Skip to main content
Log in

Storing fuzzy description logic ontology knowledge bases in fuzzy relational databases

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In the context of the Semantic Web, fuzzy extensions to OWL (the W3C standard ontology language) and Description Logics (DLs, the logical foundation of OWL) have been extensively investigated, and there are many real fuzzy DL ontology knowledge bases. Therefore, how to store fuzzy DL ontology knowledge bases has become an important issue. In this paper, we propose an approach and implement a tool for storing fuzzy DL ontology knowledge bases in fuzzy relational databases. Our chosen formalism is a fuzzy extension of the very expressive DL SHOIN(D), which is the main logical foundation of the standard ontology language OWL, so that our storage approach can store not only fuzzy DL-knowledge bases but also fuzzy ontology knowledge bases. Firstly, we give a formal definition of fuzzy DL-knowledge bases. In the definition, we consider the constructors of both fuzzy SHOIN(D) DL and fuzzy OWL ontology and add some common fuzzy datatypes (e.g., trapezoidal values, interval values, approximate values, and labels) into the knowledge bases. On this basis, we propose an approach which can store fuzzy DL-knowledge bases in fuzzy relational databases, and provide an example to well explain the approach. The correctness and quality of the storage approach are proved and analyzed. Furthermore, following the proposed approach, we implemented a prototype tool, which can automatically store fuzzy DL-knowledge bases. Finally, we make a discussion about the query problem and make a comparison with the existing works.

The storage process and the contributions of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Astrova I, Korda N, Kalja A (2007) Storing OWL ontologies in SQL relational databases. In: Proceedings of world academy of science engineering and technology, pp 167–172

    Google Scholar 

  2. Al-Jadir L, Parent C, Spaccapietra S (2010) Reasoning with large ontologies stored in relational databases: The OntoMinD approach. Data Knowl Eng 69(11):1158–1180

    Article  Google Scholar 

  3. Astrova I, Kalja A (2008) Storing OWL Ontologies in SQL3 Object-Relational Databases. In: Proceedings of 8th WSEAS international conference on applied informatics and communications (AIC’08), pp 99–103

    Google Scholar 

  4. Abulaish M, Dey L (2007) A fuzzy ontology generation framework for handling uncertainties and non-uniformity in domain knowledge description. In: Proceedings of the international conference on computing: Theory and applications. Kolkata, India, pp 287–293

  5. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):34–43

    Article  Google Scholar 

  6. Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF (eds) (2003) The description logic handbook: theory, implementation, and applications. Cambridge University Press, Cambridge

  7. Bobillo F (2008) Managing vagueness in ontologies. PhD Dissertation, University of Granada, Spain

    Google Scholar 

  8. Bobillo F, Straccia U (2009) An OWL ontology for fuzzy OWL 2. In: Proceedings of the 18th international symposium on methodologies for intelligent systems (ISMIS 2009), pp 151– 160

  9. Bobillo F, Straccia U (2010) Representing fuzzy ontologies in OWL 2. In: Proceedings of the 19th IEEE international conference on fuzzy systems (FUZZ-IEEE 2010), pp 2695–2700

  10. Bobillo F, Straccia U (2011) Aggregations operators and fuzzy owl 2. In: Proceedings of the 20th IEEE international conference on fuzzy systems (FUZZ-IEEE 2011), pp 1727–1734

  11. Bobillo F, Straccia U (2011) Fuzzy ontology representation using OWL 2. J Approx Reason 52(7):1073–1094

    Article  MathSciNet  Google Scholar 

  12. Barranco CD, Campaña JR, Medina JM, Pons O (2007) On storing ontologies including fuzzy datatypes in relational databases. In: Proceedings of IEEE international conference on fuzzy systems (FUZZ-IEEE 2007), pp 1–6

  13. Bresciani P (1995) Querying Database from Description Logics. In: Proceedings of KRDB, pp 1–4

  14. Chandrasekaran B, Josephson John R, Richard Benjamins V (1999) What are ontologies, and why do we need them? IEEE Intell Syst 14(1):20–26

    Article  Google Scholar 

  15. Calegari S, Ciucci D (2007) Fuzzy ontology, fuzzy description logics and fuzzy-owl. In: Proceedings of WILF 2007, LNCS 4578, pp 118–126

  16. Calegari S, Ciucci D (2007) Fuzzy ontology and fuzzy-OWL in the KAON project. In: Proceedings of IEEE international conference on fuzzy systems (FUZZ-IEEE 2007), pp 1415– 1420

  17. Das S, Inseok Chong E, Eadon G, Srinivasan J (2004) Supporting ontology-based semantic matching in RDBMS. In: Proceedings of the 30th VLDB conference, pp 1054–1065

  18. Gali A, Chen CX, Claypool KT, Uceda-Sosa R (2004) From ontology to relational databases. In: Proceedings of ER workshops 2004, LNCS 3289, pp 278–289

  19. Galindo J (ed) (2008) Handbook of research on fuzzy information processing in databases. Information Science Reference, Hershey

  20. Gu H, Lv H, Gao J, Shi J (2007) Towards a general fuzzy ontology and its construction. In: Proceedings of ISKE a part of series: Advances in intelligent system research

  21. Horrocks I, Patel-Schneider PF, van Harmelen F (2003) From SHIQ and RDF to OWL: The making of a web ontology language. J Web Semantics 1(1):7–26

  22. Heymans S et al (2008) Ontology reasoning with large data repositories. In: Proceedings of the ontology management, semantic web, semantic Web services, and business applications, Springer, pp 89–128

  23. Inyaem U et al (2010) Construction of fuzzy ontology-based terrorism event extraction. In: Proceedings of knowledge discovery & data mining (WKDD), pp 391–394

  24. Konstantinou N, Spanos DM, Nikolas M (2008) Ontology and database mapping: a survey of current implementations and future directions. J Web Eng 7(1):1–24

    Google Scholar 

  25. Khalid A, Shah AH, Qadir MA (2009) OntRel: An ontology indexer to store OWL-DL ontologies and its instances. In: Proceedings of international conference of soft computing and pattern recognition, pp 478–483

  26. Lukasiewicz T, Straccia U (2008) Managing uncertainty and vagueness in description logics for the Semantic Web. Web Semantics: Science. Services and Agents on the World Wide Web vol 6, pp 291–308

  27. LePendu P, Dou D, Fishkoff GA, Rong J (2008) Ontology database: a new method for semantic modeling and an application to brainwave data. In: Proceedings of SSDBM 2008, pp 313–330

  28. Lee CS, Jian ZW et al (2005) A fuzzy ontology and its application to news summarization. IEEE Trans Syst Man Cybern B 35(5):859–880

    Article  Google Scholar 

  29. Lam THW (2006) Fuzzy ontology map-a fuzzy extension of the hard-constraint ontology. In: Proceedings of the 5th IEEE/WIC/ACM international conference on web intelligence, Hong Kong, pp 506–509

  30. Lv YH, Ma ZM, Zhang X (2009) Fuzzy ontology storage in fuzzy relational database. In: Proceedings of the international conference on fuzzy systems and knowledge discovery (FSKD 2009), pp 242–246

  31. Miller RJ, Ioannidis YE (1993) The use of information capacity in schema integration and translation. In: Proceedings of the 19th VLDB conference, pp 120–133

  32. Miller RJ, Ioannidis YE, Ramakrishnan R (1994) Schema equivalence in heterogeneous systems: Bridging theory and practice. Inf Syst 19(1):3–31

    Article  Google Scholar 

  33. Ma ZM, Yan L (2008) A literature overview of fuzzy database models. J Inf Sci Eng 24(1):189–202

    Google Scholar 

  34. Ma ZM, Lv Y, Yan L (2008) A fuzzy ontology generation framework from fuzzy relational databases. Int J Semant Web Inf Syst 4(3):1–15

    Article  Google Scholar 

  35. Ma ZM, Zhang F, Wang H, Yan L (2013) An overview of fuzzy description logics for the semantic web. Knowl Eng Rev 28(1):1–34

    Article  Google Scholar 

  36. OWL: Ontology Web Language. http://www.w3.org/2004/OWL/

  37. Pan JZ, Stamou G, Stoilos G, Thomas E (2007) Expressive querying over fuzzy DL-Lite ontologies. In: Proceedings of the international workshop on description logics (DL 2007), vol 250, Insbruck, Austria

  38. Quan TT, Hui SC et al (2006) Automatic fuzzy ontology generation for semantic web. IEEE Trans Knowl Data Eng 18(6):842–856

    Article  Google Scholar 

  39. Rosado A, Ribeiro RA, Zadrozny S, Kacprzyk J (2006) Flexible query languages for relational databases: an overview. In: Bordogna G, Psaila G (eds) Supporting imprecision and uncertainty in flexible databases, studies in fuzziness and soft computing series. Physica-Verlag, Berlin, pp 3–54

    Google Scholar 

  40. Sanchez E (ed.) (2006) Fuzzy logic and the semantic web. Elsevier

  41. Sanchez E, Yamanoi T (2006) Fuzzy ontologies for the semantic web FQAS 2006, pp 691–699

    Google Scholar 

  42. Simou N, Stoilos G, Tzouvaras V, Stamou G, Kollias S (2008) Storing and querying fuzzy knowledge in the semantic web. In: Proceedings of the 4th international workshop on uncertainty reasoning for the semantic web URSW 2008

  43. Straccia U (2001) Reasoning within fuzzy description logics. J Artif Intell Res 14(1):137–166

    MathSciNet  MATH  Google Scholar 

  44. Straccia U (2005) Towards a fuzzy description logic for the semantic web. In: Proceedings of the 2nd European semantic web conference (ESWC 2005), pp 167–181

  45. Straccia U, Visco G (2007) DLMedia: an ontology mediated multimedia information retrieval system. In: Proceedings of the international workshop on description logics (DL 2007), vol 250, Insbruck, Austria

  46. Stoilos G, Stamou G, Tzouvaras V, Pan JZ, Horrocks I (2007) Reasoning with very expressive fuzzy description logics. J Artif Intell Res 30(8):273–320

    MathSciNet  MATH  Google Scholar 

  47. Stoilos G, Stamou G, Pan JZ (2010) Fuzzy extensions of OWL: logical properties and reduction to fuzzy description logics. Int J Approx Reason 51:656–679

    Article  MathSciNet  MATH  Google Scholar 

  48. Tresp C, Molitor R (1998) A description logic for vague knowledge. In: Proceedings of the 13th European conference on artificial intelligence (ECAI-98), Brighton (England)

  49. Udrea O, Getoor L, Miller RJ (2007) Leveraging data and structure in ontology integration. In: Proceedings of the 27th ACM SIGMOD international conference on management of data, pp 449–460

  50. van Rijsbergen CJ (1986) A new theoretical framework for information retrieval. In: Proceedings of the 9th annual international ACM SIGIR conference on research and development in information retrieval. Pisa, Italy, pp 194–200

  51. Vysniauskas E, Nemuraite L (2006) transforming ontology representation from OWL to relational database. Inf Technol Constr 35(3):333–343

    Google Scholar 

  52. Vysniauskas E, Nemuraite L, Sukys A (2010) A hybrid approach for relating OWL 2 ontologies and relational databases. BIR 2010. LNBIP 64:86–101

    Google Scholar 

  53. Weippl E, Klemen M (2008) Improving storage concepts for semantic models and ontologies Proceedings of the semantic web for knowledge and data management: Technologies and practices. Zongmin Ma, Idea Group Publishing, pp 38– 48

    Google Scholar 

  54. Widyantoro DH, Yen J (2001) A fuzzy ontology-based abstract search engine and its user studies Proceedings of the 10th IEEE international conference on fuzzy systems, pp 1291–1294

    Google Scholar 

  55. Yen J (1991) Generalizing term subsumption languages to fuzzy logic. In: Proceedings of the 12th international joint conference on artificial intelligence (IJCAI-91), pp 472–477

    Google Scholar 

  56. ZadroŻny S, De Tré G, De Caluwe R, Kacprzyk J (2008) An overview of fuzzy approaches to flexible database querying. In: Galindo J (ed) Proceedings of the handbook of research on fuzzy information processing in databases. IGI Global, New York, pp 34–54

    Chapter  Google Scholar 

  57. Zhou J, Ma L, Liu Q et al (2006) Minerva: A scalable OWL ontology storage and inference system. In: Proceedings of the ASWC 2006, LNCS 4185, pp 429–443

    Google Scholar 

  58. Zhang F, Ma ZM, Li Y, Jingwei C (2011) Storing fuzzy ontology in fuzzy relational database. In: Proceedings of the 22nd international conference on database and expert systems applications (DEXA 2011), pp 447–455

    Chapter  Google Scholar 

  59. Zhang F, Ma ZM (2013) Construction of fuzzy ontologies from fuzzy UML models. Int J Comput Int Syst (IJCIS) 6(3):442– 472

    Article  Google Scholar 

  60. Zhang F, Ma ZM et al (2010) Automatic fuzzy semantic web ontology learning from fuzzy object-Oriented database model. In: Proceedings of the 21st international conference on database and expert systems applications (DEXA 2010), pp 16–30

    Chapter  Google Scholar 

  61. Zhang F, Ma ZM et al (2012) A description logic approach for representing and reasoning on fuzzy object-oriented database models. Fuzzy Sets Syst 186(1):1–25

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang F, Ma ZM, Li Y, Jingwei C (2013) Construction of fuzzy OWL ontologies from fuzzy EER models: A semantics-preserving approach. Fuzzy Sets Syst 229:1–32

    Article  MathSciNet  MATH  Google Scholar 

  63. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  64. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1(1):3–28

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions, which improved the technical content and the presentation of the paper. The work is supported by the National Natural Science Foundation of China(61672139) and the Natural Science Foundation of Liaoning Province, China(2015020048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Zhang.

Appendices

Appendix A: The fuzzy DL syntax, fuzzy OWL syntax, and semantics of a fuzzy DL-KB

Fuzzy DL Syntax

Fuzzy OWL Syntax

Semantics

Fuzzy concepts

Fuzzy class descriptions

 

A

Class (A)

A FIFI → [0, 1]

owl:Thing

\(\top ^{FI}\left (d \right )=1\)

owl:Nothing

\(\bot ^{FI}\left (d \right )=0\)

C 1 ⊓ ... ⊓ C n

intersectionOf (C 1C n )

(C 1 ⊓ ... ⊓ C n )FI(d) = min{\(C_{\mathrm {1}}^{\text {FI}}(d)\),…, \(C_{\mathrm {n}}^{\text {FI}}(d)\)}

C 1 ⊔ ... ⊔ C n

unionOf (C 1... C n)

(C 1 ⊔ ... ⊔ C n )FI(d) = max{\(C_{1}^{\text {FI}}(d)\),..., \(C_{\mathrm {n}}^{\text {FI}}(d)\)}

¬C

complementOf (C)

C)FI(d) = 1 − C FI(d)

{o 1}⊔ ... ⊔{o n }

oneOf(o 1... o n)

({o 1}⊔ ... ⊔{o n })FI(d) = 1 if \(d\in \{o_{1}^{\text {FI}}\),..., \(o_{\mathrm {n}}^{\text {FI}}\)}, 0 otherwise

P.E

restriction (P someValuesFrom(E))

\((\exists P.E)^{\text {FI}}(d)=\sup _{a\in {\Delta }^{\text {FI}}} \{\min \{P^{\text {FI}}(d,a),E^{\text {FI}}(a)\}\}\)

P.E

restriction (P allValuesFrom(E))

\({(\forall P.E)}^{\text {FI}}(d)=\inf _{a\in {\Delta }^{\text {FI}}} \{\max \{1-P^{\text {FI}}(d,a),E^{\text {FI}}(a)\}\}\)

P. {a}

restriction (P hasValue(a))

(∃P.{a})FI(d) = P FI(d,a)

nP

restriction (P minCardinality (n))

\((\ge nP)^{\text {FI}}(d)=\sup _{a_{1} ,...,a_{\mathrm {n}} \in {\Delta }^{\text {FI}}} \wedge _{\mathrm {i}=1}^{\mathrm {n}} P^{\text {FI}}(d,a_{\mathrm {i}} )\)

nP

restriction (P maxCardinality(n))

\((\le nP)^{\text {FI}}(d)=\inf _{a_{1} ,...,a_{\mathrm {n}+1} \in {\Delta }^{\text {FI}}} \vee _{\mathrm {i}=1}^{\mathrm {n}+1} (1-P^{\text {FI}}(d,a_{\mathrm {i}} ))\)

= nP

restriction (P cardinality(n) )

(≥ n P⊓≤ n P)FI(d)

Fuzzy axioms

Fuzzy class axioms

 

\(A\sqsubseteq C_{1} \sqcap ...\sqcap C_{n} \)

Class (A partial C 1C n)

A FI(d) ≤ min{\(C_{\mathrm {1}}^{\text {FI}}(d)\),…, \(C_{\mathrm {n}}^{\text {FI}}(d)\) }

AC 1 ⊓ ... ⊓ C n

Class (A complete C 1C n)

A FI(d) = min{\(C_{\mathrm {1}}^{\text {FI}}(d)\),…, \(C_{\mathrm {n}}^{\text {FI}}(d)\) }

\(<C_{1} \sqsubseteq C_{2} ,n>\)

SubClassOf (C 1 C 2 n)

inf\(_{\mathrm {}}a\in {\Delta }^{\text {FI}}\){ max{ 1-\(C_{\mathrm {1}}^{\text {FI}}(a)\), \(C_{\mathrm {2}}^{\text {FI}}(a)\)}} ≥ n

C 1 ≡ ... ≡ C n

EquivalentClasses (C 1C n)

\(C_{\mathrm {1}}^{\text {FI}}(d) \quad =\)\(= \quad C_{\mathrm {n}}^{\text {FI}}(d)\)

\(C_{1} \sqcap C_{2} \sqsubseteq \thinspace \bot \)

DisjointClasses (C 1C n)

min{\(C_{\mathrm {i}}^{\text {FI}}(d)\), \(C_{\mathrm {j}}^{\text {FI}}(d)\)} = 0 1 ≤ i < jn

A ≡{o 1...o n }

EnumeratedClass (A o 1o n)

A FI(d) = 1 if d ∈{\(o_{\mathrm {1}}^{\mathrm {FI\thinspace }}\),..., \(o_{\mathrm {n}}^{\text {FI}}\)} , A FI(d) = 0 otherwise

Fuzzy axioms

Fuzzy property axioms

 
 

DatatypeProperty (T

 

\(\exists \top .T\sqsubseteq C_{i} \)

domain(C 1)...domain(C m)

T FI(d, \(v) \le C_{\mathrm {i}}^{\text {FI}}(d) i =\) 1,..., m

\(\top \sqsubseteq \forall T\). D i

range(D 1)...range(D k)

T FI(d, \(v) \le D_{\mathrm {i}}^{\text {FI}}(v) i =\) 1,..., k

\(\top \sqsubseteq \le \)1T

[Functional] )

d ∈ΔFI #... v ∈ΔD: T FI(d, v) ≥ 0... ≤ 1

 

ObjectProperty (R

 

R.\(\top \sqsubseteq C_{\mathrm {i}}\)

domain(C 1)...domain(C m)

R FI(d 1, \(d_{2}) \le C_{\mathrm {i}}^{\text {FI}}(d_{\mathrm {1}}) i =\) 1,..., m

\(\top \sqsubseteq \forall R\). C i

range(C 1)...range(C k)

R FI(d 1, \(d_{2}) \le C_{\mathrm {i}}^{\text {FI}}(d_{2}) i =\) 1,..., k

\(\top \sqsubseteq \le \)1 R

[Functional])

\(\forall d_{1}\in {\Delta }^{\text {FI}}\) #\(\{d_{2}\in {\Delta }^{\text {FI}}\): R FI(d 1, d 2) ≥ 0}≤ 1

R = (R 0)

[InverseOf(R 0)]

R FI(d 1, \(d_{2}) \le R_{\mathrm {0}}^{\text {FI}}(d_{\mathrm {2}}\), d 1)

\(\top \sqsubseteq \le \)1 R

[InverseFunctional]

\(\forall d_{1}\in {\Delta }^{\text {FI}}\) #\(\{d_{2}\in {\Delta }^{\text {FI}}\): (R )FI(d 1, d 2) ≥ 0}≤ 1

Trans(R)

[Transitive])

sup d ∈ΔFI{ min{ R FI(d 1, d), R FI(d, d 2)}} ≤ R FI(d 1, d 2)

\(E_{\mathrm {1}}\sqsubseteq E_{\mathrm {2}}\)

SubPropertyOf(E 1, E 2)

\(E_{\mathrm {1}}^{\text {FI}}(d\),\( a) \quad \le \quad E_{\mathrm {2}}^{\text {FI}}(d\), a)

E 1 ≡ ... ≡ E n

EquivalentProperties(E 1, ..., E n)

\(E_{\mathrm {1}}^{\text {FI}}(d\), a) = ... \(= \quad E_{\mathrm {n}}^{\text {FI}}(d\), a)

Fuzzy assertions

Fuzzy individual axioms

 

o: C im i

Individual (o type(C i) [ ⋈m i]...

\(C_{\mathrm {i}}^{\text {FI}}(o) \bowtie m_{\mathrm {i}} \quad m_{\mathrm {i}} \in \) [0,1] 1 ≤ in

(o, o i): R ik i

value(R i, o i) [ ⋈k i]…

\(R_{\mathrm {i}}^{\text {FI}}(o\), o i)⋈k i k i ∈ [0,1] 1 ≤ in

(o, v i): T il i

value(T i, v i) [ ⋈l i]…)

\(T_{\mathrm {i}}^{\text {FI}}(o\), v i) ⋈ l i l i ∈ [0,1] 1 ≤ in

o 1 = … = o n

SameIndividual (o 1o n)

\(o_{\mathrm {1}}^{\mathrm {FI\thinspace }}=\)\(= \quad o_{\mathrm {n}}^{\text {FI}}\)

o io j

DifferentIndividuals (o 1o n)

\(o_{\mathrm {i}}^{\mathrm {FI\thinspace }}\ne o_{\mathrm {j}}^{\mathrm {FI\thinspace \thinspace \thinspace \thinspace \thinspace }}\) 1 ≤ i < jn

  1. Comments: where P ∈{R, T}is an object property R or a datatype property T; E ∈ {C, D}is a class C or a concrete datatype D; d and o are abstract individuals, v is a concrete individual, a ∈{d, v}, and ⋈ ∈ { ≥, >, ≤, <}

Appendix B: The detailed explanations of the storage architecture in Table 3

Tables

Structure and Description

Resource_Table

Storing all resources in a fuzzy DL KB, i.e., fuzzy classes, fuzzy properties, and individuals.

FKBName describes the stored fuzzy DL KB name; ID identifies uniquely a resource in the fuzzy DL KB, and ID attribute is the primary key of the table; Namespace and localname describe a URIref of any resource; type describes the type of a resource, which may be a fuzzy class, a fuzzy property, or an individual. In the following, ProIDID denotes property, ClassIDID denotes class, and IndIDID denotes individual.

Property_Field_Table

Storing the domain and range of a property.

ProID is the primary key of the table, and it is also a foreign key that references the primary key ID in Resource_Table. The fields domain and range store the domain and range of a property.

Property_Character_Table

Storing the characters of a property.

ProID is similar to the ProID above; type, which describes the type of a property, may be a datatype property or an object property; characters, which describes the characters of a property, may be Symmetric, Functional, and Transitive.

Property_Restriction_Table

Storing the restrictions of a property.

ClassID and ProID reference the primary key IDs in Resource_Table. (ClassID, ProID) is the primary key of the table; type, which describes restrictions, may be allValuesFrom, someValuesFrom, hasValue, minCardinality, maxCardinality; value denotes the value of restriction of a property, where: value = ID (i.e., ID in Resource_Table) if type = allValuesFrom |someValuesFrom |hasValue; otherwise, value is greater than or equal to 0 (which can be represented by adding a Check constraint to the ”value” field).

Class_Relation_Table

Storing the relationships among fuzzy classes (for simplicity Class_Relation_Table gives only two fuzzy classes).

Class 1 ID and Class 2 ID reference the primary key IDs in Resource_Table. (Class 1 ID, Class 2 ID) is the primary key of table; relationship may be SubClassOf, EquivalentClasses, or DisjointClasses; u denotes that a fuzzy class is a subclass of another fuzzy class with membership degree of [0, 1].

Property_Relation_Table

Storing the relationships among fuzzy properties (similarly for the Class_Relation_Table above).

Pro 1 ID and Pro 2 ID are similar to the Class 1 ID and Class 2 ID above; relationship may be Sub Property Of, Equivalent Properties, or inverse Of; u denotes that a fuzzy property is a subproperty of another fuzzy property with membership degree of [0, 1].

Class_Operation_Table

Storing the operations among fuzzy classes.

ClassID and Class i ID reference the primary key IDs in Resource_Table. (ClassID, Class i ID, ...) is the primary key; type is the operation of fuzzy classes such as intersection Of and union Of.

Class_oneOf_Table

Storing the operation oneOf between a fuzzy class and individuals.

ClassID and Ind i ID reference the primary key IDs in Resource_Table. (ClassID, Ind i ID, ...) is the primary key of the table; type is the operation one Of.

Individual_Class_Relation_Table

Storing the relationships between fuzzy classes and individuals.

IndID and ClassID reference the primary key IDs in Resource_Table. (IndID and ClassID) is the primary key of the table; u denotes that an individual is an instance of a fuzzy class with membership degree of [0, 1].

Individuals_Relation_Table

Storing the relationships among individuals (for simplicity only two individuals are listed).

Ind 1 ID andInd 2 ID reference the primary key IDs in Resource_Table. (Ind 1 ID andInd 2 ID) is the primary key of the table; type denotes the relationships between individuals such as Same Individual or Different Individuals.

Individual_Crisp_Property_Value_Table

Storing the values of crisp properties(for simplicity only one property is listed).

IndID is the primary key, and IndID and ProID reference the primary key IDs in Resource_Table; value is the value of the property, and the crisp value can be easily stored in the current database systems.

Individual_Fuzzy_Property_Value_Table

Storing the values of fuzzy properties in fuzzy relational databases (for simplicity only one property is listed). IndID, which denotes an individual with fuzzy properties, references the primary key ID in Resource_Table.

ProID is a fuzzy property, i.e., the domain of the property may be any fuzzy datatype in Table 2.

Fuzzy Property Value is the value of the fuzzy property ProID.

Appendix C: The Resource_Table created in Section 5.2.1

Resource_Table.

FKBName

ID

namespace

localname

type

FKB_1

c_1

http://www.neu.edu.cn/ailab/

Department

class

FKB_1

c_2

http://www.neu.edu.cn/ailab/

Staff

class

FKB_1

c_3

http://www.neu.edu.cn/ailab/

AdminStaff

class

FKB_1

c_4

http://www.neu.edu.cn/ailab/

AcademicStaff

class

FKB_1

c_5

http://www.neu.edu.cn/ailab/

Student

class

FKB_1

c_6

http://www.neu.edu.cn/ailab/

Course

class

FKB_1

p_1

http://www.neu.edu.cn/ailab/

study_in

property

FKB_1

p_2

http://www.neu.edu.cn/ailab/

work_in

property

FKB_1

p_3

http://www.neu.edu.cn/ailab/

teach

property

FKB_1

p_4

http://www.neu.edu.cn/ailab/

choosecourse

property

FKB_1

p_5

http://www.neu.edu.cn/ailab/

staffname

property

FKB_1

p_6

http://www.neu.edu.cn/ailab/

title

property

FKB_1

p_7

http://www.neu.edu.cn/ailab/

email

property

FKB_1

p_8

http://www.neu.edu.cn/ailab/

age

property

FKB_1

p_9

http://www.neu.edu.cn/ailab/

height

property

FKB_1

p_10

http://www.neu.edu.cn/ailab/

ability

property

FKB_1

i_1

http://www.neu.edu.cn/ailab/

staffid_11001

individual

FKB_1

i_2

http://www.neu.edu.cn/ailab/

depid_0206

individual

FKB_1

i_3

http://www.neu.edu.cn/ailab/

courid_309

individual

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Ma, Z.M., Tong, Q. et al. Storing fuzzy description logic ontology knowledge bases in fuzzy relational databases. Appl Intell 48, 220–242 (2018). https://doi.org/10.1007/s10489-017-0965-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0965-5

Keywords

Navigation