Skip to main content
Log in

A novel link prediction method for supervising transitivity process

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Link prediction has become an important area in network analysis in recent years due to its theoretical and practical significance. In this paper, we present a similarity-based prediction method under simultaneous consideration of multiple information sources and the corresponding discrimination ability. We first propose a novel supervised transitivity similarity index (STSI), in which the likelihood ratio in the Bayesian theory is employed to supervise the transitivity process. Then, based on the proposed STSI, we design a supervised transitivity similarity algorithm (STSA) for predicting missing links. Finally, empirical experiments are conducted to demonstrate the effectiveness of the proposed method. The experimental results show that our method can achieve a good performance, compared with other mainstream baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bouziane H, Messabih B, Chouarfia A (2015) Effect of simple ensemble methods on protein secondary structure prediction. Soft Comput 19(6):1663–1678

    Article  Google Scholar 

  2. Buccafurri F, Lax G, Nocera A, Ursino D (2015) Discovering missing me edges across social networks. Inf Sci 319:18–37

    Article  MathSciNet  Google Scholar 

  3. Fang L, Fang HY, Tian YF, Yang TH, Zhao J (2017) The alliance relationship analysis of international terrorist organizations with link prediction. Phys A 482:573–584

    Article  Google Scholar 

  4. Guan Q, An HZ, Gao XY, Huang SP, Li HJ (2016) Estimating potential trade links in the international crude oil trade: a link prediction approach. Energy 102:406–415

    Article  Google Scholar 

  5. Lakshmi TJ, Bhavani SD (2017) Temporal probabilistic measure for link prediction in collaborative networks. Appl Intell 47(1):83–95

    Article  Google Scholar 

  6. Hanneke S, Fu WJ, Xing EP (2010) Discrete temporal models of social networks. Electron J Stat 4:585605

    Article  MathSciNet  Google Scholar 

  7. Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453:98–101

    Article  Google Scholar 

  8. Chen Z, Zhang W (2014) A marginalized denoising method for link prediction in relational data. Proc SDM 14:298–306

    Google Scholar 

  9. He YL, Liu JNK, Hu Y, Wang X (2015) OWA operator based link prediction ensemble for social network. Expert Syst Appl 42(1):21–50

    Article  Google Scholar 

  10. Pecli A, Cavalcanti MC, Goldschmidt R (2017) Automatic feature selection for supervised learning in link prediction applications: a comparative study. Knowl Inf Syst 3:1–37

    Google Scholar 

  11. Aghabozorgi F, Khayyambashi MR (2018) A new similarity measure for link prediction based on local structures in social networks. Phys A 501:12–23

    Article  Google Scholar 

  12. Hoffman M, Steinley D, Brusco MJ (2015) A note on using the adjusted Rand index for link prediction in networks. Soc Netw 42:72–79

    Article  Google Scholar 

  13. Chuan PM, Son LH, Ali M, Khang TD, Huong LT, Dey N (2017) Link prediction in co-authorship networks based on hybrid content similarity metric. Appl Intell 3:1–17

    Google Scholar 

  14. Zhang P, Qiu D, Zeng A, Xiao JH (2018) A comprehensive comparison of network similarities for link prediction and spurious link elimination. Phys A 500(15):97–105

    Article  MathSciNet  Google Scholar 

  15. Newman ME (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64:025102

    Article  Google Scholar 

  16. Jaccard P (1901) Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Science Naturelles 37:547–579

    Google Scholar 

  17. Ravasz E, Somera AL, Mongru DA (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1553–1555

    Article  Google Scholar 

  18. Leicht EA, Holme P, Newman MEJ (2006) Vertex similarity in networks. Phys Rev E 73:026120

    Article  Google Scholar 

  19. Adamic LA, Adar E (2003) Friends and neighbors on the web. Soc Netw 25(3):211–230

    Article  Google Scholar 

  20. Zhou T, Lü L, Zhang YC (2009) Predicting missing links via local information. Eur Phys J B 71 (4):623–630

    Article  Google Scholar 

  21. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

  22. Lü L, Jin CH, Zhou T (2009) Similarity index based on local paths for link prediction of complex networks. Phys Rev E 80:046122

    Article  Google Scholar 

  23. Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43

    Article  Google Scholar 

  24. Xu Z Q, Pu C, Yang J (2016) Link prediction based on path entropy. Phys A 456:294–301

    Article  Google Scholar 

  25. Ding JY, Jiao LC, Wu JS, Liu F (2016) Prediction of missing links based on community relevance and ruler inference. Knowl-Based Syst 98:200–215

    Article  Google Scholar 

  26. Ma XK, Sun PG, Qin GM (2017) Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability. Pattern Recognit 71:361–374

    Article  Google Scholar 

  27. Dai CY, Chen L, Lin B (2017) Link prediction in complex network based on modularity. Soft Comput 21:4197–4214

    Article  Google Scholar 

  28. Fouss F, Pirotte A, Renders JM (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng 19(3):355–369

    Article  Google Scholar 

  29. Tong HH, Faloutsos C, Pan JY (2008) Random walk with restart: fast and applications. Knowl Inf Syst 14(3):327–346

    Article  Google Scholar 

  30. Jeh G, Wisom J (2002) SimRank: a measure of structural-context similarity. Proc ACM SIGKDD 02:538–543

    Google Scholar 

  31. Backstrom L, Leskovec J (2011) Supervised random walks: predicting and recommending links in social networks. Proc WSDM 11:635–644

    Google Scholar 

  32. Ahmed NM, Chen L (2016) An efficient algorithm for link prediction in temporal uncertain social networks. Inf Sci 331:120–136

    Article  MathSciNet  Google Scholar 

  33. Dai CY, Chen L, Lin B (2016) Link prediction based on sampling in complex networks. Appl Intell 47 (1):1–12

    Article  Google Scholar 

  34. Bhattacharyya P, Garg A, Wu SF (2011) Analysis of user keyword similarity in online social networks. Soc Netw Anal Min 1(3):143–158

    Article  Google Scholar 

  35. Rhodes CJ, Jones P (2015) Inferring missing links in partially observed social networks. In: The OR, defence and security. Palgrave Macmillan, London, pp 256–271

  36. Scellato S, Noulas A, Mascolo C (2015) Exploiting place features in link prediction on location-based social networks. Proc KDD 11:1046–1054

    Google Scholar 

  37. Moradabadi B, Meybodi MR (2017) Link prediction in fuzzy social networks using distributed learning automata. Appl Intell 47(3):837–849

    Article  Google Scholar 

  38. Schifanella R, Barrat A, Cattuto C, Markines B, Menczer F (2010) Folks in folksonomies: social link prediction from shared metadata. Proc WSDM’10, pp 271–280

  39. Parimi R, Caragea D (2011) Predicting friendship links in social networks using a topic modeling approach. Springer, Berlin, pp 75–86

    Chapter  Google Scholar 

  40. Pobiedina N, Ichise R (2016) Citation count prediction as a link prediction problem. Appl Intell 44 (2):252–268

    Article  Google Scholar 

  41. Al Hasan M, Zaki MJ (2011) A survey of link prediction in social networks. Springer, Berlin, pp 243–275

    Chapter  Google Scholar 

  42. Aggarwal CC, Xie Y, Yu PS (2013) A framework for dynamic link prediction in heterogeneous networks. Stat Anal Data Min 7:14–33

    Article  MathSciNet  Google Scholar 

  43. Ibrahim NMA, Chen L (2015) Link prediction in dynamic social networks by integrating different types of information. Appl Intell 42(4):738–750

    Article  Google Scholar 

  44. Wang YS, Liu FB, Xia ST, Wu J (2017) Link sign prediction by variational Bayesian probabilistic matrix factorization with Student-t prior. Inf Sci 405:175–189

    Article  Google Scholar 

  45. Sharma S, Singh A (2016) An efficient method for link prediction in weighted multiplex networks. Comput Soc Netw 3(7):1–17

    Google Scholar 

  46. Pujari M, Kanawati R (2012) Link prediction in complex networks by supervised rank aggregation. Proc ICTAI 12:782–789

    Google Scholar 

  47. Liang WX, Li X, He XS, Liu XY, Zhang XC (2017) Supervised ranking framework for relationship prediction in heterogeneous information networks. Appl Intell 10:1–17

    Google Scholar 

  48. Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci Technol 58(7):1019–1031

    Article  Google Scholar 

  49. Lü L, Zhou T (2011) Link prediction in complex networks: a survey. Phys A 390(6):1150–1170

    Article  Google Scholar 

  50. Wang P, Xu BW, Wu YR, Zhou XY (2015) Link prediction in social network: the state-of-the-art. Sci China Inf Sci 58(1):1–38

    Google Scholar 

  51. Martinez V, Berzal F, Cubero JC (2017) A survey of link prediction in complex networks. ACM Comput Surv 49:1–33

    Article  Google Scholar 

  52. Symeonidis P, Tiakas E, Manolopoulos Y (2010) Transitive node similarity for link prediction in social networks with positive and negative links. Proc RecSys 10:183–190

    Google Scholar 

  53. Papadimitriou A, Symeonidis P, Manolopoulos Y (2012) Fast and accurate link prediction in social networking systems. J Syst Software 85(9):2119–2132

    Article  Google Scholar 

  54. Guo JF, Liu MM, Luo X (2016) Link prediction based on similarity of nodes of multipath in weighted social networks. J Zhejiang Univ 50:1347–1352

    Google Scholar 

  55. Liu ZH, Jiang C, Wang JY, Yu H (2015) The node importance in actual complex networks based on a multi-attribute ranking method. Knowl-Based Syst 84:56–66

    Article  Google Scholar 

  56. Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45(4):427–437

    Article  Google Scholar 

  57. Hand DJ, Till RJ (2001) A simple generalisation of the area under the roc curve for multiple class classification problems. Mach Learn 45(2):171–186

    Article  Google Scholar 

  58. Abram PJ, Smith JD (2004) Modelling and analysis of terrorist network disruption. Dissertation. Cranfield University, Shrivenham

    Google Scholar 

  59. Irwin C, Roberts C, Mee N (2002) Counter terrorism overseas. Defence Science and Technology Laboratory annual report: D s t l/C D053271/1.1(2002)

Download references

Acknowledgements

This work is supported in part by National Natural Science Foundation of China with Grant Nos. 71720107002, 71450009 and 61572459, the Beijing Municipal Education Commission Foundation of China (No. KM201810038001), and the Special Research Funds from the Quantitative Finance Research Center of School of Information, Capital University of Economics and Business.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Chen, W. & Zhang, J. A novel link prediction method for supervising transitivity process. Appl Intell 48, 4305–4316 (2018). https://doi.org/10.1007/s10489-018-1196-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1196-0

Keywords

Navigation