Skip to main content

Advertisement

Log in

A new framework for metaheuristic-based frequent itemset mining

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper proposes a novel framework for metaheuristic-based Frequent Itemset Mining (FIM), which considers intrinsic features of the FIM problem. The framework, called META-GD, can be used to steer any metaheuristics-based FIM approach. Without loss of generality, three metaheuristics are considered in this paper, namely the genetic algorithm (GA), particle swarm optimization (PSO), and bee swarm optimization (BSO). This allows to derive three approaches, named GA-GD, PSO-GD, and BSO-GD, respectively. An extensive experimental evaluation on medium and large database instances reveal that PSO-GD outperforms state-of-the-art metaheuristic-based approaches in terms of runtime and solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Available at the KEEL repository https://archive.ics.uci.edu/ml/datasets.html, http://fimi.ua.ac.be/data/ and http://sci2s.ugr.es/keel/datasets.php, respectively.

References

  1. Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: ACM sigmod record, vol 22. ACM, p 207–216

  2. Djenouri Y, Belhadi A, Fournier-Viger P (2018) Extracting useful knowledge from event logs: a frequent itemset mining approach. Knowl-Based Syst 139:132–148

    Article  Google Scholar 

  3. Djenouri Y, Drias H, Bendjoudi A (2014) Pruning irrelevant association rules using knowledge mining. International Journal of Business Intelligence and Data Mining 9(2):112–144

    Article  Google Scholar 

  4. Djenouri Y, Habbas Z, Djenouri D (2017) Data mining-based decomposition for solving the MAXSAT problem: toward a new approach. IEEE Intell Syst 32(4):48–58

    Article  Google Scholar 

  5. Djenouri Y, Habbas Z, Djenouri D, Fournier-Viger P (2017) Bee swarm optimization for solving the MAXSAT problem using prior knowledge. Soft Computing. 1–18. In Press

  6. Djenouri Y, Belhadi A, Fournier-Viger P, Lin JCW (2018) Fast and effective cluster-based information retrieval using frequent closed itemsets. Inf Sci 453:154–167

    Article  MathSciNet  Google Scholar 

  7. Djenouri Y, Belhadi A, Belkebir R (2018) Bees swarm optimization guided by data mining techniques for document information retrieval. Expert Systems with Applications 94:126–136

    Article  Google Scholar 

  8. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: ACM sigmod record. vol 29. ACM, p 1–12

  9. Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for market basket data. ACM Sigmod Record 26(2):255–264

    Article  Google Scholar 

  10. Hart E, Timmis J (2008) Application areas of AIS: the past, the present and the future. Appl Soft Comput 8(1):191–201

    Article  Google Scholar 

  11. Zaki MJ, Parthasarathy S, Ogihara M, Li W et al (1997) New algorithms for fast discovery of association rules. In: KDD. vol 97, p 283–286

  12. Djenouri Y, Comuzzi M, Djenouri D (2017) SS-FIM: single Scan for frequent itemsets mining in transactional databases. In: Pacific-Asia conference on knowledge discovery and data mining, Springer, pp 644–654

  13. Mata J, Alvarez JL, Riquelme JC An evolutionary algorithm to discover numeric association rules. In: Proceedings of the 2002 ACM symposium on applied computing, ACM, pp 590–594

  14. Alataş B, Akin E (2006) An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules. Soft Comput 10(3):230–237

    Article  Google Scholar 

  15. Djenouri Y, Comuzzi M (2017) Combining Apriori heuristic and bio-inspired algorithms for solving the frequent itemsets mining problem. Inf Sci 420:1–15

    Article  Google Scholar 

  16. Yan X, Zhang C, Zhang S (2009) Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support. Expert Systems with Applications 36(2):3066–3076

    Article  Google Scholar 

  17. Martínez-Ballesteros M, Bacardit J, Troncoso A, Riquelme JC (2015) Enhancing the scalability of a genetic algorithm to discover quantitative association rules in large-scale datasets. Integrated Computer-Aided Engineering 22(1):21–39

    Article  Google Scholar 

  18. Martín D, Alcalá-Fdez J, Rosete A, Herrera F (2016) NICGAR: A niching genetic algorithm to mine a diverse set of interesting quantitative association rules. Inf Sci 355:208–228

    Article  Google Scholar 

  19. Wang B, Merrick KE, Abbass HA (2017) Co-operative coevolutionary neural networks for mining functional association rules. IEEE Transactions on Neural Networks and Learning Systems 28(6):1331–1344

    Article  Google Scholar 

  20. Ting CK, Liaw RT, Wang TC, Hong TP (2018) Mining fuzzy association rules using a memetic algorithm based on structure representation. Memetic Computing 10(1):15–28

    Article  Google Scholar 

  21. Kuo R, Lin S, Shih C (2007) Mining association rules through integration of clustering analysis and ant colony system for health insurance database in Taiwan. Expert Systems with Applications 33(3):794–808

    Article  Google Scholar 

  22. Olmo JL, Luna JM, Romero JR, Ventura S (2013) Mining association rules with single and multi-objective grammar guided ant programming. Integrated Computer-Aided Engineering. 20(3):217–234

    Article  Google Scholar 

  23. Wu JMT, Zhan J, Lin JCW (2017) An ACO-based approach to mine high-utility itemsets. Knowl-Based Syst 116:102–113

    Article  Google Scholar 

  24. Kuo RJ, Chao CM, Chiu Y (2011) Application of particle swarm optimization to association rule mining. Appl Soft Comput 11(1):326–336

    Article  Google Scholar 

  25. Lin JCW, Shao Y, Fournier-Viger P, Djenouri Y, Guo X (2018) Maintenance algorithm for high average-utility itemsets with transaction deletion. Applied Intelligence, 1–16

  26. Agrawal J, Agrawal S, Singhai A, Sharma S (2015) SET-PSO-Based approach for mining positive and negative association rules. Knowl Inf Syst 45(2):453–471

    Article  Google Scholar 

  27. Mlakar U, Zorman M, Fister I Jr, Fister I (2017) Modified binary cuckoo search for association rule mining. J Intell Fuzzy Syst 32(6):4319–4330

    Article  Google Scholar 

  28. Djenouri Y, Belhadi A, Fournier-Viger P, Fujita H (2018) Mining diversified association rules in big datasets: a cluster/GPU/genetic approach. Inf Sci 459:117–134

    Article  MathSciNet  Google Scholar 

  29. Gan W, Lin JCW, Fournier-Viger P, Chao HC, Fujita H (2017) Extracting non-redundant correlated purchase behaviors by utility measure. Knowledge-Based Systems

  30. Djenouri Y, Drias H, Habbas Z, Mosteghanemi H (2012) Bees swarm optimization for web association rule mining. In: 2012 IEEE/WIC/ACM international conferences on web intelligence and intelligent agent technology (WI-IAT), vol 3. IEEE, pp 142–146

  31. Czibula G, Czibula IG, Sîrbu AM, Mircea IG (2015) A novel approach to adaptive relational association rule mining. Appl Soft Comput 36:519–533

    Article  Google Scholar 

  32. Romero C, Zafra A, Luna JM, Ventura S (2013) Association rule mining using genetic programming to provide feedback to instructors from multiple-choice quiz data. Expert Syst 30(2):162–172

    Article  Google Scholar 

  33. Djenouri Y, Bendjoudi A, Nouali-Taboudjemat N (2014) Association rules mining using evolutionary algorithms. In: The 9th international conference on bio-inspired computing: theories and applications (BIC-TA 2014). LNCS

  34. Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello CC (2014) Survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans Evol Comput 18(1):4–19

    Article  Google Scholar 

  35. Parpinelli RS, Lopes HS, Freitas AA (2002) Data mining with an ant colony optimization algorithm. IEEE Trans Evol Comput 6(4):321–332

    Article  Google Scholar 

  36. Kuo R, Shih C (2007) Association rule mining through the ant colony system for National Health Insurance Research Database in Taiwan. Computers & Mathematics with Applications. 54(11-12):1303–1318

    Article  MathSciNet  Google Scholar 

  37. Yun U, Kim D, Yoon E, Fujita H (2017) Damped window based high average utility pattern mining over data streams. Knowledge-Based Systems

  38. Yun U, Ryang H, Lee G, Fujita H (2017) An efficient algorithm for mining high utility patterns from incremental databases with one database scan. Knowl-Based Syst 124:188–206

    Article  Google Scholar 

  39. Tseng VS, Shie BE, Wu CW, Philip SY (2013) Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans Knowl Data Eng 25(8):1772–1786

    Article  Google Scholar 

  40. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation, vol 5. IEEE, pp 4104–4108

  41. Sarath K, Ravi V (2013) Association rule mining using binary particle swarm optimization. Eng Appl Artif Intell 26(8):1832–1840

    Article  Google Scholar 

  42. Beiranvand V, Mobasher-Kashani M, Bakar AA (2014) Multi-objective PSO algorithm for mining numerical association rules without a priori discretization. Expert Systems with Applications 41(9):4259–4273

    Article  Google Scholar 

  43. Djenouri Y, Drias H, Habbas Z (2014) Bees swarm optimisation using multiple strategies for association rule mining. International Journal of Bio-Inspired Computation 6(4):239–249

    Article  Google Scholar 

  44. Djenouri Y, Drias H, Chemchem A (2013) A hybrid Bees Swarm optimization and tabu search algorithm for association rule mining. In: 2013 World Congress on Nature and biologically inspired computing (NaBIC), IEEE, pp 120–125

  45. Djenouri Y, Drias H, Habbas Z (2014) Hybrid intelligent method for association rules mining using multiple strategies. International Journal of Applied Metaheuristic Computing (IJAMC) 5(1):46–64

    Article  Google Scholar 

  46. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

  47. Heraguemi KE, Kamel N, Drias H (2016) Multi-swarm bat algorithm for association rule mining using multiple cooperative strategies. Appl Intell 45(4):1021–1033

    Article  Google Scholar 

  48. Song A, Ding X, Chen J, Li M, Cao W, Pu K (2016) Multi-objective association rule mining with binary bat algorithm. Intelligent Data Analysis 20(1):105–128

    Article  Google Scholar 

  49. Gheraibia Y, Moussaoui A, Djenouri Y, Kabir S, Yin PY (2016) Penguins search optimisation algorithm for association rules mining. J Comput Inf Technol 24(2):165–179

    Article  Google Scholar 

  50. Sheikhan M, Rad MS (2013) Gravitational search algorithm–optimized neural misuse detector with selected features by fuzzy grids–based association rules mining. Neural Comput & Applic 23(7-8):2451–2463

    Article  Google Scholar 

  51. Derrac J, García S, Hui S, Suganthan PN, Herrera F (2014) Analyzing convergence performance of evolutionary algorithms: a statistical approach. Inf Sci 289:41–58

    Article  Google Scholar 

  52. Djenouri Y, Djenouri D, Habbas Z (2018) Intelligent mapping between GPU and cluster computing for discovering big association rules. Appl Soft Comput 65:387–399

    Article  Google Scholar 

  53. Cano A, Luna JM, Ventura S (2013) High performance evaluation of evolutionary-mined association rules on GPUs. J Supercomput 66(3):1438–1461

    Article  Google Scholar 

  54. Djenouri Y, Bendjoudi A, Mehdi M, Nouali-Taboudjemat N, Habbas Z (2015) GPU-Based bees swarm optimization for association rules mining. J Supercomput 71(4):1318–1344

    Article  Google Scholar 

  55. Luna JM, Cano A, Pechenizkiy M, Ventura S (2016) Speeding-up association rule mining with inverted index compression. IEEE Transactions on Cybernetics 46(12):3059–3072

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcef Djenouri.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djenouri, Y., Djenouri, D., Belhadi, A. et al. A new framework for metaheuristic-based frequent itemset mining. Appl Intell 48, 4775–4791 (2018). https://doi.org/10.1007/s10489-018-1245-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1245-8

Keywords

Navigation