Skip to main content

Advertisement

Log in

Optimal generation scheduling and dispatch of thermal generating units considering impact of wind penetration using hGWO-RES algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In order to achieve paramount economy, hybrid renewable energy sources are gaining importance, as renewable sources are costless. Over the past few years wind energy incorporation drew more consideration in the electricity market, as wind power took an affirmative role in energy saving as well as sinking emission pollutants. Recently developed Grey wolf optimizer (GWO) algorithm has conspicuous behavior for verdicting global optima, without getting ensnared in premature convergence. In the proposed research the exploitation phase of the grey wolf optimizer has been further improved using random exploratory search algorithm, which uses perturbed solutions vectors along with previously generated solution vectors. The paper presents a hybrid version of Grey Wolf Optimizer algorithm combined with random exploratory search algorithm (hGWO-RES) for the solution of combinatorial scheduling and dispatch problem of electric power systems. To validate the feasibility of the algorithm, the proposed algorithm has been tested on 23 benchmark problems. To verify the feasibility and efficacy of operation of proposed algorithm on generation scheduling and dispatch of electric power systems, small and medium scale power systems consisting of 7-, 10-, 19-, 20- and 40-generating units systems taken into consideration. Commitment and scheduling pattern has been evaluated with and without wind integration and it has been experimentally founded that proposed hybrid algorithm provides superior solution as compared to other recently reported meta-heuristics search algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  2. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  3. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  4. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  5. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Applic 27(2):495–513

    Article  Google Scholar 

  6. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Applic 27(4):1053–1073

    Article  Google Scholar 

  7. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  8. Shareef H, Ibrahim AA, Mutlag AH (2015) Lightning search algorithm. Appl Soft Comput 36:315–333

    Article  Google Scholar 

  9. Chaohua D, Weirong C, Yunfang Z (2007) Seeker optimization algorithm. 2006 Int. Conf. Comput. Intell. Secur. ICCIAS 2006, vol. 1, p 225–229

  10. Li MD, Zhao H, Weng XW, Han T (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–88

    Article  Google Scholar 

  11. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  12. Bayraktar Z, Komurcu M, Werner DH (2010) Wind Driven Optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. 2010 IEEE Int. Symp. Antennas Propag. CNC-USNC/URSI Radio Sci. Meet. - Lead. Wave, AP-S/URSI 2010, no. 1, p 0–3

  13. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166

    Article  Google Scholar 

  14. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  15. Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  16. Gonçalves MS, Lopez RH, Miguel LFF (2015) Search group algorithm: a new metaheuristic method for the optimization of truss structures. Comput Struct 153:165–184

    Article  Google Scholar 

  17. Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl-Based Syst 75:1–18

    Article  Google Scholar 

  18. Merrikh-Bayat F (2015) The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl Soft Comput 33:292–303

    Article  Google Scholar 

  19. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  20. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154

    Article  MathSciNet  Google Scholar 

  21. Yang X-S (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, Springer, p 240-249

  22. Husseinzadeh Kashan A (2014) A new metaheuristic for optimization: optics inspired optimization (OIO). Comput Oper Res 55:99–125

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuo HC, Lin CH (2013) Cultural evolution algorithm for global optimizations and its applications. J Appl Res Technol 11(4):510–522

    Article  Google Scholar 

  24. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  25. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183

    Article  Google Scholar 

  26. Kaveh A, Mahdavi VR (2015) Colliding bodies optimization: extensions and applications. Colliding Bodies Optim Extensions Appl, p 1–284

  27. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  28. Mohseni S, Gholami R, Zarei N, Zadeh AR (2014) Competition over resources: a new optimization algorithm based on animals behavioral ecology. 2014 Int. Conf. Intell. Netw. Collab. Syst., p 311–315

  29. Nakamura RYM, Pereira LAM, Costa KA, Rodrigues D, Papa JP, Yang XS (2012) BBA: a binary bat algorithm for feature selection. Brazilian Symp. Comput. Graph. Image Process., p 291–297

  30. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Article  Google Scholar 

  31. Du D, Simon D, Ergezer M (2009) Biogeography-based optimization combined with evolutionary strategy and immigration refusal. In: IEEE Proc International Conference on Systems, p 997–1002

  32. Mareli M, Twala B (2017) An adaptive cuckoo search algorithm for optimisation. Appl Comput Informatics

  33. Yang X-S. (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010), Springer, p 65-74

  34. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Applic 24(7–8):1867–1877

    Article  Google Scholar 

  35. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232

    Article  MATH  Google Scholar 

  36. Cohen AI, Yoshimura M (1983) A branch-and-bound algorithm for unit commitment. IEEE Trans Power App Syst 102(2):444–451

    Article  Google Scholar 

  37. Kothari DP, Ahmad A (1995) An expert system approach to the unit commitment problem. Energy Convers Manag 36(4):257–261

    Article  Google Scholar 

  38. Kazarlis SA, Bakirtzis AG, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst 11(1):83–92

    Article  Google Scholar 

  39. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSA: binary gravitational search algorithm. Nat Comput 9(3):727–745

    Article  MathSciNet  MATH  Google Scholar 

  40. Cuevas E, González M, Zaldivar D, Pérez-Cisneros M, García G (2012) An algorithm for global optimization inspired by collective animal behavior. Discret Dyn Nat Soc 2012

  41. Meng XB, Gao XZ, Lu L, Liu Y, Zhang H (2016) A new bio-inspired optimisation algorithm: bird swarm algorithm. J Exp Theor Artif Intell 28(4):673–687

    Article  Google Scholar 

  42. Li M, Zhao H, Weng X, Han T (2016) Cognitive behavior optimization algorithm for solving optimization problems. Appl Soft Comput 39:199–222

    Article  Google Scholar 

  43. Abedinpourshotorban H, Mariyam Shamsuddin S, Beheshti Z, Jawawi DNA (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol Comput 26:8–22

    Article  Google Scholar 

  44. Tan Y, Tan Y, Zhu Y (2015) Fireworks algorithm for optimization fireworks algorithm for optimization. 355–364

  45. Zheng YJ (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res 55:1–11

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio Inspir Com 1(1):1

    Article  Google Scholar 

  47. Ghaemi M, Feizi-Derakhshi MR (2014) Forest optimization algorithm. Expert Syst Appl 41(15):6676–6687

    Article  Google Scholar 

  48. Erlich I, Venayagamoorthy GK, Worawat N (2010) A mean-variance optimization algorithm. 2010 IEEE World Congr. Comput. Intell. WCCI 2010 - 2010 IEEE Congr. Evol. Comput. CEC 2010

  49. Husseinzadeh Kashan A (2014) League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships. Appl Soft Comput 16:171–200

    Article  Google Scholar 

  50. Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  51. Wang GG, Deb S, Coelho LDS (2016) Elephant herding optimization. Proc. - 2015 3rd Int. Symp. Comput. Bus. Intell. ISCBI 2015, p 1–5

  52. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  53. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. 2007 IEEE Congr Evol Comput CEC 2007, p 4661–4667

  54. Karimkashi S, Kishk AA (2010) Invasive weed optimization and its features in electromagnetics. IEEE Trans Antennas Propag 58(4):1269–1278

    Article  Google Scholar 

  55. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, p 1942–1948

  56. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  57. Bavafa F, Azizipanah-Abarghooee R, Niknam T (2014) New self-adaptive bat-inspired algorithm for unit commitment problem. IET Sci Meas Technol 8(6):505–517

    Article  Google Scholar 

  58. Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Applic 25(7–8):1569–1584

    Article  Google Scholar 

  59. Mirjalili S, Wang G-G, Coelho L d S (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Applic 25(6):1423–1435

    Article  Google Scholar 

  60. Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-based optimizer train your multi-layer perceptron. Inf Sci 269:188–209

    Article  MathSciNet  Google Scholar 

  61. Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl Soft Comput 19:177–187

    Article  Google Scholar 

  62. Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach for optimization problems. Eng Sci Technol Int J 20(6):1586–1601

    Article  Google Scholar 

  63. Dai C, Chen W, Ran L, Zhang Y, Du Y (2011) Human group optimizer with local search. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics), vol 6728 LNCS, no PART 1:310–320

  64. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Hoboken

    MATH  Google Scholar 

  65. Dhillon JS, Kothari DP (2010) Power system optimization, 2nd edn. Prentice Hall India, New Delhi

    Google Scholar 

  66. Wood AJ, Wollenberg BF (1996) Power generation, operation, and control. Wiley, Hoboken

    Google Scholar 

  67. Guan Y, Wang Y, Tan Z (2012) Environmental protection and security considered dynamic economic dispatch for wind farm integrated systems. In: 2012 Asia-Pacific Power and Energy Engineering Conference, p 1–4

  68. Tewari S, Geyer CJ, Mohan N (2011) A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized markets. IEEE Trans Power Syst 26(4):2031–2039

    Article  Google Scholar 

  69. Zhang Z-S, Sun Y-Z, Gao DW, Lin J, Cheng L (Aug. 2013) A versatile probability distribution model for wind power forecast errors and its application in economic dispatch. IEEE Trans. Power Syst. 28(3):3114–3125

    Article  Google Scholar 

  70. Jadhav HT, Bhatia M, Roy R (2011) An application of craziness based shuffled frog leaping algorithm for wind-thermal generation dispatch considering emission and economy. In: 2011 10th International Conference on Environment and Electrical Engineering, p 1–4

  71. De Giorgi MG, Ficarella A, Tarantino M (2011) Error analysis of short term wind power prediction models. Appl Energy 88(4):1298–1311

    Article  Google Scholar 

  72. Bludszuweit H, Dominguez-Navarro JA, Llombart A (2008) Statistical analysis of wind power forecast error. IEEE Trans Power Syst. 23(3):983–991

    Article  Google Scholar 

  73. Zhang N, Kang C, Xia Q, Liang J (2014) Modeling conditional forecast error for wind power in generation scheduling. IEEE Trans Power Syst. 29(3):1316–1324

    Article  Google Scholar 

  74. Bruninx K, Delarue E (2014) A statistical description of the error on wind power forecasts for probabilistic reserve sizing. IEEE Trans Sustainable Energy 5(3):995–1002

    Article  Google Scholar 

  75. Lyu J-K, Heo J-H, Kim M-K, Park J-K (2013) Impacts of wind power integration on generation dispatch in power systems. J Electr Eng Technol 8(3):453–463

    Article  Google Scholar 

  76. Sturt A, Strbac G (2012) Efficient stochastic scheduling for simulation of wind-integrated power systems. IEEE Trans Power Syst. 27(1):323–334

    Article  Google Scholar 

  77. Ravi CN, Selvakumar G, Christober C, Rajan A Hybrid real coded genetic algorithm - differential evolution for optimal power flow

  78. Zhang Y, Yao F, Iu HHC, Fernando T, Trinh H (2015) Wind–thermal systems operation optimization considering emission problem. Int J Electr Power Energy Syst 65:238–245

    Article  Google Scholar 

  79. Hou J, Guo J, Liu J (2016) An economic load dispatch of wind-thermal power system by using virtual power plants, 2016 35th Chinese Control Conf., p 8704–8709

  80. Ardabili M (2014) Optimal thermal generating unit commitment with wind power impact : a PSO-IIW procedure

  81. Bhatt A, Shrivastava A, Pandit M, Dubey HM (2014) Cost and profit optimization of integrated wind-thermal system by dynamic dispatch using swarm intelligence. In: International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), p 1–6

  82. Lu M, Zhao M (2013) The research of wind-thermal power random multi-objective scheduling based on combined MIPSO. Int J Hybrid Inf Technol 6(6):359–368

    Article  Google Scholar 

  83. Chaudhary V, Pandit M, Dubey HM Optimal operation of wind-thermal generation using differential evolution. IOSR J Electr Electron Eng 5(4):2278–1676

  84. Wolpert DH, William GM, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  85. John H (1992) Holland, adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  86. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. 1997 IEEE Int Conf Syst Man, Cybern Comput Cybern Simul, vol. 5, p 4104–4108

  87. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. 3:82

  88. Ji B, Yuan X, Chen Z, Tian H (2014) Improved gravitational search algorithm for unit commitment considering uncertainty of wind power. Energy 67:52–62

    Article  Google Scholar 

  89. Zhao B, Guo CX, Bai BR, Cao YJ (2006) An improved particle swarm optimization algorithm for unit commitment. Int J 28:482–490

    Google Scholar 

  90. Juste K a, Kita H, Tanaka E, Hasegawa J (1999) An evolutionary programming solution to the unit commitment problem. IEEE Trans Power Syst 14(4):1452–1459

    Article  Google Scholar 

  91. Vaisakh K, Srinivas LR (2011) Evolving ant colony optimization based unit commitment. Appl Soft Comput 11(2):2863–2870

    Article  Google Scholar 

  92. Ting TO, Rao MVC, Loo CK (2006) A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Trans Power Syst. 21(1):411–418

    Article  Google Scholar 

  93. Eslamian M, Ahosseinian AA, Vahidi B (2009) Bacterial foraging based solution to the unit commitment problem. IEEE Trans 24(3):1478–1488

    Google Scholar 

  94. Yuan X, Su A, Nie H, Yuan Y, Wang L (2009) Application of enhanced discrete differential evolution approach to unit commitment problem. Energy Convers Manag 50(9):2449–2456

    Article  Google Scholar 

  95. Shukla A, Singh SN (2016) Clustering based unit commitment with wind power uncertainty. Energy Convers Manag 111:89–102

    Article  Google Scholar 

  96. Bavafa F, Niknam T, Azizipanah-Abarghooee R, Terzija V (2017) A new biobjective probabilistic risk-based wind-thermal unit commitment using heuristic techniques. IEEE Trans Ind Inf 13(1):115–124

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to Dr. Seyedali Mirjalili for providing free access to MATLAB code of GWO algorithm on website http://www.alimirjalili.com/GWO.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Kumar Kamboj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadoria, A., Kamboj, V.K. Optimal generation scheduling and dispatch of thermal generating units considering impact of wind penetration using hGWO-RES algorithm. Appl Intell 49, 1517–1547 (2019). https://doi.org/10.1007/s10489-018-1325-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1325-9

Keywords

Navigation