Skip to main content

Advertisement

Log in

Modified collective decision optimization algorithm with application in trajectory planning of UAV

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Recently, a new heuristic method called collective decision optimization algorithm (CDOA) was proposed. This paradigm is inspired from the decision-making behaviour of human beings, including the different factors influencing the decisions, such as experience, opinion of others, group thinking, opinion of the leader, and innovation. However, the original version of the algorithm concentrated only on a fixed evolution order. This study introduces an extended version of the CDOA (ECDOA) for the evolution mechanism without making any major conceptual change to its architecture. In ECDOA, all the agents break the bonds of the original operator sequence. With the exception of the innovation operator, all the other operators are initially stored in an external archive, and then each agent combines at least one randomly selected operator from this archive with an innovation operator to create new update orders. This method not only provides more calculation sequences in each iteration, but also generates more promising candidate solutions. In addition, several operators are further modified to improve the optimization abilities. A comprehensive set of modern benchmark functions and UAV path planning are required to verify the effectiveness of the ECDOA thoroughly. The results of the series-simulation comparison, which simultaneously consider both the convergence and accuracy, indicate that ECDOA is more effective and feasible than the other state-of-art optimization paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ye W, Fan H D (2007) Research on mission planning system key techniques of UCAV. J Naval Aeronaut Eng Inst 22(2):201–207

    Google Scholar 

  2. Zheng C W, Li L, Xu F J (2005) Evolutionary route planner for unmanned air vehicles. IEEE T Robot 21(4):609–620

    Article  Google Scholar 

  3. Wang Y X, Chen Z J (1999) Genetic algorithms (GA) based flight path planning with constraints. J Beijing Univ Aeronaut Astronaut (China) 25(3):355–358

    Google Scholar 

  4. Ma G J, Duan H B, Liu S Q (2007) Improved ant colony algorithm for global optimal trajectory planning of UAV under complex environment. Int J Comput Sci Appl 4(3):57–68

    Google Scholar 

  5. McLain T W, Beard R W (2000) Trajectory planning for coordinated rendezvous of unmanned air vehicles. In: AIAA Guidance, navigation, and control conference and exhibit, pp 4369-4372

  6. Yang X S (2010) Nature-inspired metaheuristic algorithms, 2nd ed. Luniver Press

  7. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Article  Google Scholar 

  8. Lee K S, Geem Z W (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36):3902–3933

    Article  MATH  Google Scholar 

  9. Holland J H (1975) Adaptation in natural and artificial systems. University of Michigan Press, The MIT Press, London, p 1975

    Google Scholar 

  10. Mirjalili S, Mirjalili S M, Lewis A (2014) Let a biogeograph-based optimizer train your Multi-layer perceptron. Inform Sci 269:188–209

    Article  MathSciNet  Google Scholar 

  11. Askarzadeh A (2014) Bird mating optimizer: an optimization algorithm inspired by bird mating strategies. Commun Nonlinear Sci Numer Simul 19(4):1213–1228

    Article  MathSciNet  Google Scholar 

  12. Eberhart R C, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43

  13. He S, Wu Q H, Saunders J R (2009) Group search optimizer: an optimization algorithm inspired by animal search behavior. IEEE Trans Evol Comput 13(5):973–990

    Article  Google Scholar 

  14. Yang X S, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Modell Numer Optim 1 (4):330–343

    MATH  Google Scholar 

  15. Yang X S (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29 (5):464–493

    Article  Google Scholar 

  16. Mirjalili S, Lewis A (2016) The Whale optimization algorithm. Adv Eng softw 95:51–67

    Article  Google Scholar 

  17. Fister I, Jr I F, Yang X S, Brest J (2013) A comprehensivereviewof firefly algorithms. Swarm Evol Comput 13:34–46

    Article  Google Scholar 

  18. Kirkpatrick S, Gelatt C D (1983) Optimization by simmulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang Q Y, Wang L, Hei X H (2015) Parameter identification of chaotic systems using artificial raindrop algorithm. J Comput Sci 8:20–31

    Article  MathSciNet  Google Scholar 

  20. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inform Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  21. Mirjalili S, Mirjalili S M, Hatamlou A (2016) Multi-verse optimzer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  22. Zhang Q Y, Wang R G, Yang J, Ding K, Li Y F, Hu J G (2017) Collective decision optimization algorithm: a new heuristic optimization method. Neurocomputing 221(19):123–137

    Article  Google Scholar 

  23. Hogarth R M, Soyer E (2011) Sequentially simulated outcomes: kind experience versus nontransparent description. J Exp Psychol Gen 140(3):434–463

    Article  Google Scholar 

  24. Koritzky G, Yechiam E (2010) On the robustness of description and experience based decision tasks to social desirability. J Behav Decis Making 23(1):83–99

    Article  Google Scholar 

  25. Nitzan S, Paroush J (1985) Collective decision making: an economic outlook. Cambridge University press, UK, p 1985

    Google Scholar 

  26. Karotkin D, Nitzan S (1997) On two properties of the marginal contribution of individual decisional skills. Math Soc Sci 34(1):29–36

    Article  MathSciNet  MATH  Google Scholar 

  27. Barron G, Erev I (2003) Small feedback-based decisions and their limited correspondence to description-based decisions. J Behav Decis Making 16(3):215–233

    Article  Google Scholar 

  28. Aldag R J, Fuller S R (1993) Beyond fiasco: a reappraisal of the groupthink phenomenon and a new model of group decision processes. Psychol Bull 113(3):533–552

    Article  Google Scholar 

  29. Janis I L (1974) Victims of groupthink: a psychological study of foreign-policy decision and fiascoes. J Polit 36(1):218–220

    Article  Google Scholar 

  30. Mohamed A, Wiebe F (1996) Toward a process theory of groupthink. Small Group Res 27(3):416–430

    Article  Google Scholar 

  31. Nahavandi A (2006) The art and science of leadership. USA, p 2006

  32. Hoy W K, Tarter C J (2010) Swift and smart decision making: heuristics that work. Int J Educ Manag 24 (4):351–358

    Article  Google Scholar 

  33. McHugh K A, Yammarino F J, Dionne S D, Serban A, Sayama H, Chatterjee S (2016) Collective decision making, leadership, and collective intelligence: tests with agent-based simulations and a Field study. Leadersh Q 27(2):218–241

    Article  Google Scholar 

  34. Frederic A, Patrick B, Sven C, Patrick H (2006) Creativity and innovation in decision making and decision support. London, p 2006

  35. Gutierrez E, Olundh Sandstrom G, Janhager J, Ritzen S (2008) Innovation and decision making: understanding selection and prioritization of development projects. In: The proceedings of the 2008 IEEE international conference on management of innovation and technology, ICMIT’08. IEEE, pp 333–338

  36. Du J, Love James H, Roper S. (2007) The innovation decision: an economic analysis. Technovation 27:766–773

    Article  Google Scholar 

  37. Liang J, Qu B Y, Suganthan P N (2013) Problem definitions and evaluation criteria for the CEC2014 special session and competition on single objective real-parameter numerical optimization Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore Special Session Competition on Real-Parameter Single Objective, (Expensive) Optimization. Technical Report

  38. Wang Y, Cai Z X, Zhang Q F (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

  39. Liang J J, Qin A K, Suganthan P N, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  40. Ahmed S T, Amr A B, Ibrahim F A R (2013) One rank cuckoo search algorithm with application to algorithmic trading systems optimization. Int J Comput Appl 4(6):30–37

    Google Scholar 

  41. Sun J, Xu W B, Feng B (2004) A global search strategy of quantum-behaved particle swarm optimization. In: IEEE Conference on cybernetics and intelligent systems. IEEE, pp 111–116

  42. Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25 (7):1569–1584

    Article  Google Scholar 

  43. Mendes R, Kennedy J, Neves J (2004) The fully in formed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210

    Article  Google Scholar 

  44. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3 (2):82–102

    Article  Google Scholar 

  45. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: IEEE Congress on evolutionary computation. IEEE, pp 1671-1676

  46. Wang L, Zou F, Hei X H et al. (2014) An improved teaching-learning-basedoptimization with neighborhood search for applications of ANN. Neurocomputing 143(2):231–247

    Article  Google Scholar 

  47. Parsopoulos K E, Vrahatis M N (2004) UPSO ła unified particle swarm optimization. In: Lecture series on computational sciences, pp 868-873

  48. Duan H B, Li P (2014) Bio-inspired computation in unmanned aerial vehicles. Springer-Verlag, Berlin, p 2014

    Book  Google Scholar 

  49. Duan H B, Liu S Q, Wu J (2009) Novel intelligent water drops optimization approach to single UCAV smooth trajectory planning. Aerosp Sci Technol 13(8):442–449

    Article  Google Scholar 

  50. Duan H B, Yu Y X, Zhang X Y, Shao S (2010) Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm. Simul Model Prac Th 18(8):1104–1115

    Article  Google Scholar 

  51. Xu C F, Duan H B, Liu F (2010) Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning. Aerosp Sci Technol 14(8):535–541

    Article  Google Scholar 

  52. Duan H B, Zhang X Y, Xu C F (2011) Bio-inspired computing. Science Press, Beijing, p 2011

    Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to Dr. Xin-she Yang for providing the codes. The authors would also like to thank Dr. Q.Y. Jiang and the anonymous reviewers for their free-handed assistance and construction suggestions. This work is partly supported by the National Natural Science Foundation of China under Project code(61075032)and the Anhui Provincial Natural Science Foundation under Project code (J2014AKZR0055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyang Zhang.

Appendix: The brief descriptions of the CEC2014 benchmark functions

Appendix: The brief descriptions of the CEC2014 benchmark functions

Test function

Types

Optimum

f 1 : Rotated High Conditioned Elliptic Function

Unimodal

100

f 2 : Rotated Bent Cigar Function

 

200

f 3 : Rotated Discus Function

 

300

f 4 : Shifted and Rotated Rosenbrock’s Function

Simple Multimodal

400

f 5 : Shifted and Rotated Ackley’s Function

 

500

f 6 : Shifted and Rotated Weierstrass Function

 

600

f 7 : Shifted and Rotated Griewanks Function

 

700

f 8 : Shifted Rastrigins Function

 

800

f 9 : Shifted and Rotated Rastrigins Function

 

900

f 10 : Shifted Schwefels Function

 

1000

f 11 : Shifted and Rotated Schwefels Function

 

1100

f 12 : Shifted and Rotated Katsuura Function

 

1200

f 13 : Shifted and Rotated HappyCat Function

 

1300

f 14 : Shifted and Rotated HGBat Function

 

1400

f 15 : Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function

 

1500

f 16 : Shifted and Rotated Expanded Scaffer’s F6 Function

 

1600

f 17 : Hybrid Function 1 (N = 3)

Hybrid

1700

f 18 : Hybrid Function 2 (N = 3)

 

1800

f 19 : Hybrid Function 3 (N = 4)

 

1900

f 20 : Hybrid Function 4 (N = 4)

 

2000

f 21 : Hybrid Function 5 (N = 5)

 

2100

f 22 : Hybrid Function 6 (N = 5)

 

2200

f 23 : Composition Function 1 (N = 5)

Composition

2300

f 24 : Composition Function 2 (N = 3)

 

2400

f 25 : Composition Function 3 (N = 3)

 

2500

f 26 : Composition Function 4 (N = 5)

 

2600

f 27 : Composition Function 5 (N = 5)

 

2700

f 28 : Composition Function 6 (N = 5)

 

2800

f 29 : Composition Function 7 (N = 3)

 

2900

f 30 : Composition Function 8 (N = 3)

 

3000

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, R., Yang, J. et al. Modified collective decision optimization algorithm with application in trajectory planning of UAV. Appl Intell 48, 2328–2354 (2018). https://doi.org/10.1007/s10489-017-1082-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1082-1

Keywords

Navigation