Skip to main content
Log in

Active contours driven by non-local Gaussian distribution fitting energy for image segmentation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Image segmentation is still a challenging task in image processing field because of unpredictable noise and intensity inhomogeneity in images. In this paper, we present a novel active contour model for image segmentation by constructing a robust truncated kernel function. It utilizes image patches to perceive the neighborhood intensities of pixel at the same time considers the spatial distance within a local window. By using this truncated kernel function, the proposed method can accurately segment images with intensity inhomogeneity while guaranteeing certain noise robustness. Extensive evaluations on synthetic and real images are provided to demonstrate the superiority of our method. The model makes full use of image patch information to strengthen the robustness against noise and intensity inhomogeneity in images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang L, He L, Mishra A, Li C (2009) Active contours driven by local Gaussian distribution fitting energy. Signal Process 89:2435–2447

    Article  Google Scholar 

  2. Wu LK, Yang MS (2002) Alternative c-means clustering algorithms. Pattern Recogn 35(10):2267–2278

    Article  Google Scholar 

  3. Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175

    Article  Google Scholar 

  4. Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), vol 1, pp 430–436

  5. Vasilevskiy A, Siddiqi K (2002) Flux-maximizing geometric flows. IEEE Trans Pattern Anal Mach Intell 24:1565–1578

    Article  Google Scholar 

  6. Yang X, Gao XB, Li J, Han B (2014) A shape-initialized and intensity-adaptive level set method for auroral oval segmentation. Inf Sci 277:794–807

    Article  Google Scholar 

  7. Wang Y, Xiang S, Pan C, Wang L, Meng G (2013) Level set evolution with locally linear classification for image segmentation. Pattern Recogn 46(6):1734–1746

    Article  Google Scholar 

  8. Zhao YQ, Wang XH, Wang XF, Shih FY (2014) Retinal vessels segmentation based on level set and region growing. Pattern Recogn 47(7):2437–2446

    Article  Google Scholar 

  9. Thapaliya K, Pyun JY, Park CS, Kwon GR (2013) Level set method with automatic selective local statistics for brain tumor segmentation in MR images. Comput Med Imag Graph 37(7):522–537

    Article  Google Scholar 

  10. Wang XF, Min HH, Zhang YG (2015) Multi-scale local region based level set method for image segmentation in the presence of intensity inhomogeneity. Neurocomputing 151:1086–1098

    Article  Google Scholar 

  11. Wang L, Shi F, Li G, Gao YZ, Lin WL, Gilmore JH, Shen DG (2014) Segmentation of neonatal brain MR images using patch-driven level sets. Neuroimage 84:141–158

    Article  Google Scholar 

  12. Zhang K, Song H, Zhang L (2010) Active contours driven by local image fitting energy. Pattern Recogn 43:1199–1206

    Article  Google Scholar 

  13. Zhang K, Zhang L, Lam KM, Zhang D (2015) A level set approach to image segmentation with intensity inhomogeneity. IEEE Trans Cybern 46(2):546–557

    Article  Google Scholar 

  14. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10:266–277

    Article  Google Scholar 

  15. An J, Rousson M, Xu C (2007) Gamma-convergence approximation to piecewise smooth medical image segmentation, medical image computing and computer-assisted intervention (MICCAI), vol 2. Springer, Berlin Heidelberg, pp 495–502

    Google Scholar 

  16. Li C, Kao C, Gore J, Ding Z (2007) Implicit active contours driven by local binary fitting energy. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR). IEEE Computer Society, Washington, DC, pp 1–7

  17. Le T, Luu K, Savvides M (2013) SparCLeS: Dynamic 1 sparse classifiers with level sets for robust beard/moustache detection and segmentation. IEEE Trans Image Process 22:3097–3107

    Article  Google Scholar 

  18. Wang H, Huang TZ, Xu Z, Wang Y (2014) An active contour model and its algorithms with local and global Gaussian distribution fitting energies. Inf Sci 263:43–59

    Article  Google Scholar 

  19. Wang L, Li C, Sun Q, Xia D, Kao CY (2009) Active contours driven by local and global intensity fitting energy with application to brain MR images segmentation. Comput Med Imag Graph 33:520–531

    Article  Google Scholar 

  20. Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4(2):490–530

    Article  MathSciNet  Google Scholar 

  21. Zhang K, Zhang L, Yang M-H (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015

    Article  Google Scholar 

  22. Ji Z, Xia Y, Sun Q, Cao G, Chen Q (2015) Active contours driven by local likelihood image fitting energy for image segmentation. Inf Sci 301:285–304

    Article  Google Scholar 

  23. Wang T, Sun Q, Ji Z, Chen Q, Fu P (2016) Multi-layer graph constraints for interactive image segmentation via game theory. Pattern Recogn 55:28–44

    Article  Google Scholar 

  24. Wang T, Ji Z, Sun Q, Chen Q, Yu S, Fan W, Yuan S, Liu Q (2016) Label propagation and higher-order constraint-based segmentation of fluid-associated regions in retinal SD-OCT images. Inform Sci 358 (C):92–111

    Article  Google Scholar 

  25. Wang T, Ji Z, Sun, Chen Q, Jing X (2016) Interactive multilabel image segmentation via robust multi-layer graph constraints. IEEE Trans Multimed 18(12):2358–2371

    Article  Google Scholar 

  26. Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46:223–247

    Article  Google Scholar 

  27. Coupé P, Manjón J, Fonov V, Pruessner J, Robles M, Collins DL (2011) Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 54:940–954

    Article  Google Scholar 

  28. Wang XF, Huang DS, Xu H (2010) An efficient local Chan–Vese model for image segmentation. Pattern Recogn 43(3):603–618

    Article  Google Scholar 

  29. Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  Google Scholar 

  30. Ge Q, Xiao L, Zhang J, Wei Z (2012) An improved region-based model with local statistical features for image segmentation. Pattern Recogn 45(4):1578–1590

    Article  Google Scholar 

  31. Wang L, Wu H-Y, Pan C (2013) Region-based image segmentation with local signed difference energy. Pattern Recogn Lett 34(6):637–645

    Article  Google Scholar 

  32. Li C, Kao C-Y, Gore JC, Ding Z (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17(10):1940–1949

    Article  MathSciNet  Google Scholar 

  33. Lankton S, Tannenbaum A (2008) Localizing region-based active contours. IEEE Trans Image Process 17 (11):2029–2039

    Article  MathSciNet  Google Scholar 

  34. Li C, et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007–2016

    Article  MathSciNet  Google Scholar 

  35. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685

    Article  MathSciNet  Google Scholar 

  36. Brox T (2005) From pixels to regions: partial differential equations in image analysis, Ph.D. dissertation, Dept. Comput. Sci., Saarland University, Saarbrücken, Germany

  37. Zhu SC, Yuille A (1996) Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 18(9):884–900

    Article  Google Scholar 

  38. Jung M, Peyre G, Cohen LD (2012) Non-local active contours. SIAM J Imag Sci 5(3):1022–1054

    Article  Google Scholar 

  39. Michailovich O, Rathi Y, Tannenbaum A (2007) Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans Image Process 16(11):2787–2801

    Article  MathSciNet  Google Scholar 

  40. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7:11–32

    Article  Google Scholar 

  41. Niu S, Chen Q, de Sisternes L, et al (2017) Robust noise region-based active contour model via local similarity factor for image segmentation. Pattern Recogn 61:104–119

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by National Science Foundation of China (61371168) National High Technology Research and Development Program of China (No. 2013AA014604). Jiangsu Province Regular Institutions of Higher Learning Academic Degree Graduate Student Innovation Plan (KYZZ16_0192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Cao, G., Yu, Q. et al. Active contours driven by non-local Gaussian distribution fitting energy for image segmentation. Appl Intell 48, 4855–4870 (2018). https://doi.org/10.1007/s10489-018-1243-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1243-x

Keywords

Navigation