Skip to main content

Advertisement

Log in

Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Expert’s knowledge base systems are not effective as a decision-making aid for physicians in providing accurate diagnosis and treatment of heart diseases due to vagueness in information and impreciseness and uncertainty in decision making. For this reason, automatic diagnostic fuzzy systems are very time demanding to improve the diagnostic accuracy. In this paper, we have developed an automatic fuzzy diagnostic system based on genetic algorithm (GA) and a modified dynamic multi-swarm particle swarm optimization (MDMS-PSO) for prognosticating the risk level of heart disease. Our proposed fuzzy diagnostic system (FS) works as follows: i) Preprocess the data sets ii) Effective attributes are selected through statistical methods such as Correlation coefficient, R-Squared and Weighted Least Squared (WLS) method, iii) Weighted fuzzy rules are formed on the basis of selected attributes using GA, iv) MDMS-PSO is employed for the optimization of membership functions (MFs) of FS, v) Build the ensemble FS from the generated fuzzy knowledge base by fusing the different local FSs. Finally, to ascertain the efficiency of the adaptive FS, the applicability of the FS is appraised with quantitative, qualitative and comparative analysis on the publicly available different real-life data sets. From the empirical analysis, we see that this hybrid model can manage the knowledge vagueness and decision-making uncertainty precisely and it has yielded better accuracy on the different publicly available heart disease data sets than other existing methods so that it justifies its adaptability with different data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alayón S, Robertson R, Warfield SK, Ruiz-Alzola J (2007) A fuzzy system for helping medical diagnosis of malformations of cortical development. J Biomed Inform 40(3):221–235. https://doi.org/10.1016/j.jbi.2006.11.002

    Article  Google Scholar 

  2. Chen X, Wang Y, Zhen S, Huang K, Zhao H, Chen YH (2016) Robust control design of uncertain mechanical systems: a fuzzy approach. Intern J Uncert Fuz Knowl-Based Syst 24(2):307–324. https://doi.org/10.1142/S021848851650015X

    Article  MathSciNet  MATH  Google Scholar 

  3. Saeed S, Niknafs A (2016) Artificial bee colony-fuzzy q learning for reinforcement fuzzy control (truck backer-upper control problem). Intern J Uncert Fuz Knowl-Based Syst 24(1):123–136. https://doi.org/10.1142/S0218488516500070

    Article  MathSciNet  Google Scholar 

  4. Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller - Part 1. https://doi.org/10.1109/21.52552

  5. Stavrakoudis DG, Theocharis JB (2012) Handling highly-dimensional classification tasks with hierarchical genetic fuzzy rule-based classifiers. Intern J Uncert Fuz Knowl-Based Syst 20(supp02):73–104. https://doi.org/10.1142/S0218488512400168

    Article  Google Scholar 

  6. Bahrami B, Shafiee M (2015) Fuzzy descriptor models for earthquake time prediction using seismic time series. Intern J Uncert Fuz Knowl-Based Syst 23(4):505–519. https://doi.org/10.1142/S0218488515500221

    Article  MathSciNet  Google Scholar 

  7. Tay K, Lim C (2011) On monotonic sufficient conditions of fuzzy inference systems and their applications. Intern J Uncert Fuz Knowl-Based Syst 19(5):731–757. https://doi.org/10.1142/S0218488511007210

    Article  MathSciNet  MATH  Google Scholar 

  8. Kubota N, Yaguchi A (2011) Decision making of robot partners based on fuzzy control and boltzmann selection. Intern J Uncert Fuz Knowl-Based Syst 19(3):529–545. https://doi.org/10.1142/S0218488511007118

    Article  Google Scholar 

  9. Zulueta Y, MartÍNez-Moreno J, PÉRez RB, MartÍNez L (2014) A discrete time variable index for supporting dynamic multi-criteria decision making. Intern J Uncert Fuz Knowl-Based Syst 22(1):1–22. https://doi.org/10.1142/S0218488514500019

    Article  MathSciNet  MATH  Google Scholar 

  10. Bustince H, Barrenechea E, Pagola M (2007) Image thresholding using restricted equivalence functions and maximizing the measures of similarity. Fuzzy Sets Syst 158(5):496–516. https://doi.org/10.1016/j.fss.2006.09.012

    Article  MathSciNet  MATH  Google Scholar 

  11. Khatibi V, Montazer GA (2009) Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition. Artif Intell Med 47(1):43–52. https://doi.org/10.1016/j.artmed.2009.03.002

    Article  Google Scholar 

  12. Adeli A, Neshat M (2010) A fuzzy expert system for heart disease diagnosis. In: Proceedings of the international multi-conference of engineers and computer scientists, vol I, pp 1–6

  13. Ephzibah EP, Sundarapandian V (2012) A neuro fuzzy expert system for heart disease diagnosis. Computer Science & Engineering: An International Journal (CSEIJ) 2(1):17

    Google Scholar 

  14. Saravanakumar S, Rinesh S (2014) Effective heart disease prediction using frequent feature selection method. J Innov Res Comput Commun Eng 2(1):2767–2774

    Google Scholar 

  15. Wisaeng K (2014) Predict the diagnosis of heart disease using feature selection and k-nearest neighbor algorithm. Appl Math Sci 8(83):4103–4113. https://doi.org/10.12988/ams.2014.45382

    Google Scholar 

  16. Xu Y, Pan X, Zhou Z, Yang Z, Zhang Y (2015) Structural least square twin support vector machine for classification. Appl Intell 42(3):527–536. https://doi.org/10.1007/s10489-014-0611-4

    Article  Google Scholar 

  17. Delgado M (2003) Mining fuzzy association rules : an overview. In: BISC conference, december, pp 397–410 https://doi.org/10.1145/266714.266898

  18. Duch W, Adamczak R, Grabczewski K (2001) A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Trans Neural Netw 12(2):277–306. https://doi.org/10.1109/72.914524

    Article  Google Scholar 

  19. Straszecka E (2006) Combining uncertainty and imprecision in models of medical diagnosis. Inf Sci 176 (20):3026–3059. https://doi.org/10.1016/j.ins.2005.12.006

    Article  MathSciNet  Google Scholar 

  20. Detrano R, Janosi A, Steinbrunn W, Pfisterer M, Schmid JJ, Sandhu S, Guppy KH, Lee S, Froelicher V (1989) International application of a new probability algorithm for the diagnosis of coronary artery disease. Am J Cardio 64(5):304–310. https://doi.org/10.1016/0002-9149(89)90524-9

    Article  Google Scholar 

  21. Cheung N (2001) Machine learning techniques for medical analysis. School of Information Technology and Electrical Engineering, BSc Thesis, University of Queenland

  22. Das R, Turkoglu I, Sengur A (2009) Effective diagnosis of heart disease through neural networks ensembles. Expert Syst Appl 36(4):7675–7680. https://doi.org/10.1016/j.eswa.2008.09.013

    Article  Google Scholar 

  23. Polat K, Sahan S, Günes S (2006) A new method to medical diagnosis: artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia. Expert Syst Appl 31(2):264–269. https://doi.org/10.1016/j.eswa.2005.09.019

    Article  Google Scholar 

  24. Polat K, Sahan S, Günes S (2007) Automatic detection of heart disease using an artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism and k-nn (nearest neighbour) based weighting preprocessing. Expert Syst Appl 32(2):625–631. https://doi.org/10.1016/j.eswa.2006.01.027

    Article  Google Scholar 

  25. El-Bialy R, Salamay MA, Karam OH, Khalifa ME (2015) Feature analysis of coronary artery heart disease data sets. Procedia Comput Sci 65:459–468. https://doi.org/10.1016/j.procs.2015.09.132

    Article  Google Scholar 

  26. Rout S (2012) Fuzzy petri net application: heart disease diagnosis

  27. Khatibi V, Montazer GA (2010) A fuzzy-evidential hybrid inference engine for coronary heart disease risk assessment. Expert Syst Appl 37(12):8536–8542. https://doi.org/10.1016/j.eswa.2010.05.022

    Article  Google Scholar 

  28. Tsipouras MG, Exarchos TP, Fotiadis DI, Kotsia AP, Vakalis KV, Naka KK, Michalis LK (2008) Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling. IEEE Transactions on Information Technology in Biomedicine : A Publication of the IEEE Engineering in Medicine and Biology Society 12(4):447–458. https://doi.org/10.1109/TITB.2007.907985

    Article  Google Scholar 

  29. Anooj P (2012) Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules. Journal of King Saud University - Computer and Information Sciences 24 (1):27–40. https://doi.org/10.1016/j.jksuci.2011.09.002

    Article  Google Scholar 

  30. Kahramanli H, Allahverdi N (2008) Design of a hybrid system for the diabetes and heart diseases. Expert Syst Appl 35(1-2):82–89. https://doi.org/10.1016/j.eswa.2007.06.004

    Article  Google Scholar 

  31. Kusy M, Zajdel R (2014) Probabilistic neural network training procedure based on q(0)-learning algorithm in medical data classification. Appl Intell 41(3):837–854. https://doi.org/10.1007/s10489-014-0562-9

    Article  Google Scholar 

  32. Ephzibah EP (2011) A hybrid genetic-fuzzy expert system for effective heart disease diagnosis. In: Communications in computer and information science, vol 198 CCIS. pp 115–121, https://doi.org/10.1007/978-3-642-22555-0_13

  33. tuz jakirin S, Ferdaus AA, Khan MA (2014) A genetic algorithm approach using improved fitness function for classification rule mining. Int J Comput Appl 97(23):12–18

    Google Scholar 

  34. Mankad K, Sajja PS, Akerkar R (2011) Evolving rules using genetic fuzzy approach - an educational case study. International Journal on Soft Computing (IJSC) 2(1):35–46

    Article  Google Scholar 

  35. Alcala R, Alcala-Fdez J, Herrera F (2007) A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans Fuzzy Syst 15(4):616–635. https://doi.org/10.1109/TFUZZ.2006.889880

    Article  MATH  Google Scholar 

  36. Chandra Debnath SB, Chandra Shill P, Murase K (2013) Particle swarm optimization based adaptive strategy for tuning of fuzzy logic controller. Int J Artif Intell Appl 4(1):37–50. https://doi.org/10.5121/ijaia.2013.4104

    Google Scholar 

  37. Vaneshani S, Jazayeri-rad H (2011) Optimized fuzzy control by particle swarm optimization technique for control of CSTR. Intern J Comput Elect Autom Control Inform Eng 5(11):686–691

    Google Scholar 

  38. Das D, Ghosh A (2013) Algorithm for a PSO tuned fuzzy controller of a DC motor. Int J Comput Appl 73(4):37–41

    Google Scholar 

  39. Permana KE, Hashim SZM (2010) Fuzzy membership function generation using particle swarm optimization. International Journal of Open Problems in Computer Science and Mathematics IJOPCM 3(1):27–41

    MATH  Google Scholar 

  40. Fang G, Kwok NM, Ha Q (2008) Automatic fuzzy membership function tuning using the particle swarm optimization. In: 2008 IEEE pacific-asia workshop on computational intelligence and industrial application, vol 2. IEEE, pp 324–328 https://doi.org/10.1109/PACIIA.2008.105

  41. Bastian A (1994) How to handle the flexibility of linguistic variables with applications. Intern J Uncert Fuz Knowl-Based Syst 2(4):463–484. https://doi.org/10.1142/S0218488594000365

    Article  MathSciNet  MATH  Google Scholar 

  42. (1988-07-01(Accessed december 7, 2015)) UCI machine learning repository: heart disease data set. http://archive.ics.uci.edu/ml/datasets/Heart+Disease

  43. (Accessed december 7, 2015) uci machine learning repository: Statlog (heart) data set. http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)

  44. Han J, Kamber M, Pei J (2012) Data mining concepts and techniques, 3rd edn

  45. Jilani T, Yasin H, Yasin M, Ardil C (2009) Acute coronary syndrome prediction using data mining techniques-an application. In: World academy of science, pp 474–478

  46. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  47. (Accessed december 7, 2015) Coefficient of determination - Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Coefficient_of_determination

  48. (Accessed december 7, 2015) Least squares - Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Least_squares#Weighted_least_squares

  49. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs (3rd ed.), vol 1. https://doi.org/10.2307/2669583

  50. Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarm optimizer. In: Proceedings - 2005 IEEE swarm intelligence symposium, SIS 2005, pp 127–132 https://doi.org/10.1109/SIS.2005.1501611

  51. Mohebbi H, Mu Y, Ding W (2017) Learning weighted distance metric from group level information and its parallel implementation. Appl Intell 46(1):180–196. https://doi.org/10.1007/s10489-016-0826-7

    Article  Google Scholar 

  52. Polat K, Günes S (2009) A new feature selection method on classification of medical datasets: Kernel f-score feature selection. Expert Syst Appl 36(7):10,367–10,373. https://doi.org/10.1016/j.eswa.2009.01.041

    Article  Google Scholar 

  53. Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 15:3133–3181

    MathSciNet  MATH  Google Scholar 

  54. Polat K, Günes S, Tosun S (2006) Diagnosis of heart disease using artificial immune recognition system and fuzzy weighted pre-processing. Pattern Recogn 39(11):2186–2193. https://doi.org/10.1016/j.patcog.2006.05.028

    Article  Google Scholar 

  55. Kukar M, Kononenko I, Grošelj C, Kralj K, Fettich J (1999) Analysing and improving the diagnosis of ischaemic heart disease with machine learning. Artif Intell Med 16(1):25–50. https://doi.org/10.1016/S0933-3657(98)00063-3

    Article  Google Scholar 

  56. Akay M (1992) Noninvasive diagnosis of coronary artery disease using a neural network algorithm. Biol Cybern 67(4):361–7

    Article  Google Scholar 

  57. Gennari JH, Langley P, Fisher D (1989) Models of incremental concept formation. Artif Intell 40(1-3):11–61. https://doi.org/10.1016/0004-3702(89)90046-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Kumar Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A., Shill, P., Rabin, M. et al. Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease. Appl Intell 48, 1739–1756 (2018). https://doi.org/10.1007/s10489-017-1037-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1037-6

Keywords

Navigation