  Google Scholar 

  21. Karaboga D, Akay B (2009) A comparative study of Artificial Bee Colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  22. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  23. Yang X-S, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numerical Optimiz 1(4):330–343

    MATH  Google Scholar 

  24. Civicioglu P, Besdok E (2013) A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39(4):315–346

    Article  Google Scholar 

  25. Zeng LZ, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004) Qos-aware middleware for Web services composition. IEEE Trans Softw Eng 30(5):311–327

    Article  Google Scholar 

  26. Alrifai M, Risse T, Nejdl W (2012) A Hybrid Approach for Efficient Web Service Composition with End-to-End QoS Constraints. ACM T Web 6(2)

  27. Zhang Y, Tao F, Laili Y, Hou B, Lv L, Zhang L (2013) Green partner selection in virtual enterprise based on Pareto genetic algorithms. Int J Adv Manuf Technol 67(9-12):2109–2125

    Article  Google Scholar 

  28. Xinchao Z, Boqian S, Panyu H, Zichao W, Jialei W, Yi F (2012) An improved discrete immune optimization algorithm based on PSO for QoS-driven web service composition. Appl Soft Comput 12(8):2208–2216

    Article  Google Scholar 

  29. Bhandari AK, Singh VK, Kumar A, Singh GK (2014) Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst Appl 41(7):3538– 3560

    Article  Google Scholar 

  30. Zhang L, Guo H, Tao F, Luo YL, Si N (2010) Flexible management of resource service composition in cloud manufacturing. Paper presented at the 2010 IEEE International Conference on Industrial Engineering & Engineering Management

  31. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  32. Ramacher R, Monch L (2014) Robust Multi-criteria Service Composition in Information Systems. Bus Inform Syst Eng 6(3):141–151

    Article  Google Scholar 

  33. Li L, Cheng P, Ou L, Zhang Z (2010) Applying Multi-Objective Evolutionary Algorithms to QoS-Aware Web Service Composition Paper presented at the 6th International Conference on Advanced Data Mining and Applications (ADMA), Chongqing, PEOPLES R CHINA

  34. Sun XY, Chen Y, Liu YP, Gong DW (2016) Indicator-based set evolution particle swarm optimization for many-objective problems. Soft Comput 20(6):2219–2232

    Article  Google Scholar 

  35. Cremene M, Suciu M, Pallez D, Dumitrescu D (2016) Comparative analysis of multi-objective evolutionary algorithms for QoS-aware web service composition. Appl Soft Comput 39:124–139

    Article  Google Scholar 

  36. Mirjalili S, Saremi S, Mirjalili SM, Coelho L d S (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

    Article  Google Scholar 

  37. Jiang QY, Wang L, Hei XH, Yu GL, Lin YY, Lu XF (2016) MOEA/D-ARA plus SBX: a new multi-objective evolutionary algorithm based on decomposition with artificial raindrop algorithm and simulated binary crossover. Knowl-Based Syst 107:197–218

    Article  Google Scholar 

  38. Hemmatian H, Fereidoon A, Assareh E (2014) Optimization of hybrid laminated composites using the multi-objective gravitational search algorithm (MOGSA). Eng Optimiz 46(9):1169–1182

    Article  MathSciNet  Google Scholar 

  39. Pradhan PM, Panda G (2012) Solving multiobjective problems using cat swarm optimization. Expert Syst Appl 39(3):2956–2964

    Article  Google Scholar 

  40. Patel VK, Savsani VJ (2016) A multi-objective improved teaching-learning based optimization algorithm (MO-ITLBO). Inf Sci 357:182–200

    Article  Google Scholar 

  41. Akay B (2013) Synchronous and asynchronous Pareto-based multi-objective Artificial Bee Colony algorithms. J Glob Optim 57(2):415–445

    Article  MathSciNet  MATH  Google Scholar 

  42. Maximiano MD, Vega-Rodriguez MA, Gomez-Pulido JA, Sanchez-Perez JM (2013) A new Multiobjective Artificial Bee Colony algorithm to solve a real-world frequency assignment problem. Neural Comput Appl 22 (7-8):1447–1459

    Article  Google Scholar 

  43. Zhou J, Yao X (2016) A hybrid artificial bee colony algorithm for optimal selection of QoS-based cloud manufacturing service composition. Int J Adv Manuf Technol. doi:10.1007/s00170-016-9034-1

  44. Li C, Wang S, Kang L, Guo L, Cao Y (2014) Trust evaluation model of cloud manufacturing service platform. Int J Adv Manuf Technol 75(1-4):489–501

    Article  Google Scholar 

  45. Zhou J, Yao X (2016) DE-caABC: differential evolution enhanced context-aware artificial bee colony algorithm for service composition and optimal selection in cloud manufacturing. Int J Adv Manuf Technol. doi:10.1007/s00170-016-9455-x

  46. Xiang F, Hu YF, Yu YR, Wu HC (2014) Qos and energy consumption aware service composition and optimal-selection based on Pareto group leader algorithm in cloud manufacturing system. Central Eur J Oper Res 22(4):663–685

    Article  MATH  Google Scholar 

  47. Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. Future Gener Comp Syst 28(5):755– 768

    Article  Google Scholar 

  48. Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174

    Article  Google Scholar 

  49. Mantegna RN (1994) Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Phys Rev E 49(5):4677–4683

    Article  Google Scholar 

  50. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  51. Wang YN, Wu LH, Yuan XF (2010) Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure. Soft Comput 14(3):193–209

    Article  Google Scholar 

  52. Reynolds AM (2006) Cooperative random Levy flight searches and the flight patterns of honeybees. Phys Lett A 354(5-6):384–388

    Article  Google Scholar 

  53. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  54. Deb K, Thiele L, Laumanns M (2002) Zitzler E Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation, CEC, 2002, Honolulu, HI, United states, pp 825–830

  55. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK technical report

  56. Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008) AbYSS: Adapting scatter search to multiobjective optimization. IEEE Trans Evol Comput 12(4):439–457

    Article  Google Scholar 

  57. Huang VL, Zhao SZ, Mallipeddi R (2009) Suganthan PN Multi-objective optimization using self-adaptive differential evolution algorithm, vol 2009. Trondheim, Norway

    Google Scholar 

  58. Nebro AJ, Durillo JJ, Nieto G, Coello CAC, Luna F, Alba E (2009) SMPSO: A new pso-based metaheuristic for multi-objective optimization. In: 2009 IEEE Symposium on computational intelligence in multi-criteria decision-making, MCDM 2009, Nashville, TN, United states, pp 66–73

  59. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1 (1):67–82

    Article  Google Scholar 

  60. Beasley TM, Zumbo BD (2003) Comparison of aligned Friedman rank and parametric methods for testing interactions in split-plot designs. Comput Stat Data Anal 42(4):569–593

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China under grant Nos. 51675186 and 51175187, the Science & Technology Foundation of Guangdong Province under grant No. 2016A020228005, and the Science & Technology Program of Zhanjiang City under grant No. 2015A01001. The authors would like to thank the Editors and the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifan Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Yao, X. Multi-objective hybrid artificial bee colony algorithm enhanced with Lévy flight and self-adaption for cloud manufacturing service composition. Appl Intell 47, 721–742 (2017). https://doi.org/10.1007/s10489-017-0927-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0927-y

Keywords

Navigation