Skip to main content
Log in

A space transformational invasive weed optimization for solving fixed-point problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Real life problems are used as benchmarks to evaluate the performance of existing, improved and modified evolutionary algorithms. In this paper, we propose a new hybrid method, namely SIWO, by embedding space transformation search (STS) into invasive weed optimization to solve complex fixed-point problems. Invasive weed optimization suffers from premature convergence when solving complex optimization problems. Using STS transforms the current search space into a new search space by simultaneously evaluating solutions in the current and transformed spaces. This increases the probability that a solution is closer to the global optimum. Therefore, we can avoid premature convergence and the convergence speed is also increased. To evaluate the performance of SIWO, four complex fixed-point problems are chosen from the literature. Our findings demonstrate that SIWO can solve complex fixed-point problems with great precision. Moreover, the numerical results demonstrate that SIWO is an effective and efficient algorithm compared with some state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abu-Al-Nadi D, Alsmadi O, Abo-Hammour Z, Hawa M, Rahhal J (2013) Invasive weed optimization for model order reduction of linear MIMO systems. Appl Math Model 37:4570–4577

    Article  MathSciNet  Google Scholar 

  2. Ahmadi M, Mojallali H (2012) Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems. Chaos, Solitons Fractals 45:1108–1120

    Article  MathSciNet  Google Scholar 

  3. Barisal AK, Prusty RC (2015) Large scale economic dispatch of power systems using oppositional invasive weed optimization. Appl Soft Comput 29:122–137

    Article  Google Scholar 

  4. Basak A, Maity D, Das S (2013) A differential invasive weed optimization algorithm for improved global numerical optimization. Appl Math Comput 219(12):6645–6668

    MathSciNet  MATH  Google Scholar 

  5. Basak A, Pal S, Das S, Abraham A (2010) Circular antenna array synthesis with a differential invasive weed optimization algorithm. In: 10th international conference on hybrid artificial intelligence systems, Atlanta, pp 153–158

  6. Canayaz M, Karc A (2016) Cricket behaviour-based evolutionary computation technique in solving engineering optimization problems. Appl Intell 44:362–376

    Article  Google Scholar 

  7. Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. In: Yang Q, Webb G (eds) PRICAI 2006 LNCS (LNAI), vol 4099. Springer, Heidelberg, pp 854–858

    Google Scholar 

  8. Dadalipour B, Mallahzadeh B, Davoodi-Rad Z (2008) Application of the invasive weed optimization technique for antenna configurations. In: 2008 Loughborough antennas and propagation conference, pp 425–428

    Chapter  Google Scholar 

  9. Das KN, Singh TK (2014) Drosophila food-search optimization algorithm. Appl Math Comput 231:566–580

    MathSciNet  Google Scholar 

  10. Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Article  Google Scholar 

  11. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166

    Article  Google Scholar 

  12. Eusuff M, Lansey K, Pasha Fayzul (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154. doi:10.1080/03052150500384759

    Article  MathSciNet  Google Scholar 

  13. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghasemi M, Ghavidel S, Aghaei J, Gitizadeh M, Falah H (2014) Application of chaos based chaotic invasive weed optimization techniques for environmental OPF problems in the power system. Chaos, Solitons Fractals 69:271–284

    Article  MATH  Google Scholar 

  15. Javidy B, Hatamloua A, Mirjalili S (2015) Ions motion algorithm for solving optimization problems. Appl Soft Comput 32:72–79

    Article  Google Scholar 

  16. Karimkashi S, Kishk AA (2010) Invasive weed optimization and its features in electromagnetic. IEEE Trans Antennas Propag 58(4):1269–1278

    Article  Google Scholar 

  17. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Piscataway, NJ, pp 1942–1948

  18. Li X, Zhang J, Yin M (2013) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24:1867–1877

    Article  Google Scholar 

  19. Mansouri P, Asady B, Gupta N (2015) The bisection–artificial Bee Colony algorithm to solve fixed point problems. Appl Soft Comput 26:143–148

    Article  Google Scholar 

  20. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366

    Article  Google Scholar 

  21. Mehrabian AR, Yousefi-Koma A (2007) Optimal positioning of piezoelectric actuators on a smart fin using bio-inspired algorithms. Aerosp Sci Technol 11:174–182

    Article  Google Scholar 

  22. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  23. Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  24. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  25. Mirjalili S (2016) SCA: A sine cosine algorithm For solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  26. Nikoofard AH, Hajimirsadeghi H, Rahimi-Kian A, Lucas C (2012) Multiobjective invasive weed optimization: Application to analysis of Pareto improvement models in electricity markets. Appl Soft Comput 12:100–112

    Article  Google Scholar 

  27. Pahlavania P, Delavara MR, Frankb AU (2012) Using a modified invasive weed optimization algorithm for a personalized urban multi-criteria path optimization problem. Int J Appl Earth Obs Geoinf 18:313–328

    Article  Google Scholar 

  28. Pourjafari E, Mojallali H (2012) Solving nonlinear equations systems with a new approach based on invasive weed optimization algorithm and clustering. Swarm Evol Comput 4:33–43

    Article  Google Scholar 

  29. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: A gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  30. Saravanan B, Vasudevan ER, Kothari DP (2014) Unit commitment problem solution using invasive weed optimization algorithm. Electr Power Energy Syst 55:21–28

    Article  Google Scholar 

  31. Sudha Rani D, Subrahmanyam N, Sydulu M (2015) Multi-objective Invasive Weed Optimization – An application to optimal network reconfiguration in radial distribution systems. Electr Power Energy Syst 73:932–942

    Article  Google Scholar 

  32. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: Proceedings international conference on computational intelligence for modelling control and automation, CIMCA2005, vol 1. Vienna, Austria, pp 695–701

  33. Vivek KP, Vimal JS (2015) Heat transfer search (HTS): a novel optimization algorithm. Inf Sci 324:217–246

    Article  Google Scholar 

  34. Wang H, Wu Z, Liu Y, Wang J, Jiang D, Chen L (2009) Space transformation search: a new evolutionary technique. In: Proceedings world summit genetic evolutionary computation, pp 537–544

    Google Scholar 

  35. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Article  Google Scholar 

  36. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications. Springer, pp 169–178

  37. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: World congress on nature & biologically inspired computing, NaBIC. IEEE, pp 210–214

  38. Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation. Springer, pp 240–249

  39. Yazdani M, Jolai Fariborz (2016) Lion optimization algorithm (LOA): A nature-inspired metaheuristic algorithm. J Comput Design Eng 3:24–36

    Article  Google Scholar 

  40. Yi W, Gao L, Li X, Zhou Y (2015) A new differential evolution algorithm with a hybrid mutation operator and self-adapting control parameters for global optimization problems. Appl Intel 42:642–660

    Article  Google Scholar 

  41. Zhang X, Wang Y, Cui G, Niu Y, Xu J (2009) Application of a novel IWO to the design of encoding sequences for DNA computing. Comput Math Appl 57:2001–2008

    Article  Google Scholar 

  42. Zhou Y, Chen H, Zhou G (2014) Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem. Neurocomputing 137:285–292

    Article  Google Scholar 

  43. Zhou Y, Luo Q, Chen H, He A, Wu J (2015) A discrete invasive weed optimization algorithm for solving traveling salesman problem. Neurocomputing 151:1227–1236

    Article  Google Scholar 

  44. Zhou Y, Luo Q, Huan C (2013) A novel differential evolution invasive weed optimization algorithm for solving nonlinear equations systems. J Appl Math. doi:10.1155/2013/757391

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ramu Naidu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidu, Y.R., Ojha, A.K. A space transformational invasive weed optimization for solving fixed-point problems. Appl Intell 48, 942–952 (2018). https://doi.org/10.1007/s10489-017-1021-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1021-1

Keywords

Navigation