Skip to main content
Log in

An improved MOEA/D design for many-objective optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

MOEA/D is one of the most popular multi-objective evolutionary algorithms. To extend the effective application scope of MOEA/D for high-dimensional objectives, an improved MOEA/D design for many-objective optimization problems, named I-MOEA/D, is proposed in this paper. Comparing with the original MOEA/D, we redesigned the weight vectors used in the subproblems, making the distribution of the weight vectors broader and more effective to ensure the diversity and convergence of solutions in the objective space. Moreover, a new decomposition approach, called the weighted mixture-style method, which combines the advantages of the weighted sum decomposition and the Tchebycheff decomposition approaches, is adopted in I-MOEA/D to improve the effectiveness of the algorithm. A three-part experimental comparison using DTLZ1-DTLZ4, with the number of objectives ranging from three to fifteen, is performed. Experimental results verify the effectiveness of each strategy and reveal that the proposed I-MOEA/D method achieves better performance than the other related state-of-the-art algorithms in solving this type of many-objective optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE Int Conf Neural Netw Proc IEEE 2002 4:1942–1948

    Google Scholar 

  2. Dorigo M, Birattari M, Stutzle T (2007) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  3. Storn R, Price K (1997) Differential evolution C A simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  4. Deb K, Padhye N (2014) Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms. Comput Optim Appl 57(3):761–794

    Article  MathSciNet  MATH  Google Scholar 

  5. Padhye N, Mittal P, Deb K (2015) Feasibility preserving constraint-handling strategies for real parameter evolutionary optimization. Comput Optim Appl 62(3):851–890

    Article  MathSciNet  MATH  Google Scholar 

  6. Sarker RA, Elsayed SM, Ray T (2014) Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans Evol Comput 18(5):689–707

    Article  Google Scholar 

  7. Padhye N, Bhardawaj P, Deb K (2013) Improving differential evolution through a unified approach. J Glob Optim 55(4):771–799

    Article  MathSciNet  MATH  Google Scholar 

  8. Coello CAC, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems. Springer, Science, London

    MATH  Google Scholar 

  9. Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New York

    MATH  Google Scholar 

  10. Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems, vol 242. Kluwer Academic, New York

    Book  MATH  Google Scholar 

  11. Coello CAC, Lamont GB (2004) Applications of multi-objective evolutionary algorithms, vol 1. World Scientific, Singapore

    Book  MATH  Google Scholar 

  12. Liu Y et al (2014) Synthesis of phase-only reconfigurable linear arrays using multiobjective invasive weed optimization based on decomposition. International Journal of Antennas and Propagation

  13. Zheng X-w et al (2015) A cooperative coevolutionary biogeography-based optimizer. Appl Intell 43.1:95–111

    Article  Google Scholar 

  14. Farina M, Amato P (2002) On the optimal solution definition for many-criteria optimization problems. In: Proceedings of the NAFIPS-FLINT international conference, pp 233–238

  15. Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: A short review. In: IEEE congress on evolutionary computation, pp 2419–2426

  16. Fonseca CM, Fleming PJ (1998) Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example. IEEE Trans Syst Man Cybern-Part A Syst Humans 28(1):38–47

    Article  Google Scholar 

  17. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm. Eurogen 3242(103):95–100

    Google Scholar 

  18. Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  19. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  20. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  21. Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. IEEE Congr Evol Comput 1:203–208

    Google Scholar 

  22. Zhang Q et al (2010) Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans Evol Comput 14.3:456–474

    Article  Google Scholar 

  23. Zhao S-Z, Suganthan PN, Zhang Q (2012) Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans Evol Comput 16.3:442–446

    Article  Google Scholar 

  24. Liu H-L, Gu F, Zhang Q (2014) Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans Evol Comput 18.3:450–455

    Article  Google Scholar 

  25. Bai J, Liu H (2016) Multi-objective artificial bee algorithm based on decomposition by PBI method. Appl Intell 45.4:976–991

    Article  Google Scholar 

  26. Wang Z et al (2016) Adaptive replacement strategies for MOEA/D. IEEE Trans Cybern 46.2:474–486

    Article  Google Scholar 

  27. Deb K et al (2010) An interactive evolutionary multiobjective optimization method based on progressively approximated value functions. IEEE Trans Evol Comput 14.5:723–739

    Article  Google Scholar 

  28. Wagner T, Beume N, Naujoks B (2007) Pareto-, aggregation-, and indicator-based methods in many-objective optimization. Evolutionary multi-criterion optimization. Springer, Berlin/Heidelberg

    Google Scholar 

  29. Hughes EJ (2007) MSOPS-II a general-purpose many-objective optimiser.. In: IEEE congress on evolutionary computation, 2007. CEC 2007. IEEE

  30. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18.4:577–601

    Article  Google Scholar 

  31. Asafuddoula Md, Ray T, Sarker R (2015) A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans Evol Comput 19.3:445–460

    Article  Google Scholar 

  32. Elarbi M et al (2017) A new decomposition-based NSGA-II for many-objective optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems

  33. Li B et al (2015) Many-objective evolutionary algorithms: a survey. ACM Comput Surv (CSUR) 1(13):48

    Google Scholar 

  34. Santiago A et al (2014) A survey of decomposition methods for multi-objective optimization.. In: Recent advances on hybrid approaches for designing intelligent systems. Springer International Publishing, Switzerland, pp 453–465

  35. Trivedi A et al (2016) A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans Evol Comput PP(99):1–1

    Article  Google Scholar 

  36. Miettinen K (1999) Nonlinear multiobjective optimization. volume 12 of International Series in Operations Research and Management Science

  37. Siwei J, Zhihua C, Jie Z, Yew-Soon O (2011) Multiobjective optimization by decomposition with Pareto-adaptive weight vectors. In: 2011 Seventh international conference on natural computation (ICNC), vol 3. IEEE, pp 1260–1264

  38. Zhou A, Zhang Q, Zhang G (2012) A multiobjective evolutionary algorithm based on decomposition and probability model. In: IEEE congress on evolutionary computation. IEEE, pp 1–8

  39. Giagkiozis I, Purshouse RC, Fleming PJ (2014) Generalized decomposition and cross entropy methods for many-objective optimization. Inf Sci 282:363–387

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu H (2012) A weight design method based on power transformation for multi-objective evolutionary algorithm MOEA/D. J Comput Res Dev 49(6):1264–1271

    Google Scholar 

  41. Dai C, Wang Y, Ye M (2014) A new evolutionary algorithm based on contraction method for many-objective optimization problems. Appl Math Comput 245:191–205

    MathSciNet  MATH  Google Scholar 

  42. Wang Y, Dang C (2007) An evolutionary algorithm for global optimization based on level-set evolution and latin squares. IEEE Trans Evol Comput 11(5):579–595

    Article  Google Scholar 

  43. Qi Y, Ma X, Liu F, Jiao L, Sun J, Wu J (2014) MOEA/D with adaptive weight adjustment. Evol Comput 22(2):231–264

    Article  Google Scholar 

  44. Tan YY, Jiao YC, Li H, Wang XK (2013) MOEA/D+ uniform design: a new version of MOEA/D for optimization problems with many objectives. Comput Oper Res 40(6):1648–1660

    Article  MathSciNet  MATH  Google Scholar 

  45. Tan YY, Jiao YC, Li H, Wang XK (2012) A modification to MOEA/D-DE for multiobjective optimization problems with complicated Pareto sets. Inf Sci 213:14–38

    Article  MathSciNet  MATH  Google Scholar 

  46. Das I (1998) Normal-boundary inersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. Soc Ind Appl Math 8:631–657

    MATH  Google Scholar 

  47. Wang Y, Fang KT (1990) Number theortic methods in applied statistics. Chin Ann Math Ser B 11 (3):384–394

    MATH  Google Scholar 

  48. Wang L, Zhang Q, Zhou A et al (2016) Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm. IEEE Trans Evol Comput 20(3):475–480

    Article  Google Scholar 

  49. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. Springer Science, London, pp 105–145

    Book  MATH  Google Scholar 

  50. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the congress on evolutionary computation. CEC’02, vol 1. IEEE, p 2002

  51. Sato H, Aguirre HE, Tanaka K (2007) Controlling dominance area of solutions and its impact on the performance of MOEAs. In: International conference on evolutionary multi-criterion optimization. Springer, Berlin Heidelberg, pp 5–20

  52. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117– 132

    Article  Google Scholar 

  53. Veldhuizen V, David A, Lamont GB (1998) Evolutionary computation and convergence to a Pareto front. Late breaking papers at the genetic programming 1998 conference

  54. Veldhuizen V, David A, Lamont GB (1999) Multiobjective evolutionary algorithm test suites. In: Proceedings of the ACM symposium on applied computing. ACM, p 1999

  55. Coello CAC, Corts NC (2005) Solving Multiobjective optimization problems using an artificial immune system. Genet Programm Evolvable Mach 6(2):163–190

    Article  Google Scholar 

Download references

Acknowledgments

The work is partially supported by the National Natural Science Foundation of China (Nos. 61401260, 61373081, 61402268, 61572298, 61602283, and 61702310), the Natural Science Foundation of Shandong, China (Nos. BS2014DX006, BS2015DX016, ZR2014FM012, and ZR2016FB10) and the Taishan Scholar Project of Shandong, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Tan, Y., Meng, L. et al. An improved MOEA/D design for many-objective optimization problems. Appl Intell 48, 3839–3861 (2018). https://doi.org/10.1007/s10489-018-1183-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1183-5

Keywords

Navigation