Skip to main content
Log in

A clustering algorithm with affine space-based boundary detection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Clustering is an important technique in data mining. The innovative algorithm proposed in this paper obtains clusters by first identifying boundary points as opposed to existing methods that calculate core cluster points before expanding to the boundary points. To achieve this, an affine space-based boundary detection algorithm was employed to divide data points into cluster boundary and internal points. A connection matrix was then formed by establishing neighbor relationships between internal and boundary points to perform clustering. Our clustering algorithm with an affine space-based boundary detection algorithm accurately detected clusters in datasets with different densities, shapes, and sizes. The algorithm excelled at dealing with high-dimensional datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu X, Li M (2014) Integrated constraint based clustering algorithm for high dimensional data. Neurocomputing 142:478–485

    Article  Google Scholar 

  2. Denoeux T, Kanjanatarakul O, Sriboonchitta S (2015) Ek-nnclus: A clustering procedure based on the evidential k-nearest neighbor rule. Knowl-Based Syst 88:57–69

    Article  Google Scholar 

  3. Zhang J, Lin Y, Lin M, Liu J (2016) An effective collaborative filtering algorithm based on user preference clustering. Appl Intell 1–11

  4. Wahyu A, Purwarianti A, Le HS (2015) Fuzzy geographically weighted clustering using artificial bee colony: an efficient geo-demographic analysis algorithm and applications to the analysis of crime behavior in population. Appl Intell 43(2):1–22

    Google Scholar 

  5. Bdiri T, Bouguila N, Ziou D (2016) Variational bayesian inference for infinite generalized inverted dirichlet mixtures with feature selection and its application to clustering. Appl Intell 44(3):507–525

    Article  Google Scholar 

  6. Adamek M, Spohn M, Stegmann E, Ziemert N (2017) Mining bacterial genomes for secondary metabolite gene clusters. In: Antibiotics. Springer

  7. Hung T-Y, Vaikundam S, Natarajan V, Chia L-T (2017) Phase fourier reconstruction for anomaly detection on metal surface using salient irregularity, MultiMedia Modeling, MMM. Lecture notes in computer science, vol 10132. Springer, Cham

    Google Scholar 

  8. Beauchemin M (2015) A density-based similarity matrix construction for spectral clustering. Neurocomputing 151(Part 2):835– 844

    Article  Google Scholar 

  9. Wu J, Wang F, Xiang P (2016) Automatic network clustering via density-constrained optimization with grouping operator. Appl Soft Comput 38:606–616

    Article  Google Scholar 

  10. Abdullah M, Eldin HN, Al-Moshadak T, Alshaik R, Al-Anesi I (2015) Density grid-based clustering for wireless sensors networks. Proced Comput Sci 65:35–47. International conference on communications, management, and information technology (ICCMIT’2015)

    Article  Google Scholar 

  11. Zhao Q, Shi Y, Liu Q, Franti P (2015) A grid-growing clustering algorithm for geo-spatial data. Pattern Recogn Lett 53:77–84

    Article  Google Scholar 

  12. Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques: concepts and techniques. Elsevier

  13. Ester M, Kriegel HP, Sander J, Xu X A density-based algorithm for discovering clusters in large spatial databases with noise

  14. Cassisi C, Ferro A, Giugno R, Pigola G, Pulvirenti A (2013) Enhancing density-based clustering: parameter reduction and outlier detection. Inf Syst 38(3):317–330

    Article  Google Scholar 

  15. Lv Y, Ma T, Tang M, Cao J, Tian Y, Al-Dhelaan A, Al-Rodhaan M (2016) An efficient and scalable density-based clustering algorithm for datasets with complex structures. Neurocomputing 171:9–22

    Article  Google Scholar 

  16. Rastin P, Zhang T, Cabanes G A new clustering algorithm for dynamic data. Neural Inf Process

  17. Wang P, Liu S, Liu M, Wang Q, Wang J, Zhang C The improved dbscan algorithm study on maize purity identification. Comput Comput Technol Agri V

  18. Rodriguez A, Laio A (2014) Machine learning. Clustering by fast search and find of density peaks. Science 344(6191):1492–6

    Article  Google Scholar 

  19. He Y, Tan H, Luo W, Feng S, Fan J (2014) Mr-dbscan: a scalable mapreduce-based dbscan algorithm for heavily skewed data. Front Comput Sci 8(1):83

    Article  MathSciNet  Google Scholar 

  20. Li Y, Guo C, Shi R, Liu X, Mei Y Dbscan-m: an intelligent clustering algorithm based on mutual reinforcement. Algor Arch Parallel Process

  21. Soleimani BH, Matwin S, Souza EN A density-penalized distance measure for clustering. Adv Artif Intell

  22. Yuan H, Wang S, Yu Y, Zhong M Dappfc: density-based affinity propagation for parameter free clustering. Adv Data Min Appl

  23. Zhang Y, Wang X, Li B, Chen W, Wang T, Lei K Dboost: a fast algorithm for dbscan-based clustering on high dimensional data. Adv Knowl Discovert Data Min

  24. Akbari Z, Unland R Automated determination of the input parameter of dbscan based on outlier detection. Artif Intell Appl Innov

  25. Ienco D, Bordogna G (2016) Fuzzy extensions of the dbscan clustering algorithm. Soft Comput 1

  26. Xia C, Hsu W, Lee M L, Ooi BC (2006) Border: efficient computation of boundary points. IEEE Trans Knowl Data Engi 18(3):289–303

    Article  Google Scholar 

  27. Lin K-M, Ehrgott M, Raith A (2016) Integrating column generation in a method to compute a discrete representation of the non-dominated set of multi-objective linear programmes. 4OR:1

  28. Mély DA, Serre T (2017) Towards a theory of computation in the visual cortex. In: Computational and cognitive neuroscience of vision. Springer

  29. Hsu CM, Chen MS (2004) Subspace clustering of high dimensional spatial data with noises. In: Advances in knowledge discovery and data mining. Springer, pp 31–40

  30. Chang CC, Lin CJ (2007) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3, article 27):389–396

    Google Scholar 

  31. Abdolrazzaghi M, Hashemy S, Abdolali A (2016) Fast-forward solver for inhomogeneous media using machine learning methods: artificial neural network, support vector machine and fuzzy logic. Neural Comput Appl 1

  32. Lin H, Deng JD, Woodford BJ Shot boundary detection using multi-instance incremental and decremental one-class support vector machine. Adv Knowl Discov Data Min

  33. Zhu F, Yang J, Xu S, Gao C, Ye N, Yin T (2016) Relative density degree induced boundary detection for one-class svm. Soft Comput 20(11):4473

    Article  Google Scholar 

  34. Catoni O (2015) Pac-bayes bounds for supervised classification. In: Measures of complexity. Springer

  35. Li X, Wang B, Liu Y, Lee TS (2015) Stochastic feature mapping for pac-bayes classification. Mach Learn 101(1–3):5

    Article  MathSciNet  MATH  Google Scholar 

  36. Jiang Y, Liu X (2016) Experimental and numerical investigation of density current over macro roughness. Environ Fluid Mech 1

  37. Lemon J, Kockara S, Halic T, Mete M (2015) Density-based parallel skin lesion border detection with webcl. BMC Bioinf 16(13):1

    Google Scholar 

  38. Qiu BZ, Yue F, Shen JY (2007) Brim: an efficient boundary points detecting algorithm. In: Advances in knowledge discovery and data mining. Springer, pp 761–768

  39. Xue LX, Qiu BZ (2009) Boundary points detection algorithm based on coefficient of variation. Pattern Recog Artif Intell 22(5):799–802

    Google Scholar 

  40. Qiu BZ, Yang Y, Du XW (2012) Brink: an algorithm of boundary points of clusters detecton based on local qualitative factors. J Zhengzhou Univ (Eng Sci) 33(3):117–120

    MathSciNet  Google Scholar 

  41. Qiu BZ, Yang Y, Geng P (2015) Clustering boundary detection technology for mixed attribute dataset. Control Decis 1:171–175

    Google Scholar 

  42. Gallier J (2011) Basics of affine geometry. In: Geometric methods and applications. Springer, pp 7–63

  43. Rockafellar RT (2015) Convex analysis. Princeton University Press

  44. Xia SY, Xiong ZY, He Y (2014) Relative density-based classification noise detection. Optik 125:6829–6834

    Article  Google Scholar 

  45. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  46. Ritter GX, Urcid G, Schmalz MS (2009) Autonomous single-pass endmember approximation using lattice auto-associative memories. Neurocomputing 72(10):2101–2110

    Article  Google Scholar 

  47. Karypis G, Han EH, Kumar V (1999) Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8):68–75

    Article  Google Scholar 

  48. Lécun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  49. He S, Yang Q, Lau RWH, Yang MH (2015) Fast weighted histograms for bilateral filtering and nearest neighbor searching. IEEE Trans Circ Syst Vid Technol PP(99):1

    Google Scholar 

  50. Liu SG, Wei YW (2015) Fast nearest neighbor searching based on improved vp-tree. Pattern Recogn Lett 60(C):8–15

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic and Advanced Technology Research Project of Henan Province (Grant No. 152300410191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Han, Q. & Qiu, B. A clustering algorithm with affine space-based boundary detection. Appl Intell 48, 432–444 (2018). https://doi.org/10.1007/s10489-017-0979-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0979-z

Keywords

Navigation