Skip to main content
Log in

An adaptive bi-flight cuckoo search with variable nests for continuous dynamic optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper presents an adaptive bi-flight cuckoo search algorithm for continuous dynamic optimization problems. Unlike the standard cuckoo search which relies on Levy flight, the proposed method uses two types of flight that are chosen adaptively by a learning automaton to control the global and local search ability of the method during the run. Furthermore, a variable nest scheme and a new cuckoo addition mechanism are introduced. A greedy local search method is also integrated to refine the best found solution. An extensive set of experiments is conducted on a variety of dynamic environments generated by the moving peaks benchmark, to evaluate the performance of the proposed approach. Results are also compared with those of other state-of-the-art algorithms from the literature. The experimental results indicate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nguyen T T, Yang S, Branke J (2012) Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol Comput 6:1–24. doi:10.1016/j.swevo.2012.05.001

    Article  Google Scholar 

  2. Cobb H G (1990) An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous time-dependent nonstationary environments. DTIC Document, Naval Research Lab Washington USA

    Book  Google Scholar 

  3. Hu X, Eberhart R C (2002) Adaptive particle swarm optimization: detection and response to dynamic systems Proceedings of the IEEE congress on evolutionary computation, pp 1666–1670

    Google Scholar 

  4. Vavak F, Jukes K A, Fogarty T C (1998) Performance of a genetic algorithm with variable local search range relative to frequency of the environmental changes. Genetic Programming, pp 22–25

  5. Vavak F, Jukes K, Fogarty T C (1997) Learning the local search range for genetic optimisation in nonstationary environments IEEE international conference on evolutionary computation, 1997. IEEE, pp 355–360

    Google Scholar 

  6. Janson S, Middendorf M (2006) A hierarchical particle swarm optimizer for noisy and dynamic environments. Genet Program Evolvable Mach 7:329–354

    Article  Google Scholar 

  7. Mori N, Kita H, Nishikawa Y (2001) Adaptation to changing environments by means of the memory based thermodynamical genetic algorithm. Trans Inst Syst Control Inform Eng 14:33–41

    Google Scholar 

  8. Branke J (1999) Memory enhanced evolutionary algorithms for changing optimization problems Proceedings of the IEEE congress on evolutionary computation. IEEE, pp 1875–1882

    Google Scholar 

  9. Wang H, Wang D, Yang S (2007) Applications of evolutionary computing Triggered memory-based swarm optimization in dynamic environments. Springer, Heidelberg, pp 637–646

  10. Hatzakis I, Wallace D (2006) Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach Proceedings of the genetic and evolutionary computation conference. ACM, Seattle, pp 1201–1208

    Google Scholar 

  11. Rossi C, Abderrahim M, Díaz J C (2008) Tracking moving optima using kalman-based predictions. Evol Comput 16:1–30. doi:10.1162/evco.2008.16.1.1

    Article  Google Scholar 

  12. Grefenstette J J (1999) Evolvability in dynamic fitness landscapes: a genetic algorithm approach Proceedings of the IEEE congress on evolutionary computation. IEEE, vol 3, pp 1–2038

  13. Blackwell T, Branke J (2004) Multi-swarm optimization in dynamic environments Workshops on applications of evolutionary computation. Springer, pp 489–500

    Google Scholar 

  14. Blackwell T, Branke J (2006) Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans Evol Comput 10:459–472. doi:10.1109/TEVC.2005.857074

    Article  Google Scholar 

  15. Branke J, Kaussler T, Smidt C, Schmeck H (2000) Evolutionary design and manufacture. In: Parmee I C (ed) A multi-population approach to dynamic optimization problems. Springer, london, pp 299–307

    Google Scholar 

  16. Li C, Nguyen T T, Yang M et al (2016) An adaptive multipopulation framework for locating and tracking multiple optima. IEEE Trans Evol Comput 20:590–605. doi:10.1109/TEVC.2015.2504383

    Article  Google Scholar 

  17. du Plessis M C, Engelbrecht A P (2012) Using competitive population evaluation in a differential evolution algorithm for dynamic environments. Eur J Oper Res 218:7–20. doi:10.1016/j.ejor.2011.08.031

    Article  MathSciNet  MATH  Google Scholar 

  18. du Plessis M C, Engelbrecht A P (2013) Differential evolution for dynamic environments with unknown numbers of optima. J Glob Optim 55:73–99. doi:10.1007/s10898-012-9864-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Halder U, Das S, Maity D (2013) A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments. IEEE Trans Cybern 43:881–897. doi:10.1109/TSMCB.2012.2217491

    Article  Google Scholar 

  20. Hashemi A B, Meybodi M R (2009) A multi-role cellular PSO for dynamic environments Proceedings of the 14th international CSI computer conference. IEEE, pp 412–417

    Google Scholar 

  21. Hashemi A B, Meybodi M R (2009) Cellular PSO: A PSO For dynamic environments The 4th international symposium on intelligence computation and applications. Springer, Heidelberg, pp 422–433

    Google Scholar 

  22. Kamosi M, Hashemi A B, Meybodi M R (2010) A hibernating multi-swarm optimization algorithm for dynamic environments Proceedings of the 2nd world congress on nature and biologically inspired computing. IEEE, pp 363–369

    Google Scholar 

  23. Kamosi M, Hashemi A B, Meybodi M R (2010) A new particle swarm optimization algorithm for dynamic environments Proceedings of the 1st international conference on swarm, evolutionary, and memetic computing. Springer, Heidelberg, pp 129–138

    Chapter  Google Scholar 

  24. Kordestani J K, Rezvanian A, Meybodi M R (2014) CDEPSO: A bi-population hybrid approach for dynamic optimization problems. Appl Intell 40:682–694

    Article  Google Scholar 

  25. Lung R I, Dumitrescu D (2009) Evolutionary swarm cooperative optimization in dynamic environments. Nat Comput 9:83–94

    Article  MathSciNet  MATH  Google Scholar 

  26. Nabizadeh S, Rezvanian A, Meybodi M R (2012) A multi-swarm cellular PSO based on clonal selection algorithm in dynamic environments Proceedings of the international conference on informatics, electronics & vision. IEEE, pp 482–486

    Google Scholar 

  27. Mendes R, Mohais A S (2005) DynDE: A differential evolution for dynamic optimization problems Proceedings of the IEEE congress on evolutionary computation. IEEE, pp 2808–2815

    Google Scholar 

  28. Noroozi V, Hashemi A B, Meybodi M R (2011) CellularDE: A cellular based differential evolution for dynamic optimization problems Proceedings of the 10th international conference on adaptive and natural computing algorithms. Springer, Heidelberg, pp 340–349

    Chapter  Google Scholar 

  29. Novoa-Hernández P, Corona C C, Pelta D A (2011) Efficient multi-swarm PSO algorithms for dynamic environments. Memetic Comput 3:163–174

    Article  MATH  Google Scholar 

  30. Novoa-Hernández P, Corona C C, Pelta D A (2013) Self-adaptive, multipopulation differential evolution in dynamic environments. Soft Comput 17:1861–1881

    Article  Google Scholar 

  31. Sharifi A, Noroozi V, Bashiri M et al (2012) Two phased cellular PSO: A new collaborative cellular algorithm for optimization in dynamic environments Proceedings of the IEEE congress on evolutionary computation, pp 1–8

    Google Scholar 

  32. Yang S, Li C (2010) A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans Evol Comput 14:959–974. doi:10.1109/TEVC.2010.2046667

    Article  Google Scholar 

  33. Yang S, Li C (2008) Fast multi-swarm optimization for dynamic optimization problems Proceeding of the 4th international conference on natural computation. IEEE, pp 624–628

    Google Scholar 

  34. Yazdani D, Akbarzadeh-Totonchi M R, Nasiri B, Meybodi M R (2012) A new artificial fish swarm algorithm for dynamic optimization problems IEEE congress on evolutionary computation, pp 1–8

    Google Scholar 

  35. Blackwell T M, Bentley P (2002) Don’t push me! Collision-avoiding swarms Proceedings of the 2002 congress on evolutionary computation, pp 1691–1696

    Google Scholar 

  36. Blackwell T M (2002) Dynamic search with charged swarms Genetic and evolutionary computation conference, pp 9–13

    Google Scholar 

  37. Blackwell T (2007) Evolutionary computation in dynamic and uncertain environments Particle swarm optimization in dynamic environments. Springer, Heidelberg, pp 29–49

  38. Yazdani D, Nasiri B, Sepas-Moghaddam A, Meybodi M R (2013) A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization. Appl Soft Comput 13:2144–2158. doi:10.1016/j.asoc.2012.12.020

    Article  Google Scholar 

  39. Parrott D, Li X (2006) Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans Evol Comput 10:440–458. doi:10.1109/TEVC.2005.859468

    Article  Google Scholar 

  40. Bird S, Xiaodong L (2007) Using regression to improve local convergence, pp 592–599

  41. Li C, Yang S (2012) A general framework of multipopulation methods with clustering in undetectable dynamic environments. IEEE Trans Evol Comput 16:556–577. doi:10.1109/TEVC.2011.2169966

    Article  Google Scholar 

  42. Nickabadi A, Ebadzadeh M M, Safabakhsh R (2012) A competitive clustering particle swarm optimizer for dynamic optimization problems. Swarm Intel 6:177–206

    Article  Google Scholar 

  43. Liu L, Yang S, Wang Q (2010) Particle swarm optimization with composite particles in dynamic environments. IEEE Trans Syst Man Cybern Part B: Cybern 40:1634–1648. doi:10.1109/TSMCB.2010.2043527

    Article  Google Scholar 

  44. Karimi J, Nobahari H, Pourtakdoust S H (2012) A new hybrid approach for dynamic continuous optimization problems. Appl Soft Comput 12:1158–1167. doi:10.1016/j.asoc.2011.11.005

    Article  Google Scholar 

  45. Grefenstette J J (1992) Genetic algorithms for changing environments Parallel problem solving from nature. North Holland, pp 137–144

    Google Scholar 

  46. Andersen H C (1991) An investigation into genetic algorithms, and the relationship between speciation and the tracking of optima in dynamic functions. Queensland University, Brisbane

    Google Scholar 

  47. Morrison R W (2004) Designing evolutionary algorithms for dynamic environments. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  48. Oppacher F, Wineberg M (1999) The shifting balance genetic algorithm: Improving the GA in a dynamic environment Proceedings of the 1st annual conference on genetic and evolutionary computation-volume 1. Morgan Kaufmann Publishers Inc., pp 504–510

  49. Ursem R K Multinational GA Optimization Techniques in Dynamics Environments

  50. du Plessis M C, Engelbrecht A P (2008) Improved differential evolution for dynamic optimization problems 2008 IEEE congress on evolutionary computation (IEEE World Congress on Computational Intelligence), pp 229–234

    Chapter  Google Scholar 

  51. Noroozi V, Hashemi A B, Meybodi M R (2012) Alpinist CellularDE: A cellular based optimization algorithm for dynamic environments Proceedings of the genetic and evolutionary computation conference. ACM, Philadelphia, pp 1519–1520

    Google Scholar 

  52. Rezvanian A, Meybodi M R (2010) LACAIS: Learning Automata based cooperative artificial immune system for function optimization Proceedings of the 3rd international conference on contemporary computing. Springer, Heidelberg, pp 64–75

    Google Scholar 

  53. Trojanowski K, Wierzchoñ S T (2009) Immune-based algorithms for dynamic optimization. Inf Sci 179:1495–1515

    Article  Google Scholar 

  54. Nasiri B, Meybodi M R (2012) Speciation based firefly algorithm for optimization in dynamic environments. Int J Artif Intell 8:118–132

    Google Scholar 

  55. Turky A M, Abdullah S (2014) A multi-population harmony search algorithm with external archive for dynamic optimization problems. Inf Sci 272:84–95

    Article  Google Scholar 

  56. Fouladgar N, Lotfi S (2015) A novel approach for optimization in dynamic environments based on modified cuckoo search algorithm. Soft Comput, pp 1–15

  57. Lung R I, Dumitrescu D (2007) A collaborative model for tracking optima in dynamic environments Proceedings of the IEEE congress on evolutionary computation. IEEE , pp 564–567

    Google Scholar 

  58. Moser I, Hendtlass T (2007) A simple and efficient multi-component algorithm for solving dynamic function optimisation problems 2007 IEEE congress on evolutionary computation. IEEE, pp 252–259

    Chapter  Google Scholar 

  59. Moser I, Chiong R (2010) Dynamic function optimisation with hybridised extremal dynamics. Memetic Comput 2:137–148

    Article  Google Scholar 

  60. Sharifi A, Kordestani J K, Mahdaviani M, Meybodi M R (2015) A novel hybrid adaptive collaborative approach based on particle swarm optimization and local search for dynamic optimization problems. Appl Soft Comput 32:432–448

    Article  Google Scholar 

  61. Yang X-S, Deb S (2009) Cuckoo Search via Lévy flights World congress on nature & biologically inspired computing, pp 210–214

    Google Scholar 

  62. Bhargava V, Fateen S -E K, Bonilla-Petriciolet A (2013) Cuckoo search: a new nature-inspired optimization method for phase equilibrium calculations. Fluid Phase Equilib 337 :191–200

    Article  Google Scholar 

  63. Piechocki J, Ambroziak D, Palkowski A, Redlarski G (2014) Use of Modified Cuckoo Search algorithm in the design process of integrated power systems for modern and energy self-sufficient farms. Appl Energy 114:901–908. doi:10.1016/j.apenergy.2013.07.057

    Article  Google Scholar 

  64. Yildiz A (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64:55–61. doi:10.1007/s00170-012-4013-7

    Article  Google Scholar 

  65. Chandrasekaran K, Simon S P (2012) Multi-objective scheduling problem: Hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm Evol Comput 5:1–16. doi:10.1016/j.swevo.2012.01.001

    Article  Google Scholar 

  66. Yang X S, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40:1616–1624

    Article  MathSciNet  MATH  Google Scholar 

  67. Abedi Firouzjaee H, Kordestani J K, Meybodi M R (2016) Cuckoo search with composite flight operator for numerical optimization problems and its application in tunnelling. Eng Optim, pp 1– 20

  68. Thathachar M A L, Sastry P S (2002) Varieties of learning automata: an overview. IEEE Trans Syst Man Cybern Part B: Cybern 32:711–722. doi:10.1109/TSMCB.2002.1049606

    Article  Google Scholar 

  69. Narendra K S, Thathachar M A L (1974) Learning automata - A survey. IEEE Trans Syst Man Cybern 4:323–334. doi:10.1109/TSMC.1974.5408453

    Article  MathSciNet  MATH  Google Scholar 

  70. Hashemi A B, Meybodi M R (2011) A note on the learning automata based algorithms for adaptive parameter selection in PSO. Appl Soft Comput 11:689–705. doi:10.1016/j.asoc.2009.12.030

    Article  Google Scholar 

  71. Kordestani J K, Ahmadi A, Meybodi M R (2014) An improved differential evolution algorithm using learning automata and population topologies. Appl Intell 41:1150–1169

    Article  Google Scholar 

  72. Mahdaviani M, Kordestani J K, Rezvanian A, Meybodi M R (2015) LADE: Learning Automata based differential evolution. Intern J Art Intell Tools 24:1550023

    Article  Google Scholar 

  73. Moghiss V, Meybodi M R, Esnaashari M (2010) An intelligent protocol to channel assignment in wireless sensor networks: Learning automata approach Proceedings of the international conference on information, networking and automation. IEEE, pp 338–343

    Google Scholar 

  74. Esnaashari M, Meybodi M R (2011) A cellular learning automata-based deployment strategy for mobile wireless sensor networks. J Parall Distrib Comput 71:988–1001

    Article  MATH  Google Scholar 

  75. Akbari Torkestani J, Meybodi M R (2011) A cellular learning automata-based algorithm for solving the vertex coloring problem. Expert Syst Appl 38:9237–9247. doi:10.1016/j.eswa.2011.01.098

    Article  Google Scholar 

  76. Barzegar S, Davoudpour M, Meybodi M R, et al. (2011) Formalized learning automata with adaptive fuzzy coloured Petri net; an application specific to managing traffic signals. Scientia Iranica 18:554–565. doi:10.1016/j.scient.2011.04.007

    Article  Google Scholar 

  77. Akbari Torkestani J (2012) An adaptive learning automata-based ranking function discovery algorithm. J Intell Inform Syst 39:441–459

    Article  Google Scholar 

  78. Thathachar M A, Sastry P S (2003) Networks of learning automata. Techniques for online stochastic optimization. Springer

  79. Wang F, He X S, Wang Y, Yang S M (2012) Markov model and convergence analysis based on cuckoo search algorithm. Comput Eng 11:55

    Google Scholar 

  80. Hooke R, Jeeves T A (1961) Direct search solution of numerical and statistical problems. Journal of the ACM (JACM) 8:212–229

    Article  MATH  Google Scholar 

  81. Branke J, Schmeck H (2003) Advances in evolutionary computing: Theory and applications Designing evolutionary algorithms for dynamic optimization problems. Springer, Heidelberg, pp 239–262

  82. Nasiri B, Meybodi M R (2016) Improved Speciation-Based firefly algorithm in dynamic and uncertain environments. J Inf Sci Eng 32:661–676

    Google Scholar 

  83. Wu V, Wang Y, Liu X, Ye J (2010) Multi-population and diffusion UMDA for dynamic multimodal problems. J Syst Eng Electron 21:777–783. doi:10.3969/j.issn.1004-4132.2010.05.010

    Article  Google Scholar 

  84. Rezazadeh I, Meybodi M, Naebi A (2011) Advances in swarm intelligence. In: Tan Y, Shi Y, Chai Y, Wang G (eds) Adaptive particle swarm optimization algorithm for dynamic environments. Springer, Heidelberg, pp 120–129

    Google Scholar 

  85. Yazdani D, Nasiri B, Sepas-Moghaddam A et al (2014) mNAFSA: a novel approach for optimization in dynamic environments with global changes. Swarm Evol Comput 18:38–53

    Article  Google Scholar 

  86. Li C, Nguyen T T, Yang M et al (2016) An adaptive multipopulation framework for locating and tracking multiple optima. IEEE Trans Evol Comput 20:590–605. doi:10.1109/TEVC.2015.2504383

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank S. Moreitz for reviewing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javidan Kazemi Kordestani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordestani, J.K., Firouzjaee, H.A. & Reza Meybodi, M. An adaptive bi-flight cuckoo search with variable nests for continuous dynamic optimization problems. Appl Intell 48, 97–117 (2018). https://doi.org/10.1007/s10489-017-0963-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0963-7

Keywords

Navigation