Skip to main content
Log in

Electromagnetism-like mechanism with collective animal behavior for multimodal optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Evolutionary Computation Algorithms (ECA) are conceived as alternative methods for solving complex optimization problems through the search for the global optimum. Therefore, from a practical point of view, the acquisition of multiple promissory solutions is especially useful in engineering, since the global solution may not always be realizable due to several realistic constraints. Although ECAs perform well on the detection of the global solution, they are not suitable for finding multiple optima in a single execution due to their exploration-exploitation operators. This paper proposes a new algorithm called Collective Electromagnetism-like Optimization (CEMO). Under CEMO, a collective animal behavior is implemented as a memory mechanism simulating natural animal dominance over the population to extend the original Electromagnetism-like Optimization algorithm (EMO) operators to efficiently register and maintain all possible Optima in an optimization problem. The performance of the proposed CEMO is compared against several multimodal schemes over a set of benchmark functions considering the evaluation of multimodal performance indexes typically found in the literature. Experimental results are statistically validated to eliminate the random effect in the obtained solutions. The proposed method exhibits higher and more consistent performance against the rest of the tested multimodal techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yang X-S (2010) Wiley InterScience (Online service), Engineering optimization?: an introduction with metaheuristic applications. Wiley, New York

    Book  Google Scholar 

  2. Pardalos PM, Romeijn HE, Tuy H (2000) Recent developments and trends in global optimization. J Comput Appl Math 124:209–228

    Article  MathSciNet  MATH  Google Scholar 

  3. Floudas CA, Akrotirianakis IG, Caratzoulas S, Meyer CA, Kallrath J (2005) Global optimization in the 21st century: advances and challenges. Comput Chem Eng 29(6):1185–1202

    Article  Google Scholar 

  4. Cuevas E, Gálvez J, Hinojosa S, Avalos O, Zaldívar D, Pérez-cisneros M (2014) A comparison of evolutionary computation techniques for IIR model identification, vol 2014

  5. Lera D, Sergeyev YD (2010) Lipschitz and Hölder global optimization using space-filling curves. Appl Numer Math 160(1–2):115–129

    Article  MATH  Google Scholar 

  6. Holland JH (1975) Adaptation in natural and artificial systems. University Michigan Press, Ann Arbor

    Google Scholar 

  7. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  8. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, Comput. Eng. Dep. Eng. Fac. Erciyes University, Kayseri

    Google Scholar 

  9. Dorigo M, Stützle T (2003) The ant colony optimization metaheuristic: algorithms, applications, and advances. In: Handbook of metaheuristics boston: kluwer academic publishers, pp 250–285

  10. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings IEEE international conference on neural networks, vol 4, pp 1942–1948

  11. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: A gravitational search algorithm. Inf Sci (Ny) 179(13):2232–2248

    Article  MATH  Google Scholar 

  12. Birbil SI, Fang S-C (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25:263–282

    Article  MathSciNet  MATH  Google Scholar 

  13. Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  14. Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: Proceedings 8th international conference on parallel problem solving from nature - PPSN VIII, vol. 3242/2004, no 0, pp 282–291

  15. Das S, Maity S, Qu B-Y, Suganthan PN (2011) Real-parameter evolutionary multimodal optimization — A survey of the state-of-the-art. Swarm Evol Comput 1(2):71–88

    Article  Google Scholar 

  16. Wong K-C, Wu C-H, Mok RKP, Peng C, Zhang Z (2012) Evolutionary multimodal optimization using the principle of locality. Inf Sci (Ny) 194:138–170

    Article  Google Scholar 

  17. Jong D, Alan K (1975) An analysis of the behavior of a class of genetic adaptive systems. University of Michigan, Ann Arbor

    Google Scholar 

  18. Goldberg DE, Richardson I (1987) Genetic algorithm with sharing for multimodal function optimization. In: Proceedings 2nd international conference on generic algorithm, pp 41–49

  19. Petrowski A (1996) A clearing procedure as a niching method for genetic algorithms. In: Proceedings of IEEE international conference on evolutionary computation ICEC-96, pp 798–803

  20. Li J-P, Balazs ME, Parks GT, Clarkson PJ (2002) A species conserving genetic algorithm for multimodal function optimization. Evol Comput 10(3):207–234

    Article  Google Scholar 

  21. Thomsen R (2004) Multimodal optimization using crowding-based differential evolution. In: Proceedings of congress on evolutionary computation (CEC ’04), pp 1382–1389

  22. Vollmer DT, Soule T, Manic M (2010) A distance measure comparison to improve crowding in multi-modal optimization problems. In: Proceedings - ISRCS 2010 - 3rd international symposium on resilient control system, pp 31–36

  23. Mahfoud SW (1995) Niching methods for genetic algorithms, Ph.D. thesis

  24. Yazdani S, Nezamabadi-pour H, Kamyab S (2014) A gravitational search algorithm for multimodal optimization. Swarm Evol Comput 14:1–14

    Article  Google Scholar 

  25. Liang JJ, Qu BY, Mao XB, Niu B, Wang DY (2014) Differential evolution based on fitness Euclidean-distance ratio for multimodal optimization. Neurocomputing 137:252–260

    Article  Google Scholar 

  26. Biswas S, Das S, Kundu S, Patra GR (2014) Utilizing time-linkage property in DOPs: An information sharing based Artificial Bee Colony algorithm for tracking multiple optima in uncertain environments. Soft Comput 18(6):1199–1212

    Article  Google Scholar 

  27. Sacco WF, Henderson N, Rios-Coelho AC (2014) Topographical clearing differential evolution: A new method to solve multimodal optimization problems. Prog Nucl Energy 71:269–278

    Article  Google Scholar 

  28. Liang Y, Leung K-S (2011) Genetic Algorithm with adaptive elitist-population strategies for multimodal function optimization. Appl Soft Comput 11(2):2017–2034

    Article  Google Scholar 

  29. Gao W, Yen GG, Liu S (2014) A cluster-based differential evolution with self-adaptive strategy for multimodal optimization. IEEE Trans Cybern 44(8):1314–1327

    Article  Google Scholar 

  30. Ursem RK (1999) Multinational evolutionary algorithms. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), pp 1633–1640

  31. Yao J, Kharma N, Zhu YQ (2006) On clustering in evolutionary computation. In: IEEE international conference on evolutionary computation, pp 1752–1759

  32. Li L, Tang K (2015) History-based topological speciation for multimodal optimization. IEEE Trans Evol Comput 19(1):136–150

    Article  MathSciNet  Google Scholar 

  33. Chen G, Low CP, Yang Z (2009) Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans Evol Comput 13(3):661–673

    Article  Google Scholar 

  34. Yang Q, Member S, Chen W, Yu Z, Gu T (2017) Adaptive multimodal continuous ant colony optimization. IEEE Trans Evol Comput 21(2):191–205

    Article  Google Scholar 

  35. Biswas S, Kundu S, Das S (2014) An improved parent-centric mutation with normalized neighborhoods for inducing niching behavior in differential evolution. IEEE Trans Cybern 44(10):1726–1737

    Article  Google Scholar 

  36. Hui S, Suganthan PN (2016) Ensemble and arithmetic recombination-based speciation differential evolution for multimodal optimization. IEEE Trans Cybern 46(1):64–74

    Article  Google Scholar 

  37. Lacroix B, Molina D, Herrera F (2016) Region-based memetic algorithm with archive for multimodal optimisation. Inf Sci (Ny) 367:719–746

    Article  Google Scholar 

  38. Yao Jie, Kharma N, Grogono P (2010) Bi-objective multipopulation genetic algorithm for multimodal function optimization. IEEE Trans Evol Comput 14(1):80–102

    Article  Google Scholar 

  39. Deb K, Saha A (2012) Multimodal optimization using a bi-objective evolutionary algorithm. Evol Comput 20(1):27–62

    Article  Google Scholar 

  40. Basak A, Das S, Tan KC (2013) Multimodal optimization using a biobjective differential evolution algorithm enhanced with mean distance-based selection. IEEE Trans Evol Comput 17(5):666–685

    Article  Google Scholar 

  41. Wang Y, Li HX, Yen GG, Song W (2015) MOMMOP: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Trans Cybern 45(4):830–843

    Article  Google Scholar 

  42. Wang Yong, Li Han-Xiong, Yen GG, Wu Song MOMMOP (2015) Multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Trans Cybern 45(4):830–843

    Article  Google Scholar 

  43. De Castro L, Von Zuben F (2000) The clonal selection algorithm with engineering applications. In: Proceedings GECCO, no July, pp 36–37

  44. de Castro LN, Timmis J (2002) An artificial immune network for multimodal function optimization. In: Proceedings of the 2002 congress on evolutionary computation. CEC’02 (Cat. No.02TH8600), vol 1, pp 699–704

  45. Cuevas E, González M. (2013) An optimization algorithm for multimodal functions inspired by collective animal behavior. Soft Comput 17(3):489–502

    Article  Google Scholar 

  46. Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218(1):1–11

    Article  MathSciNet  Google Scholar 

  47. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci USA 105(4): 1232–7

    Article  Google Scholar 

  48. Cuevas E, González M, Zaldivar D, Pérez-Cisneros M, García G (2012) An algorithm for global optimization inspired by collective animal behavior. Discret Dyn Nat Soc 2012:1–24

    Article  MathSciNet  Google Scholar 

  49. Bouchekara HREH (2013) Electromagnetic device optimization based on electromagnetism-like mechanism. Appl Comput Electromagn Soc J 28(3):241–248

    Google Scholar 

  50. Birbil Şİ, Fang S-C (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25(3):263–282

    Article  MathSciNet  MATH  Google Scholar 

  51. Hsu Y, Earley RL, Wolf LL (2005) Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biol Rev 81(1):33

    Article  Google Scholar 

  52. Gálvez J, Cuevas E, Avalos O (2017) Flower pollination algorithm for multimodal optimization. Int J Comput Intell Syst 10(1): 627

    Article  Google Scholar 

  53. Li X, Engelbrecht A, Epitropakis MG (2013) Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization

  54. Chitsaz H, Amjady N, Zareipour H (2015) Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers Manag 89:588–598

    Article  Google Scholar 

  55. Aung TN, Khaing SS (2016) Genetic and evolutionary computing. Advances in Intelligent Systems and Computing, vol 388

  56. Qu BY, Suganthan PN, Das S (2013) A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans Evol Comput 17(3):387–402

    Article  Google Scholar 

  57. Biswas S, Kundu S, Das S (2015) Inducing niching behavior in differential evolution through local information sharing. IEEE Trans Evol Comput 19(2):246–263

    Article  Google Scholar 

  58. Hui S, Suganthan PN (2016) Ensemble and arithmetic recombination-based speciation differential evolution for multimodal optimization. IEEE Trans Cybern 46(1):64–74

    Article  Google Scholar 

  59. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1(6):80–83

    Article  MathSciNet  Google Scholar 

  60. Vollmer DT, Soule T, Manic M (2010) A distance measure comparison to improve crowding in multi-modal optimization problems. In: Proceedings - ISRCS 2010 - 3rd international symposium on resilient control system, pp 31–36

  61. De Castro L, Von Zuben F (2000) The clonal selection algorithm with engineering applications. In: Proceedings GECCO, no. July, pp 36–37

  62. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948

    Article  Google Scholar 

  63. García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms. J Heuristics 15:617–644

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Gálvez.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Appendix: Composite test functions formulation

Appendix: Composite test functions formulation

Table 9 Multidimensional composite functions formulation used in the experimental study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gálvez, J., Cuevas, E., Avalos, O. et al. Electromagnetism-like mechanism with collective animal behavior for multimodal optimization. Appl Intell 48, 2580–2612 (2018). https://doi.org/10.1007/s10489-017-1090-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1090-1

Keywords

Navigation