Skip to main content
Log in

Hybrid artificial bee colony algorithm based approaches for two ring loading problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper presents hybrid artificial bee colony algorithm based approaches for two \(\mathcal {NP}\)-hard problems arising in optical ring networks. These two problems falls under the category of ring loading problems. Given a set of data transfer demands between different pair of nodes, the first problem consists in routing the demands on the ring in either clockwise or counter-clockwise directions so that the maximum data transmitted through any link in either directions is minimized. The second problem, on the other hand, discriminates between the data transmitted in one direction from the other and consists in minimizing the maximum data transmitted in one particular direction through any link. The first problem is referred to as weighted ring edge-loading problem in the literature, whereas the latter as weighted ring arc-loading problem. Computational results on the standard benchmark instances show the effectiveness of our approaches on both the problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Banda J, Singh A (2015) A hybrid artificial bee colony algorithm for the terminal assignment problem Swarm, evolutionary, and memetic computing, lecture notes in computer science, vol 8947, Springer-Verlag, pp 134–144

    Google Scholar 

  2. Bernardino A, Bernardino E, Sánchez-Pérez J, Gómez-Pulidoua J, Vega-Rodríguez M (2009) Solving the ring loading problem using genetic algorithms with intelligent multiple operators International symposium on distributed computing and artificial intelligence 2008 (DCAI 2008), Springer, pp 235–244

    Chapter  Google Scholar 

  3. Bernardino A, Bernardino E, Sánchez-Pérez J, Gómez-Pulidoua J, Vega-Rodríguez M (2009) Solving the weighted ring edge-loading problem without demand splitting using a hybrid differential evolution algorithm 2009 IEEE 34th Conference on local computer networks, IEEE, pp 562–568

    Chapter  Google Scholar 

  4. Bernardino A, Bernardino E, Sánchez-Pérez J, Gómez-Pulidoua J, Vega-Rodríguez M (2010) A discrete differential evolution algorithm for solving the weighted ring arc loading problem International conference on industrial, engineering and other applications of applied intelligent systems, Springer, pp 153–163

    Google Scholar 

  5. Bernardino A, Bernardino E, Sánchez-Pérez J, Gómez-Pulidoua J, Vega-Rodríguez M (2010) Efficient load balancing for a resilient packet ring using artificial bee colony Proceedings of applications of evolutionary computation: EvoApplications 2010, lecture notes in computer science, vol 6025, Springer-Verlag , pp 61–70

    Chapter  Google Scholar 

  6. Bernardino A, Bernardino E, Sánchez-Pérez J, Gómez-Pulidoua J, Vega-Rodríguez M (2010) A hybrid ant colony optimization algorithm for solving the ring arc-loading problem Hellenic conference on artificial intelligence, Springer, pp 49–59

    Google Scholar 

  7. Bernardino A, Bernardino E, Sánchez-Pérez J, Gómez-Pulido J, Vega-Rodríguez M (2011) Solving ring loading problems using bio-inspired algorithms. J Netw Comput Appl 34(2):668–685

    Article  Google Scholar 

  8. Bernardino AM, Bernardino EM, Sánchez-Pérez JM, Pulido JAG, Vega-Rodríguez MA (2009c) Solving the non-split weighted ring arc-loading problem in a resilient packet ring using particle swarm optimization Proceedings of the international conference in evolutionary computations, pp 230–236

    Google Scholar 

  9. Chaurasia S, Singh A (2015) A hybrid swarm intelligence approach to the registration area planning problem. Inf Sci 302:50–69

    Article  Google Scholar 

  10. Cho K, Joo U, Lee H, Kim B, Lee W (2005) Efficient load balancing algorithms for a resilient packet. ETRI J 27(1):110–113

    Article  Google Scholar 

  11. Cosares S, Saniee I (1994) An optimization problem related to balancing loads on sonet rings. Telecommun Syst 3(2):165–181

    Article  Google Scholar 

  12. Davik F, Yilmaz M, Gjessing S, Uzun N (2004) Ieee 802.17 resilient packet ring tutorial. IEEE Commun Mag 42(3):112–118

    Article  Google Scholar 

  13. Dell’Amico M, Labbé M, Maffioli F (1999) Exact solution of the {SONET} ring loading problem. Oper Res Lett 25(3):119–129

    Article  MATH  Google Scholar 

  14. Frank A, Nishiseki T, Saito N, Suzuki H, Tardos E (1992) Algorithms for routing around a rectangle. Discret Appl Math 40:363–378

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic algorithms Proceedings of the 1991 conference on foundations of genetic algorithms, Morgan Kaufmann, pp 69–93

    Google Scholar 

  16. Goralski W (2002) SONET. McGraw-Hill Professional

  17. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, Turkey

    Google Scholar 

  18. Karaboga D, Akay B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  19. Karaboga D, Akay B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  20. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  21. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):21–57

    Article  Google Scholar 

  22. Karunanithi N, Carpenter T (1994) A ring loading application of genetic algorithms Proceedings of the 1994 ACM symposium on applied computing, ACM, New York, NY, USA, SAC ’94, pp 227–231

    Chapter  Google Scholar 

  23. Khanna S (1997) A polynomial time approximation scheme for the sonet ring loading problem. Bell Labs Tech J 2(2):36–41

    Article  Google Scholar 

  24. Kim SS, Kim IH, Mani V, Kim H (2008) Ant colony optimization for sonet ring loading problem. Int J Innov Comput Inf Control 4(7):1617–1626

    Google Scholar 

  25. Kubat P, Smith J (2005) Balancing traffic flows in resilient packet rings. Springer, US, pp 125–140

    MATH  Google Scholar 

  26. Myung YS, Kim HG (2004) On the ring loading problem with demand splitting. Oper Res Lett 32(2):167–173

    Article  MathSciNet  MATH  Google Scholar 

  27. Myung YS, Kim HG, Tcha DW (1997) Optimal load balancing on sonet bidirectional rings. Oper Res 45(1):148–152

    Article  MATH  Google Scholar 

  28. Pan Q, Tasgetiren M, Suganthan P, Chua T (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf Sci 181(12):2455–2468

    Article  MathSciNet  Google Scholar 

  29. Pandiri V, Singh A (2015) Two metaheuristic approaches for the multiple traveling salesperson problem. Appl Soft Comput 26:74–89

    Article  Google Scholar 

  30. RPR Alliance (2004) A summary and overview of the IEEE 802.17 resilient packet ring standrad

  31. Schrijver A, Seymour P, Winkler P (1998) The ring loading problem. SIAM J Discret Math 11(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  32. Sharma TK, Pant M (2013) Enhancing the food locations in an artificial bee colony algorithm. Soft Comput 17(10):1939–1965

    Article  Google Scholar 

  33. Singh A (2009) An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Appl Soft Comput 9(2):625–631

    Article  Google Scholar 

  34. Singh A, Sundar S (2011) An artificial bee colony algorithm for the minimum routing cost spanning tree problem. Soft Comput 15(12):2489–2499

    Article  Google Scholar 

  35. Wang B (2005) Linear time algorithms for the ring loading problem with demand splitting. J Algorithms 54 (1):45–57

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuan P, Gambiroza V, Knightly E (2004) The ieee 802.17 media access protocol for high-speed metropolitan-area resilient packet rings. IEEE Netw 18(3):8–15

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. A. M. Bernardino for providing the test instances for WRELP/WRALP. Authors would like to thank two anonymous reviewers also for their valuable comments and suggestions which helped in improving the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Banda, J. Hybrid artificial bee colony algorithm based approaches for two ring loading problems. Appl Intell 47, 1157–1168 (2017). https://doi.org/10.1007/s10489-017-0950-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0950-z

Keywords

Navigation