Skip to main content
Log in

Boosting an evolution strategy with a preprocessing step: application to group scheduling problem in directional sensor networks

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper presents a two-membered evolution strategy based approach to address the total rotation minimization problem (TRMP) pertaining to directional sensor networks. TRMP is an \(\mathcal {N}\mathcal {P}\)-hard problem. Performance of the proposed approach is enhanced by employing a pre-processing step that utilizes a constructive heuristic and the concept of opposite solutions. We have compared our approach with the best approach available in the literature. The experimental results demonstrate our approach to be highly effective with substantial gain in terms of solution quality, in comparison to the best approach available in the literature. However, our approach requires more time in comparison to this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahrari A, Kramer O (2017) Finite life span for improving the selection scheme in evolution strategies. Soft Comput 21(2):501–513

    Article  Google Scholar 

  2. Bäck T, Hoffmeister F, Schwefel HP (1991) A survey of evolution strategies. In: Proceedings of the fourth international conference on genetic algorithms, Morgan Kaufmann, vol 2, pp 2–9

  3. Bartz-Beielstein T (2005) Evolution strategies and threshold selection. In: International workshop on hybrid metaheuristics, LNCS, vol 3636. Springer, Berlin, pp 104–115

    Chapter  Google Scholar 

  4. Beyer HG, Sendhoff B (2017) Toward a steady-state analysis of an evolution strategy on a robust optimization problem with noise-induced multimodality. IEEE Trans Evol Comput 21(4):629–643

    Article  Google Scholar 

  5. Cai J, Thierauf G (1996) Evolution strategies for solving discrete optimization problems. Adv Eng Softw 25(2):177–183

    Article  Google Scholar 

  6. Cai Y, Lou W, Li M, Li XY (2007) Target-oriented scheduling in directional sensor networks. In: INFOCOM 2007. 26th IEEE International Conference on Computer Communications., IEEE, pp 1550–1558

  7. Cai Y, Lou W, Li M, Li XY (2009) Energy efficient target-oriented scheduling in directional sensor networks. IEEE Trans Comput 58(9):1259–1274

    Article  MathSciNet  Google Scholar 

  8. Chaurasia SN, Singh A (2015) A hybrid swarm intelligence approach to the registration area planning problem. Inf Sci 302:50–69

    Article  Google Scholar 

  9. Coelho VN, Coelho IM, Souza MJ, Oliveira TA, Cota LP, Haddad MN, Mladenovic N, Silva RCP, Guimarães F G (2016) Hybrid self-adaptive evolution strategies guided by neighborhood structures for combinatorial optimization problems. Evol Comput 24(4):637–666

    Article  Google Scholar 

  10. Črepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv (CSUR) 45(35):1–33

    Article  Google Scholar 

  11. Delgado-Osuna JA, Lozano M, García-Martínez C (2016) An alternative artificial bee colony algorithm with destructive–constructive neighbourhood operator for the problem of composing medical crews. Inform Sci 326:215–226

    Article  Google Scholar 

  12. Djugash J, Singh S, Kantor G, Zhang W (2006) Range-only slam for robots operating cooperatively with sensor networks. In: Proceedings of IEEE international conference on robotics and automation (ICRA 2006), IEEE, vol 5, pp 2078–2084

  13. Ergezer M, Simon D (2011) Oppositional biogeography-based optimization for combinatorial problems. In: 2011 IEEE Congress on Evolutionary computation (CEC), IEEE, pp 1496–1503

  14. Gil JM, Han YH (2011) A target coverage scheduling scheme based on genetic algorithms in directional sensor networks. Sensors 11(2):1888–1906

    Article  Google Scholar 

  15. Gopinadh V, Singh A (2015) Swarm intelligence approaches for cover scheduling problem in wireless sensor networks. Int J Bio-Inspired Comput 7(1):50–61

    Article  Google Scholar 

  16. Gutin G, Punnen A (2004) The traveling salesman problem and its variations. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  17. Guvensan MA, Yavuz AG (2011) On coverage issues in directional sensor networks: a survey. Ad Hoc Netw 9(7):1238–1255

    Article  Google Scholar 

  18. Hartmann D (1974) Optimierung balkenartiger zylinderschalen aus stahlbeton mit elastischem und plastischem werkstoffverhalten. University of Dortmund, PhD thesis

    Google Scholar 

  19. Höfler A (1976) Formoptimierung von leichtbaufachwerken durch einsatz einer evolutionsstrategie. PhD thesis, Technical University of Berlin

  20. Jünger M, Reinelt G, Rinaldi G (1995) The traveling salesman problem. In: Ball M O, Magnanti T L, Monma C L, Nemhauser G L (eds) Handbooks in operations research and management science, North Holland, Amsterdam, chap , pp 225–330

  21. Kashan AH, Akbari AA, Ostadi B (2015) Grouping evolution strategies: an effective approach for grouping problems. Appl Math Model 39(9):2703–2720

    Article  MathSciNet  Google Scholar 

  22. Makhoul A, Saadi R, Pham C (2009) Adaptive scheduling of wireless video sensor nodes for surveillance applications. In: Proceedings of the 4th ACM workshop on Performance monitoring and measurement of heterogeneous wireless and wired networks, ACM, pp 54–60

  23. Merz P, Freisleben B (1999) Fitness landscapes and memetic algorithm design. New ideas in optimization pp 245–260

  24. Mezura-Montes E, Aguirre AH, Coello CAC (2005) Using evolution strategies to solve constrained optimization problems. In: Evolutionary algorithms and intelligent tools in engineering optimization. WIT Press, CIMNE Barcelona, pp 1–25

  25. Nawaz M, Enscore EE, Ham I (1983) A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1):91–95

    Article  Google Scholar 

  26. Pan QK, Tasgetiren MF, Liang YC (2008) A discrete differential evolution algorithm for the permutation flowshop scheduling problem. Comput Ind Eng 55(4):795–816

    Article  Google Scholar 

  27. Pan QK, Tasgetiren MF, Suganthan PN, Chua TJ (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inform Sci 181(12):2455–2468

    Article  MathSciNet  Google Scholar 

  28. Rahimi M, Baer R, Iroezi OI, Garcia JC, Warrior J, Estrin D, Srivastava M (2005) Cyclops: In situ image sensing and interpretation in wireless sensor networks. In: Proceedings of the 3rd international conference on Embedded networked sensor systems, ACM, pp 192–204

  29. Rahnamayan S, Tizhoosh HR, Salama MM (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79

    Article  Google Scholar 

  30. Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann Holzboog Verlag, Stuttgart

    Google Scholar 

  31. Reinelt G (1991) The traveling salesman: computational solutions for TSP applications. Springer, Berlin

    Google Scholar 

  32. Rodríguez FJ, Lozano M, García-Martínez C, González-Barrera JD (2013) An artificial bee colony algorithm for the maximally diverse grouping problem. Inform Sci 230:183–196

    Article  MathSciNet  Google Scholar 

  33. Rodzin S, Rodzina O (2015) New computational models for big data and optimization. In: 2015 9th international conference on application of information and communication technologies (AICT), IEEE, pp 3–7

  34. Rossi A, Sevaux M, Singh A, Geiger MJ (2011) On the cover scheduling problem in wireless sensor networks. In: Network optimization, LNCS, vol 6701. Springer, Berlin, pp 657–668

    MATH  Google Scholar 

  35. Rossi A, Singh A, Sevaux M (2013) Lifetime maximization in wireless directional sensor network. Eur J Oper Res 231(1):229–241

    Article  Google Scholar 

  36. Ruiz R, Stützle T (2007) A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur J Oper Res 177(3):2033–2049

    Article  Google Scholar 

  37. Schwefel HP (1975) Binäre optimierung durch somatische mutation. TU Berlin und Medizinische Hochschule Hannover

  38. Schwefel HP (1975) Evolutionsstrategie und numerische optimierung. PhD thesis, Technische Universität Berlin

  39. Schwefel HP (1977) Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, vol 26 of Interdisciplinary Systems Research. Birkhäuser, Basel/Stuttgart

    Book  Google Scholar 

  40. Singh A, Rossi A (2013) A genetic algorithm based exact approach for lifetime maximization of directional sensor networks. Ad Hoc Netw 11(3):1006–1021

    Article  Google Scholar 

  41. Singh A, Rossi A (2015) Group scheduling problems in directional sensor networks. Eng Optim 47 (12):1651–1669

    Article  MathSciNet  Google Scholar 

  42. Solnon C (2002) Boosting aco with a preprocessing step. In: Workshops on applications of evolutionary computation, vol 2279. Springer, New York, pp 163–172

    Google Scholar 

  43. Szewczyk R, Mainwaring A, Polastre J, Anderson J, Culler D (2004) An analysis of a large scale habitat monitoring application. In: Proceedings of the 2nd international conference on Embedded networked sensor systems, ACM, pp 214–226

  44. Taillard E (1990) Some efficient heuristic methods for the flow shop sequencing problem. Eur J Oper Res 47 (1):65–74

    Article  MathSciNet  Google Scholar 

  45. Tasgetiren MF, Pan QK, Suganthan PN, Chen AH (2011) A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops. Inform Sci 181(16):3459–3475

    Article  MathSciNet  Google Scholar 

  46. Wierstra D, Schaul T, Glasmachers T, Sun Y, Peters J, Schmidhuber J (2014) Natural evolution strategies. J Mach Learn Res 15(1):949–980

    MathSciNet  MATH  Google Scholar 

  47. Xu Q, Guo L, Wang N, Pan J, Wang L (2014) A novel oppositional biogeography-based optimization for combinatorial problems. In: 2014 10th international conference on natural computation (ICNC), IEEE, pp 412–418

  48. Xu Q, Wang L, Wang N, Hei X, Zhao L (2014) A review of opposition-based learning from 2005 to 2012. Eng Appl Artif Intell 29:1–12

    Article  Google Scholar 

  49. Yang H, Li D, Chen H (2010) Coverage quality based target-oriented scheduling in directional sensor networks. In: 2010 IEEE international conference on communications (ICC), IEEE, pp 1–5

  50. Zhao J, Lv L, Sun H (2015) Artificial bee colony using opposition-based learning. In: Proceeding of the eighth international conference on genetic and evolutionary computing, AISC, vol 329. Springer, Berlin, pp 3–10

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the four anonymous reviewers for their valuable comments and suggestions which helped in improving the quality of this manuscript. The first author acknowledges the financial support received from the Council of Scientific & Industrial Research, Government of India in the form of a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, G., Singh, A. Boosting an evolution strategy with a preprocessing step: application to group scheduling problem in directional sensor networks. Appl Intell 48, 4760–4774 (2018). https://doi.org/10.1007/s10489-018-1252-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1252-9

Keywords

Navigation