Skip to main content
Log in

Maximum margin of twin spheres machine with pinball loss for imbalanced data classification

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The maximum margin of twin spheres support vector machine (MMTSVM) is an effective method for the imbalanced data classification. However, the hinge loss is used in the MMTSVM and easily leads to sensitivity for the noises and instability for re-sampling. In contrast, the pinball loss is related to the quantile distance and less sensitive to noises. To enhance the performance of MMTSVM, we propose a maximum margin of twin spheres machine with pinball loss (Pin-MMTSM) for the imbalanced data classification in this paper. The Pin-MMTSM finds two homocentric spheres by solving a quadratic programming problem (QPP) and a linear programming problem (LPP). The small sphere captures as many majority samples as possible; and the large sphere pushes out most minority samples by increasing the margin between two homocentric spheres. Moreover, our Pin-MMTSM is equipped with noise insensitivity by employing the pinball loss. Experimental results on eighteen imbalanced datasets indicate that our proposed Pin-MMTSM yields a good generalization performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  2. Xu Y, Wang L (2005) Fault diagnosis system based on rough set theory and support vector machine (LNCS 3614). Springer, Heidelberg, pp 980–988

    Google Scholar 

  3. Manevitz LM, Yousef M (2001) One-class SVMs for document classification. J Mach Learn Res 2(1):139–154

    MATH  Google Scholar 

  4. Zhang W, Yoshida T, Tang X (2008) Text classification based on multiword with support vector machine. Knowl Based Syst 21(8):879–886

    Article  Google Scholar 

  5. Thongkam J, Xu G, Zhang Y, Huang F (2008) Support vector machine for outlier detection in Breast Cancer survivability prediction (LNCS 4977). Springer, Heidelberg, pp 99–109

    Google Scholar 

  6. Zhang Y, Meratnia N, Havinga P (2009) Adaptive and online one-class support vector machine-based outlier detection techniques for wireless sensor networks. In: Proceedings of the International Conference Advances in Information Network Applied Workshops, Bradford, pp 990–995

  7. Pang Y, Zhang K, Yuan Y, Wang K (2014) Distributed object detection with linear SVMs. IEEE Trans Cybern 44(11): 2122–2133

    Article  Google Scholar 

  8. Dhar S, Cherkassky V (2015) Development and evaluation of costsensitive universum-SVM. IEEE Trans Cybern 45(4):806–818

    Article  Google Scholar 

  9. Liu Z, et al (2014) A three-domain fuzzy support vector regression for image denoising and experimental studies. IEEE Trans Cybern 44(4):516–525

    Article  Google Scholar 

  10. Xu J, et al (2015) The generalization ability of SVM classification based on Markov sampling. IEEE Trans Cybern 45(6):1169–1179

    Article  Google Scholar 

  11. Jayadeva, Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910

    Article  MATH  Google Scholar 

  12. Fung G, Mangasarian O (2001) Proximal support vector machine classifiers. In: Proceedings of 7th Conference Knowledge Discovery Data Mining, San Francisco, 77–86

  13. Ghorai S, Mukherjee A, Dutta PK (2009) Nonparallel plane proximal classifier. Signal Process 89 (4):510–522

    Article  MATH  Google Scholar 

  14. Fung GM, Mangasarian OL (2005) Multicategory proximal support vector machine classifiers. Mach Learn 59(1–2):77–97

    Article  MATH  Google Scholar 

  15. Tian Y, Qi Z, Ju X, Shi Y, Liu X (2014) Nonparallel support vector machines for pattern classification. IEEE Trans Cybern 44(7):1067–1079

    Article  Google Scholar 

  16. Peng X (2010) A ν-twin support vector machine (ν-TSVM) classifier and its geometric algorithms. Inf Sci 180(20):3863–3875

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu Y, Wang L, Zhong P (2012) A rough margin-based ν-twin support vector machine. Neural Comput Appl 21(6):1307–1317

    Article  Google Scholar 

  18. Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4): 7535–7543

    Article  Google Scholar 

  19. Peng X (2010) TSVR: An efficient twin support vector machine for regression. Neural Netw 23(3):365–372

    Article  Google Scholar 

  20. Xu Y, Wang L (2012) A weighted twin support vector regression. Knowl Based Syst 33:92–101

    Article  MathSciNet  Google Scholar 

  21. Xu Y, Yang Z, Pan X (2017) A novel twin support vector machine with pinball loss. IEEE Transactions on Neural Networks and Learning Systems 28(2):p359–p370

    Article  MathSciNet  Google Scholar 

  22. Shao Y, Deng N (2012) A coordinate descent margin based-twin support vector machine for classification. Neural Netw 25: 114–121

    Article  MATH  Google Scholar 

  23. Wang XZ, He Q, Chen DG, Yeung D (2005) A genetic algorithm for solving the inverse problem of support vector machines. Neurocomputing 68:225–238

    Article  Google Scholar 

  24. Lu SX, Wang XZ, Zhang GQ, Zhou X (2015) Effective algorithms of the Moore-Penrose inverse matrices for extreme learning machine. Intell Data Anal 19(4):743–760

    Article  Google Scholar 

  25. Peng X, Xu D (2013) A twin-hypersphere support vector machine classifier and the fast learning algorithm. Inf Sci 221:12–27

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang XZ, et al (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654

    Article  Google Scholar 

  27. Tax DMJ, Duin RPW (2004) Support vector data description. Mach Learn 54:45–66

    Article  MATH  Google Scholar 

  28. Scholkopf B, Platt JC, Shawe-Taylor JC, Smola AJ, Williamson RC (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13(7):1443–1471

    Article  MATH  Google Scholar 

  29. Xu Y, Liu C (2013) A rough margin-based one class support vector machine. Neural Comput Appl 22 (6):1077–1084

    Article  Google Scholar 

  30. Ben-Hur A, Horn D, Siegelmann HT, Vapnik V (2002) Support vector clustering. J Mach Learn Res 2:125–137

    MATH  Google Scholar 

  31. Bicego M, Figueiredo MAT (2009) Soft clustering using weighted one-class support vector machines. Pattern Recognit 42(1):27–32

    Article  MATH  Google Scholar 

  32. Wu M, Ye J (2009) A small sphere and large margin approach for novelty detection using training data with outliers. IEEE Trans Pattern Anal Mach Intell 31(11):2088–2092

    Article  Google Scholar 

  33. Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: One-sided selection. In: Proceedings 14th International Conference on Machine Learning. ICML, Nashville, pp 179–186

    Google Scholar 

  34. Choi YS (2009) Least squares one-class support vector machine. Pattern Recognit Lett 30(13):1236–1240

    Article  Google Scholar 

  35. Cao LJ, Lee HP, Chong WK (2003) Modified support vector novelty detector using training data with outliers. Pattern Recognit Lett 24(14):2479–2487

    Article  MATH  Google Scholar 

  36. Wu G, Chang EY (2003) Class-boundary alignment for imbalanced dataset learning. In: Proceedings of ICML Workshop Learn. Imbalanced Data Sets II, Washington, pp 49–56

    Google Scholar 

  37. Hao PY, Chiang JH, Lin Y-H (2009) A new maximal-margin spherical-structured multi-class support vector machine. Appl Intell 30(2):98–111

    Article  Google Scholar 

  38. Cano A, Zafra A, Ventura S (2013) Weighted data gravitation classification for standard and imbalanced data. IEEE Trans Cybern 43(6):1672–1687

    Article  Google Scholar 

  39. Wang XZ, Musa AB (2014) Advances in neural network based learning. Int J Mach Learn Cybern 5(1):1–2

    Article  Google Scholar 

  40. Xu Y (2016) Maximum margin of twin spheres support vector machine for imbalanced data classification, IEEE transactions on cybernetics, doi:10.1109/TCYB.2016.2551735

  41. Xu Y, Yang Z, Zhang Y, Pan X, Wang L (2016) A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification. Knowl A maximum Based Syst 95:75–85

    Article  Google Scholar 

  42. Huang X, Shi L, Suykens J (2014) Support vector machine classifier with pinball loss. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(5):984–997

    Article  Google Scholar 

  43. Chang WC, Lee CP, Lin CJ (2013) Dept. Comput. Sci., Nat. Taiwan Univ., Taipei, Taiwan, Tech. Rep.

  44. Steinwart I, Christmann A (2007) How SVMs can estimate quantiles and the median. In: Proceedings of NIPS, Vancouver, pp 305–312

  45. Jumutc V, Huang X, Suykens JAK (2013) Fixed-size Pegasos for hinge and pinball loss SVM. In: Proceedings of International Joint Conference Neural Network, Dallas, pp 1122–1128

  46. Steinwart I, Christmann A (2011) Estimating conditional quantiles with the help of the pinball loss. Bernoulli 17(1):211–225

    Article  MathSciNet  MATH  Google Scholar 

  47. Huang X, Shi L, Pelckmans K, et al (2014) Asymmetric ν-tube support vector regression. Comput Stat Data Anal 77:371–382

    Article  MathSciNet  Google Scholar 

  48. Huang X, Shi L, Suykens JAK (2014) Asymmetric least squares support vector machine classifiers. Comput Stat Data Anal 70:395–405

    Article  MathSciNet  Google Scholar 

  49. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press

  50. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press

  51. Khemchandani R, Jayadeva SC (2009) Optimal kernel selection in twin support vector machines. Optim Lett 3(1):77–88

    Article  MathSciNet  MATH  Google Scholar 

  52. Maldonado S, Weber R, Famili F (2014) Feature selection for high-dimensional class-imbalanced data sets using support vector machines. Inf Sci 286:228–246

    Article  Google Scholar 

  53. Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation, vol 4304. Springer, Berlin, pp 1015–1021

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation. This work was supported in part by Beijing Natural Science Foundation (No. 4172035) and National Natural Science Foundation of China (No. 11671010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitian Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, Q., Pang, X. et al. Maximum margin of twin spheres machine with pinball loss for imbalanced data classification. Appl Intell 48, 23–34 (2018). https://doi.org/10.1007/s10489-017-0961-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0961-9

Keywords

Navigation