Skip to main content
Log in

Sparse kernel minimum squared error using Householder transformation and givens rotation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Two obvious limitations exist for baseline kernel minimum squared error (KMSE): lack of sparseness of the solution and the ill-posed problem. Previous sparse methods for KMSE have overcome the second limitation using a regularization strategy, which introduces an increase in the computational cost to determine the regularization parameter. Hence, in this paper, a constructive sparse algorithm for KMSE (CS-KMSE) and its improved version (ICS-KMSE) are proposed which will simultaneously address the two limitations described above. CS-KMSE chooses the training samples that incur the largest reductions on the objective function as the significant nodes on the basis of the Householder transformation. In contrast with CS-KMSE, there is an additional replacement mechanism using Givens rotation in ICS-KMSE, which results in ICS-KMSE giving better performance than CS-KMSE in terms of sparseness. CS-KMSE and ICS-KMSE do not require the regularization parameter at all before they begin to choose significant nodes, which is beneficial since it saves on the model selection time. More importantly, CS-KMSE and ICS-KMSE terminate their procedures with an early stopping strategy that acts as an implicit regularization term, which avoids overfitting and curbs the sparse level on the solution of the baseline KMSE. Finally, in comparison with other algorithms, both ICS-KMSE and CS-KMSE have superior sparseness, and extensive comparisons confirm their effectiveness and feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://archive.ics.uci.edu/ml/

  2. http://www.dcc.fc.up.pt/%7Eltorgo/Regression/DataSets.html

  3. http://www.csie.ntu.edu.tw/%7Ecjlin/libsvmtools/datasets/regression.html

  4. 4 http://homes.esat.kuleuven.be/%7Esmc/daisy/daisydata.html

References

  1. Traboulsi YE, Dornaika F, Assoum A (2015) Kernel flexible manifold embedding for pattern classification. Neurocomputing 167:517–527. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231215005111

    Article  Google Scholar 

  2. Zhao Y-P (2016) Parsimonious kernel extreme learning machine in primal via cholesky factorization. Neural Netw 80:95–109. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0893608016300399

    Article  Google Scholar 

  3. Vapnik VN (1995) The Nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  4. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–99

    Article  Google Scholar 

  5. Xu J, Zhang X, Li Y (2001) Kernel mse algorithm: a unified framework for kfd, ls-svm and krr International joint conference on neural networks, vol 2, pp 1486–1491

  6. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MATH  Google Scholar 

  7. Zhao Y-P, Sun J-G, Du Z-H, Zhang Z-A, Li Y-B (2012) Online independent reduced least squares support vector regression. Inf Sci 201:37–52. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0020025512001727

    Article  MATH  Google Scholar 

  8. Zhao Y-P, Wang K-K, Li F (2015) A pruning method of refining recursive reduced least squares support vector regression. Inf Sci 296:160–174. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0020025514010512

    Article  MathSciNet  MATH  Google Scholar 

  9. Saunders C, Gammerman A, Vovk V (1998) Ridge regression learning algorithm in dual variables Proceedings of the 15th international conference on machine learning, pp 515–521

    Google Scholar 

  10. Mika S, Rätsch G, Weston J, Schölkopf B, Mller KR (1999) Fisher discriminant analysis with kernels Proceedings of the 1999 IEEE signal processing society workshop, pp 41–48

    Google Scholar 

  11. Chen Z, Haykin S (2002) On different facets of regularization theory. Neural Comput 14(12):2791–2846

    Article  MATH  Google Scholar 

  12. Morozov VA (1984) Methods for solving incorrectly posed problems. Springer-Verlag

  13. Tipping ME (2001) Sparse bayesian learning and the relevance vector machine. J Mach Learn Res 1(3):211–244

    MathSciNet  MATH  Google Scholar 

  14. Zhao Y, Wang K (2014) Fast cross validation for regularized extreme learning machine. J Syst Eng Electron 25(5):895–900

    Article  Google Scholar 

  15. Xu Y, Yang JY, Lu JF (2005) An efficient kernel-based nonlinear regression method for two-class classification International conference on machine learning and cybernetics, vol 7, pp 4442–4445

  16. Xu Y, Zhang D, Jin Z, Li M, Yang J-Y (2006) A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recogn 39(6):1026–1033. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0031320305004425

    Article  MATH  Google Scholar 

  17. Wang J, Wang P, Li Q, You J (2013) Improvement of the kernel minimum squared error model for fast feature extraction. Neural Comput Appl 23(1):53–59

    Article  Google Scholar 

  18. Jiang J, Chen X, Gan H, Sang N (2014) Sparsity based feature extraction for kernel minimum squared error Chinese conference on pattern recognition, vol 483, pp 273–282

  19. Zhu Q (2009) A method for rapid feature extraction based on kmse 2010 Second WRI Global Congress on Intelligent Systems, pp 335–338

    Google Scholar 

  20. Zhu Q (2010) Reformative nonlinear feature extraction using kernel mse. Neurocomputing 73(16–18):3334–3337. 10th Brazilian Symposium on Neural Networks (SBRN2008). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231210002043

    Article  Google Scholar 

  21. Zhu Q, Xu Y, Cui J, Chen CF (2009) A method for constructing simplified kernel model based on kernel-mse Asia-Pacific Conference on Computational Intelligence and Industrial Applications, pp 237–240

    Google Scholar 

  22. Zhao Y-P, Du Z-H, Zhang Z-A, Zhang H-B (2011) A fast method of feature extraction for kernel mse. Neurocomputing 74(10):1654–1663. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231211001354

    Article  Google Scholar 

  23. Zhao Y-P, Sun J-G, Du Z-H, Zhang Z-A, Zhang H-B (2011) Pruning least objective contribution in kmse. Neurocomputing 74(17):3009–3018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231211002621

    Article  Google Scholar 

  24. Zhao Y-P, Liang D, Ji Z (2017) A method of combining forward with backward greedy algorithms for sparse approximation to kmse. Soft Comput 21(9):2367–2383. [Online]. Available. doi:10.1007/s00500-015-1947-3

    Article  Google Scholar 

  25. Zhao Y-P, Wang K-K, Liu J, Huerta R (2014) Incremental kernel minimum squared error (kmse). Inform Sci 270:92–111. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0020025514002230

    Article  MathSciNet  MATH  Google Scholar 

  26. Lauer F, Bloch G (2006) Hockashyap classifier with early stopping for regularization. Pattern Recogn Lett 27(9):1037–1044. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167865505003776

    Article  Google Scholar 

  27. Vincent P, Bengio Y (2002) Kernel matching pursuit. Mach Learn 48(1–3):165–187. [Online]. Available. doi:10.1023/A:1013955821559

    Article  MATH  Google Scholar 

  28. Jiao L, Bo L, Wang L (2007) Fast sparse approximation for least squares support vector machine. IEEE Trans Neural Netw 18(3):685–697. [Online]. Available. doi:10.1109/TNN.2006.889500

    Article  Google Scholar 

  29. Scholköpf B, Herbrich R, Smola AJ (2001) A generalized representer theorem Conference on computational learning theory and and European conference on computational learning theory, pp 416–426

    Google Scholar 

  30. An S, Liu W, Venkatesh S (2007) Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recogn 40(8):2154–2162. part Special Issue on Visual Information Processing. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0031320306005280

    Article  MATH  Google Scholar 

  31. Chen S, Billings S, Luo W (1989) Orthogonal least squares methods and their application to non-linear system identification. Int J Control 50(5):1873 –1896

    Article  MATH  Google Scholar 

  32. Zhao Y-P, Sun J-G (2010) Thrust estimator design based on least squares support vector regression machine. J Harbin Inst Technol (New Series) 17(4):578–583

    Google Scholar 

  33. Zhang X (2004) Matrix analysis and applications. Tsinghua University Press

  34. Dubrulle AA (2000) Householder transformations revisited. Siam J Matrix Anal Appl 22(1):33–40

    Article  MathSciNet  MATH  Google Scholar 

  35. Householder AS (1958) Unitary triangularization of a nonsymmetric matrix. J ACM 5(4):339–342

    Article  MathSciNet  MATH  Google Scholar 

  36. Givens W (1958) Computation of plane unitary rotations transforming a general matrix to triangular form. J Soc Indust Appl Math 6(1):26–50

    Article  MathSciNet  MATH  Google Scholar 

  37. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley

  38. Suykens J, Lukas L, Vandewalle J (2000) Sparse approximation using least squares support vector machines Proceedings of IEEE international symposium on circuits and systems, vol 2. Geneva, Switz, pp II–757–II–760

  39. Zhao Y, Sun J (2009) Recursive reduced least squares support vector regression. Pattern Recogn 42 (5):837–842. [Online]. Available. doi:10.1016/j.patcog.2008.09.028

    Article  MATH  Google Scholar 

  40. An S, Liu W, Venkatesh S (2007) Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recogn 40(8):2154–2162. [Online]. Available. doi:10.1016/j.patcog.2006.12.015

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the Fundamental Research Funds for the Central Universities under Grant no. NJ20160021. Moreover, the author wish to thank the anonymous reviewers for their constructive comments and great help in the writing process, which improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ping Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YP., Xi, PP., Li, B. et al. Sparse kernel minimum squared error using Householder transformation and givens rotation. Appl Intell 48, 390–415 (2018). https://doi.org/10.1007/s10489-017-0978-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0978-0

Keywords

Navigation