
ar
X

iv
:1

70
5.

05
23

1v
1

 [
cs

.S
Y

]
 1

2
M

ay
 2

01
7

1

Autonomous and Connected Intersection

Crossing Traffic Management using

Discrete-Time Occupancies Trajectory

Qiang Lu, and Kyoung-Dae Kim, Member, IEEE

Abstract

In this paper, we address a problem of safe and efficient intersection crossing traffic management of

autonomous and connected ground traffic. Toward this objective, we propose an algorithm that is called

the Discrete-time occupancies trajectory based Intersection traffic Coordination Algorithm (DICA). We

first prove that the basic DICA is deadlock free and also starvation free. Then, we show that the basic

DICA has a computational complexity of O(n2L3

m
) where n is the number of vehicles granted to

cross an intersection and Lm is the maximum length of intersection crossing routes. To improve the

overall computational efficiency of the algorithm, the basic DICA is enhanced by several computational

approaches that are proposed in this paper. The enhanced algorithm has the computational complexity

of O(n2Lm log
2
Lm). The improved computational efficiency of the enhanced algorithm is validated

through simulation using an open source traffic simulator, called the Simulation of Urban MObility

(SUMO). The overall throughput as well as the computational efficiency of the enhanced algorithm are

also compared with those of an optimized traffic light control.

Index Terms

Autonomous Vehicles, Intelligent Intersection Management, Discrete-Time Occupancies Trajectory

(DTOT), Computational Complexity

Qiang Lu and Kyoung-Dae Kim are with the Department of Electrical and Computer Engineering, University of Denver,

Denver, CO, 80210 USA e-mails: qiang.lu@du.edu, kyoung-dae.kim@du.edu.

May 16, 2017 DRAFT

http://arxiv.org/abs/1705.05231v1

2

LIST OF FIGURES

1 DTOTs of two conflicting vehicles . 6

2 Interaction between an AV and the ICA. 7

3 Example situations of front vehicles . 11

4 Two different cases for shortest intersection crossing time (Tm) calculation 18

5 Approximate occupancy time interval calculation for a vehicle with the through route 20

6 A screenshot of simulation . 25

7 Computation times comparison . 27

8 The number of vehicles which wait to cross the intersection over time. 28

9 Histogram of the inter-vehicle distance within the intersection. 29

10 Performance comparison between enhanced DICA and optimized traffic light 30

11 Flow rate ratio when traffic volume changes from 100 to 500. 32

May 16, 2017 DRAFT

3

I. INTRODUCTION

Over the past decades, the vision for autonomous vehicles and autonomous ground traffic systems

has indeed attracted a lot of attention and has catalyzed unprecedented research and development efforts

from academia, industry, government, etc. Some examples are the California PATH Automated Highway

System (AHS) program [1] during the mid of 1990s and also the series of DARPA (Defense Advanced

Research Projects Agency) Challenges [2] that have happened during the 2000s. Many automobile

companies are also investing huge amounts of money in developing their own self-driving vehicles or

vehicles with many advanced driving assistance systems [3]. However, despite many recent successful

road testing results of several self-driving cars such as Google driverless car [4], it is hard to argue that

the overall system-wide traffic safety as well as throughput will be improved substantially when we have

a few autonomous vehicles among all other conventional vehicles. In fact, the potential of autonomous

vehicles in terms of the traffic efficiency and safety will be unleashed when most cars on roads are

autonomous and connected. Thus, in addition to many efforts to make today’s traffic more efficient by

improving utilization of traditional traffic infrastructure such as the work presented in [5], we believe

that it is also very important to develop traffic control algorithms that take advantages of connectivity

and autonomy of autonomous vehicles to prepare for the next generation transportation system. However,

while there have been many efforts toward this direction, the development of safe and efficient autonomous

transportation systems is still at its early stage. In this paper, among many research problems like vehicle

path planning [6], autonomous parking control [7], collision avoidance [8], [9], relation between occupant

experience and intersection capacity [10], intersection management of mixed traffic [11] etc. that should

be addressed toward this objective, we are particularly interested in addressing a problem of safe and

efficient intersection crossing traffic management of autonomous connected traffic since intersections are

certainly the most critical traffic environments from the perspective of safety as well as throughput.

In literature, there are a number of notable results for autonomous intersection crossing traffic man-

agement. In [12], Lee et al. proposed an algorithm, called the Cooperative Vehicle Intersection Control

(CVIC), which manipulates every individual vehicle’s driving motion by providing them proper accelera-

tion or deceleration rate so that vehicles can cross the intersection safely. Wu et al. [13] introduced a new

intersection traffic management framework that is formulated as a combinatorial optimization problem

and solved the problem approximately using the ant colony system algorithm [14]. Most of them are

centralized approaches in which control decisions are made typically by a central agent. Decentralized

intersection control approaches have also been proposed in literature. For example, [15] formulated a

decentralized framework whereby each autonomous vehicle minimizes its energy consumption under

May 16, 2017 DRAFT

4

the throughput-maximizing timing constraints and hard safety constraints to avoid rear-end and lateral

collisions. A complete analytical solution of the decentralized problems was presented in the paper.

These approaches are similar in that they all ensure safety within an intersection by preventing vehicles

with conflicting intersection crossing routes from being inside the intersection at the same time. To

further improve the overall intersection crossing traffic throughput, some researchers eliminated this

conservative restriction by discretizing an intersection space so that vehicles can exist simultaneously

within an intersection but not within a same discretized space within the intersection. The representative

approach is the reservation-based approach AIM (Autonomous Intersection Management) proposed in

[16]. In AIM, cars request and receive time slots from the intersection during which they may pass.

Similar and improved approaches [17], [18], [19] were also proposed afterwards. For example, [17]

proposed ASL (Advance Stop Location) concept which is a predefined advance stop location other

than the traditional stop line at the entrance of an intersection for a vehicle with rejected reservation.

The slow-reservation-speed issue which increases the total traversal time within the intersection could

be improved by the ASL. Representative centralized approaches also include auction-based intersection

managements proposed in [20], [21]. A decentralized approach based on a vehicle-to-vehicle (V2V)

coordination protocol was proposed in [22]. Roughly speaking, these approaches are all based on the

grid cell partitioning of an intersection space. In [16], the effect of the grid cell granularity on the

computational efficiency of an intersection traffic management framework such as AIM was studied.

Clearly, higher granularity gives more flexibility for better traffic throughput. However, the computational

complexity increases proportionally to the square of the granularity. On the other hand, when the cell size

becomes large for better computational efficiency, one can see that the intersection space is not utilized

efficiently resulting in lower traffic throughput. Therefore, to overcome this trade-off issue between the

granularity and computational efficiency of an algorithm, it might be a good alternative approach to utilize

each vehicle’s actual occupancy instead of grid cells to improve the overall traffic throughput. And this has

motivated our research on this topic. Some other research works on autonomous intersection management

can be found in [13], [23], [24].

As an approach to address the above mentioned granularity issue, we proposed a novel intersection

traffic management scheme in our earlier work [25] based on the idea of the Discrete-Time Occupancies

Trajectory (DTOT). Conceptually, a DTOT is a discrete-time sequence of a vehicle’s actual occupancy

within an intersection space. Hence, a DTOT-based intersection management scheme can utilize the

intersection area much more efficiently than other grid partition based approaches. Furthermore, the

proposed interaction mechanism between an intersection and vehicles allows the flexibility that each

vehicle can choose its path as well as motions along the path that a vehicle wants to take to cross

May 16, 2017 DRAFT

5

an intersection. The management scheme is only dealing with head vehicles which reduces largely the

communication needs for vehicles and the computational complexity of the central control agent. In this

paper, we provide an in-depth analysis of the original DTOT-based Intersection Coordination Algorithm

(DICA) to show that it satisfies the liveness property in terms of deadlock as well as starvation issues and

also to derive the overall computational complexity of the algorithm. Another contribution of this paper is

that we propose several computational approaches to improve the overall computational efficiency of the

DICA and also enhance the algorithm accordingly so that it can be operated in real-time for autonomous

and connected intersection crossing traffic management. We also present simulation results that show the

improved computational efficiency of the enhanced algorithm and the overall throughput performance in

comparison with that of an optimized traffic light control.

The rest of this paper is organized as follows: In Section II, we introduce the main ideas, concepts,

assumptions, notations, and also the basic algorithm, called DICA in short, developed for the DTOT-

based intersection crossing traffic management. In Section III, we show that the basic DICA is deadlock

and also starvation free. In this section, we also discuss in detail about the computational complexity of

the algorithm. Several approaches to improve the overall computational efficiency of the algorithm are

discussed in Section IV. The overall computational efficiency as well as the throughput performance of

the enhanced algorithm are evaluated through simulations in Section V. Finally, Section VI concludes

this paper.

II. DTOT-BASED INTERSECTION TRAFFIC MANAGEMENT

In this section, we introduce the basic idea and algorithm of the DTOT-based intersection management

scheme that is developed for autonomous and connected intersection crossing traffic in which all vehicles

are autonomous vehicles (AVs) and capable of wireless vehicular communication. We assume that an

intersection is also equipped with wireless communication capability as well as a computation unit so

that it can exchange information with vehicles and perform necessary computations to coordinate vehicles

to cross the intersection safely. At an intersection, there is no traffic light that controls the intersection

crossing traffic. Instead, each vehicle communicates with the intersection, which we call the Intersection

Control Agent (ICA) from now on, to get permission to access the intersection. As shown in Figure 1, an

intersection consists of two regions. The bigger region in the figure, which we call the communication

region, is defined by the wireless vehicular communication range. The smaller region in the figure, which

we call the intersection region, is the area within an intersection that is shared by all roads connected to the

intersection. We also assume that each vehicle is equipped with an RFID (Radio Frequency IDentification)

chip and there are detectors installed at the entrance of the communication region so that ICA can detect

May 16, 2017 DRAFT

6

Vehicle vi

Vehicle vj

The enter line of

the lane vehicle

vi is in

Communication region

jO1

jO2
jO3

jO4

jO5

jO6

jO7

iO1

iO2

iO3

iO4

iO5

iO6

Intersection region

Figure 1: DTOTs of two conflicting vehicles. (Op
q represents the q-th occupancy in a vehicle vp’s DTOT.

Note that occupancies in this figure are intentionally made very sparse for clear illustration purpose.

DTOT starts with the occupancy in which the vehicle’s front bumper first contacts the enter line of its

lane of an intersection, and ends with the occupancy that the vehicle is completely out of the intersection

region.)

each vehicle’s identification number (VIN), the lane on which a vehicle is approaching an intersection, and

the time when a vehicle enters the communication region. Since all vehicles are autonomous, we assume

that each vehicle can obtain its position, speed, and the relative distance to an intersection precisely

and also can avoid collisions with other vehicles autonomously when it is approaching an intersection.

With regard to wireless vehicular connectivity, we only require information exchange between AVs and

ICA. Thus, there is no V2V communication. Since the focus of this paper is to develop an algorithm

for ICA for safer and higher throughput intersection crossing traffic, we simply assume that we have an

ideal wireless vehicular communication performance such that all data packages are exchanged correctly

and timely. However, it is important to note that, despite such an ideal communication assumption, our

DTOT-based algorithm can still be applicable in practice with small modifications of the algorithm to

take into account the communication unreliability thanks to the above mentioned information collection

May 16, 2017 DRAFT

7

mechanism through detectors.

A. Interaction between ICA and AV

In the autonomous and connected intersection traffic considered in this paper, an AV and ICA start to

interact with each other by exchanging some messages through vehicular wireless communication when

the AV enters into the communication range of ICA. As shown in Figure 2, an AV and ICA exchange

some specific types of messages for their intersection crossing coordination. The interaction is initiated

from an AV by sending a message, called a REQUEST, to reserve a sequence of space and time to

cross the intersection. Each REQUEST message contains information that is necessary for a vehicle’s

space-time reservation for its intersection crossing such as (i) the VIN, (ii) the Vehicle Size (VS) that

is simply a vehicle’s length and width, and (iii) a vehicle’s discrete time state trajectory, which we call

the Timed State Sequence (TSS), starting from the entrance of an intersection region to the moment

when the vehicle crosses the intersection region completely. Note that it is implicitly assumed that each

discrete time state of a vehicle in TSS is also timed. This means that if a vehicle state xt is given, then

we can say that a vehicle possesses the state x at time t. For simplicity of our discussion, we simply

assume that the state x of a vehicle consists of the (x, y) coordinate of the vehicle’s location and the

orientation θ. We also assume that, while it is possible that each vehicle can have different sampling

period to generate its TSS, all vehicles use the same sampling period which is small enough to generate

a close approximation of the vehicle’s actual continuous motion within an intersection.

Follow the traffic

Follow the traffic

Send RESPONSE

Inside communication region
DICA

Become a head

vehicle

Follow confirmed

DTOT

Out of intersection region

Convert TSS to

DTOT

Adjust DTOT if

needed

Confirm DTOT

Send REQUEST

AV ICA

Figure 2: Interaction between an AV and the ICA.

May 16, 2017 DRAFT

8

As shown in Figure 2, an AV will send REQUEST message to ICA only when it becomes a head

vehicle. A vehicle is considered a head vehicle on its lane if either there are no vehicles in front of it or the

vehicle which is immediately in front of it has begun to enter the intersection region. Note that ICA also

knows whether a vehicle is a head vehicle or not according to the list of vehicles for each lane. Thus, a

REQUEST message not from a head vehicle will be neglected by ICA. The list can be constructed in ICA

since, as explained earlier, ICA knows each vehicle’s VIN, the lane on which the vehicle is approaching,

and the time when a vehicle passes a detector installed at the boundary of the communication region of

an intersection. To respond to a REQUEST message from a head vehicle, ICA first converts the TSS to

the corresponding DTOT using the VS information which is also contained in the received REQUEST

message. Based on the length and width of a vehicle consisted in the VS, a DTOT is simply a sequence

of timed rectangular spaces that a vehicle needs to occupy within an intersection region to cross the

intersection. Now, ICA uses DTOT to determine whether the requested DTOT can be accepted or not.

If ICA finds any potential risk of collision with the request, then it adjusts the requested DTOT slightly

in order to eliminate collisions. And then ICA confirms the adjusted collision-free DTOT and sends it

back to the vehicle using a RESPONSE message so that the vehicle can follow the confirmed DTOT to

cross the intersection. Note that when ICA sends a RESPONSE message to a vehicle, it actually sends

the confirmed TSS not the confirmed DTOT. More detailed explanation on how to process the requested

TSS to generate a confirmed DTOT is presented in the following section. In the sequel, we say that a

vehicle is a confirmed vehicle if it has received a confirmed DTOT from ICA. And we assume that every

vehicle is able to follow the confirmed DTOT precisely.

B. DTOT-based Intersection Traffic Coordination

ICA processes a REQUEST message from a head vehicle according to the procedures shown in

Algorithm 1 which we call the DTOT-based Intersection traffic Coordination Algorithm (DICA). As

shown in the algorithm, DICA uses a few sets and notations. We use TSS(v) to denote a TSS and

DTOT(v) to denote a DTOT for a vehicle v respectively. We also use S to denote the set of vehicles

which have already been confirmed at the time when a REQUEST message is being processed. We

say that two vehicles are space-time conflicting if their trajectories are conflicting not only in space but

also in time. More precisely, two vehicles are considered to be in space-time conflict in our algorithm

when their DTOTs have at least one pair of occupancies that are conflict in both space and time. We

use another set C in Algorithm 1 to represent the subset of S which contains the set of vehicles whose

confirmed DTOTs have space-time conflict with the DTOT of the vehicle that is currently being processed

for confirmation. Vehicles in C are ordered in ascending order of a certain attribute of their confirmed

May 16, 2017 DRAFT

9

Algorithm 1 DICA (DTOT-based Intersection traffic Coordination Algorithm)

1: Let S be the set of confirmed vehicles and n = |S|.

2: Let vi be the vehicle to be considered for confirmation.

3: Convert TSS(vi) to DTOT (vi)

4: Call checkFV(S,DTOT (vi)) → DTOT (vi)

5: Call getCV(S,DTOT (vi)) → C

6: while C 6= ∅ do

7: Pop the first vehicle in C → vj

8: Call updateDTOT(DTOT (vi),DTOT (vj)) → DTOT (vi)

9: Call getCV(S,DTOT (vi)) → C

10: end while

11: Store DTOT (vi) for vehicle vi

12: Convert DTOT (vi) to TSS(vi)

13: Send TSS(vi) to vehicle vi

DTOTs. To explain this attribute more clearly, let us consider a situation when DICA processes a vehicle

vi’s DTOT and there are two vehicles vj and vk in the set C. Now let us suppose that DTOT(vj)

starts to space-time conflict with DTOT(vi) from its n-th occupancy and DTOT(vk) starts to space-

time conflict with DTOT(vi) from its m-th occupancy. If we use Op
q to denote the q-th occupancy

within DTOT(vp) and τ(Op
q) be the time when the vehicle vp occupies Op

q , then we say that, in this

particular situation, τ(Oj
n) is the first time at which vj starts to collide with vi. Similarly, τ(Ok

m) is

the time at which vk starts to collide with vi. In the sequel, this specific time instant for each vehicle

in C is represented by the variable ‘firstTimeAtCollision’. In this particular situation, τ(Oj
n) and τ(Ok

m)

are denoted by vj .f irstT imeAtCollision and vk.f irstT imeAtCollision, respectively. Vehicles in the

set C are ordered according to this variable. Specifically, if vj.f irstT imeAtCollision is earlier than

vk.f irstT imeAtCollision, then vj gets higher priority than vk and vice versa. To see more clearly how

the ‘firstTimeAtCollision’ is determined, we can consider an illustrative example shown in Figure 1. In

the figure, DTOT(vi) and DTOT(vj) have space conflicts in {Oi
2, O

i
3} and {Oj

5
, Oj

6
,}. If we assume that

these occupancies are also conflicting in time, then vj .f irstT imeAtCollision with respect to the vehicle

vi is τ(Oj
5
).

As shown in Algorithm 1, when ICA receives a REQUEST message from a head vehicle vi, it

first converts the TSS(vi) into the corresponding DTOT(vi) using the vehicle’s VS. Then ICA calls

May 16, 2017 DRAFT

10

the function checkFV() to determine if there exist front vehicles (See Section II-B1 for more details

about front vehicles.) that affect the vehicle vi’s motion and also to adjust vi’s DTOT if needed. Then

the function getCV() is called to determine the set C which is the set of vehicles whose DTOTs are

space-time conflicting with DTOT(vi). The updateDTOT() function adjusts DTOT(vi) appropriately so

that DTOT(vi) avoids space-time conflict with other vehicle’s DTOT. These two functions are iteratively

called within the while loop until the set C becomes empty, which indicates that no vehicles in the set

C will collide with the vehicle vi. After DTOT(vi) is appropriately adjusted and confirmed that there is

no space-time conflict with all other confirmed vehicles, then the confirmed DTOT(vi) is converted into

TSS(vi). Finally, ICA sends the confirmed TSS(vi) back to the vehicle vi so that the vehicle can cross

the intersection safely by following the confirmed DTOT. In the following sections, we provide more

detailed explanation on several functions called within DICA.

1) Collision Avoidance with Front Vehicles: As shown in Figure 3, there are two types of front vehicles

when a vehicle vi is approaching and crossing an intersection. In DICA, a vehicle is considered as a

front vehicle of vi if the vehicle comes from another lane but has the same exit lane as vehicle vi or the

vehicle is immediately in front of vi and has the exact same intersection crossing route as that of vi. For

a vehicle vi, if there is another confirmed vehicle whose exit lane is the same as that of vehicle vi and

will exit the intersection earlier, then they may collide immediately after crossing the intersection if the

speed of vehicle vi is higher than that of the other confirmed vehicle. To address this problem, AIM [16]

adopted a simple strategy which gives one second separation time between these two vehicles. However,

it is important to note that the separation time should depend on the speeds of the two vehicles. Hence,

instead of using a fixed separation time approach, we use an approach that restricts the maximum speed

of a following vehicle by the speed of the front vehicle. In the example situation (a) shown in Figure 3,

the vehicle vi’s maximum allowed speed within an intersection is restricted by the front vehicle’s exit

speed. If there is another confirmed vehicle that has the same intersection crossing route as vehicle vi,

we adjust vi’s speed to leave adequate distance between them. In Algorithm 1, the function checkFV()

looks for the existence of above mentioned front vehicles from all confirmed vehicles and delay the new

head vehicle to avoid potential collisions if needed.

2) Vehicles for Collision Avoidance: The function getCV() returns the set C that contains vehicles

which will cause potential collisions inside the intersection with vehicle vi. To better understand the

operation of function getCV(), it is necessary to introduce the way we check the space-time conflict

between two occupancies from DTOTs of two vehicles. For every individual occupancy in a DTOT

of a vehicle, we define the entrance time (τlb) and the exit time (τub) of the occupancy as the times

when the vehicle first contacts and is totally out of the occupancy. These two times can be estimated

May 16, 2017 DRAFT

11

Vehicle vi

(a)

Vehicle vi

(b)

i

Figure 3: Example situations of front vehicles: (a) vehicles with different routes but same exit lane, and

(b) vehicles with same intersection crossing routes.

by taking the times of the previous and next occupancies which are the closest to the occupancy while

having no overlapping area. As an example, for the occupancy Oj
4

of the vehicle vj in Figure 1, the

entrance time τlb(O
j
4
) and the exit time τub(O

j
4
) of that occupancy can be determined by τ(Oj

2
) and

τ(Oj
6
), respectively. Note that a DTOT for a vehicle consists of many more numbers of occupancies in

practice. Hence, the entrance times and exit times determined in this way can be very close to the actual

entrance and exit times of the occupancy. For the first several occupancies in a DTOT, there may not be

a previous occupancy that has no overlapping area with themselves. For these occupancies, we simply

take the first occupancy’s time in the DTOT as these occupancies’ entrance time. As an example shown

in Figure 1, we use τ(Oj
1
) as the entrance time τlb(O

j
2
) for the occupancy Oj

2
. Similarly, we take the last

occupancy’s time as the exit time τub for the last several occupancies in a DTOT.

As shown in Algorithm 2, the function getCV() determines the set C by checking space-time conflict

for every pair of occupancies (Oi
n, O

j
m) for all n,m, and j in the set S . Since an occupancy in a DTOT is

represented as a rectangle, it is relatively straightforward to do space conflict checking. For this, Algorithm

2 simply checks if two rectangles have non-empty intersection or not. If a pair of occupancies (Oi
n, O

j
m)

are space-conflicting, then the function continues to investigate these occupancies to determine if they

are in time-conflict as well. The above explained entrance and exit times of an occupancy are used for

this purpose. For a given occupancy O, the function getOTI() calculates these entrance τlb(O) and

exit τub(O) times for that occupancy and returns a corresponding time interval I(O) := [τlb(O), τub(O)]

which we call the occupancy time interval in the sequel. Then the two occupancy time intervals for the

pair of space-conflicting occupancies are compared to determine if these occupancies are also occupied

May 16, 2017 DRAFT

12

around the same time. If a pair of occupancies (Oi
n, O

j
m) are conflicting in both space and time, then

the vehicle vj is included in the set C and the corresponding firstTimeAtCollision is determined so that

the vehicle vj is appropriately ordered within the set C.

Algorithm 2 getCV(S,DTOT (vi))

1: C = ∅

2: for vj in S do

3: for Oj
kj

in DTOT (vj) do

4: if vj not in C then

5: for Oi
ki

in DTOT (vi) do

6: if Oj
kj

∩Oi
ki

6= ∅ then

7: Call getOTI(Oj
kj
) → I(Oj

kj
) := [τlb(O

j
kj
), τub(O

j
kj
)]

8: Call getOTI(Oi
ki

) → I(Oi
ki
) := [τlb(O

i
ki
), τub(O

i
ki
)]

9: if I(Oj
kj
) ∩ I(Oi

ki
) 6= ∅ then

10: Assign τlb(O
j
kj
) → vj .f irstT imeAtCollision

11: Push vj into C

12: Sort C in ascending order of firstTimeAtCollision

13: end if

14: end if

15: end for

16: end if

17: end for

18: end for

3) DTOT Update: The first vehicle v in the set C is the earliest vehicle that is space-time conflicting

with vehicle vi. Then, in line 8 of Algorithm 1, the function updateDTOT() modifies vehicle vi’s

DTOT to avoid collision with vehicle v based on space-time conflicting occupancies between vehicles

vi and v. However, it is still uncertain whether C will be empty or not after this update of avoiding

collision with vehicle v. In fact, it is still possible that the modified DTOT of vehicle vi will be in

space-time conflict with DTOTs of other confirmed vehicles. Hence, to ensure that vehicle vi avoids

collision with all other confirmed vehicles, it is necessary to construct C based on the updated vehicle

vi’s DTOT and update the DTOT again to avoid collision with the first vehicle in the set. This process

is repeated in the while loop in Algorithm 1 until the set C becomes empty which means that vehicle

vi is not conflicting with any confirmed vehicles. Our current strategy for updating a vehicle’s DTOT is

May 16, 2017 DRAFT

13

to delay the vehicle until other confirmed vehicles cross an intersection safely. While it is an interesting

future research problem to develop more sophisticated approaches to improve the overall performance, the

current simple delay strategy is still very effective to ensure collision free intersection traffic. Note that,

since the times of occupancies in a vehicle’s DTOT are always delayed whenever the vehicle’s DTOT is

updated, it is guaranteed that the vehicle can always meet the updated DTOT by simply decelerating to

experience a longer time before entering the intersection. The worst case is that a vehicle may need to

stop and wait for some time before an intersection to meet the given confirmed TSS from ICA.

III. ANALYSIS

A. Liveness

A deadlock is a situation where two or more processes are unable to proceed and each process is

waiting for another one to finish because they are competing for shared resources. In an intersection

crossing traffic, a deadlock could happen when several vehicles are trying to cross the intersection at

the same time. For example, if the coordination between vehicles who want to cross an intersection is

not done appropriately, then a deadlock may occur between two vehicles on a same lane. As discussed

in [16], it is possible that even when the vehicle in front cannot get confirmed due to the conflict of

its intersection crossing route with those of other vehicles which are already confirmed to enter and

cross an intersection, the vehicle in the back may get confirmed because its intersection crossing route is

not conflicting with other confirmed vehicles’ crossing routes. And the vehicle successfully reserves the

space for its intersection crossing route within an intersection. In this situation, the front vehicle cannot

get confirmed since some part of the intersection crossing route of it conflicts with that of the behind

vehicle which is already confirmed and also the behind vehicle cannot proceed to cross the intersection

due to the unconfirmed front vehicle. A deadlock situation may also occur when several vehicles from

different directions want to cross an intersection at the same time. This type of deadlock situation is

discussed in detail in [22] for the case of four vehicles in which none of the vehicles can progress inside

the intersection because each of the vehicles’ next occupancies are already occupied by other vehicles.

Now we show that DICA shown in Algorithm 1 are free from these deadlock situations.

Proposition 1. DICA is deadlock free.

Proof. Let Sk denote the set of confirmed vehicles at the k-th time step of DICA. Then, we show that

the set Sk is deadlock free for all k = 0, 1, 2, · · · by induction. First, at time step k = 0, it is easy to

see that there is no deadlock in S0 since no vehicle is confirmed yet, i.e., |S0| = 0 where | · | denotes

the cardinality of a set. Then, at time step k > 0, let us suppose that Sk is deadlock free and a new

May 16, 2017 DRAFT

14

head vehicle vi is under consideration for confirmation. Note that, as discussed in Section II, a vehicle

is considered by DICA for confirmation only if it is the head vehicle on its lane. Hence, it is trivial

to see that there won’t be a deadlock situation between the vehicle vi and other vehicle vi
′

which is

behind vi since vi
′

6∈ Sk. Next, let us note that once a vehicle vj is in Sk, then the vehicle’s DTOT will

not be changed while and after a new vehicle vi is processed to be confirmed by DICA. Hence, it is

easy to see that any vehicle which is in Sk at time step k remains deadlock free at the next time step

(k+1). Now suppose that the new vehicle vi has been confirmed by DICA at time step k and included

in the set of confirmed vehicle at time step (k + 1), i.e., vi ∈ Sk+1 = Sk ∪ {vi}. Since all vehicles in

Sk ⊂ Sk+1 are deadlock free, if the new vehicle vi is deadlock free, then we know that Sk+1 is deadlock

free and this proves the deadlock free property of DICA. In fact, it is straightforward to see that vi is

also deadlock free after its DTOT is updated and confirmed by DICA. First, note that modification of the

vehicle vi’s DTOT is not affected by any vehicle v 6∈ Sk. Instead, it is affected only by vehicles which

are already in the Sk. Since all vehicles in Sk are deadlock free and eventually proceed to cross and exit

the intersection, the vehicle vi’s DTOT is also updated so that the vehicle vi will eventually enter and

cross the intersection while all vehicles in Sk cross the intersection safely. Thus, the vehicle vi is also

deadlock free at time step (k + 1) and this concludes the proof of this proposition.

In an intersection crossing traffic, a starvation situation may occur when vehicles from a certain

direction are waiting for a very long time or even indefinitely to be allowed to enter and cross an

intersection while vehicles from other directions are continuously allowed to cross the intersection. Now

we show that a starvation situation will not occur in an intersection crossing traffic that is coordinated

by DICA.

Proposition 2. DICA is starvation free.

Proof. First, let us recall that, as discussed in Section II, DICA considers a vehicle for confirmation only

when the vehicle becomes the head vehicle on its lane. Now let σ(v) be the vehicle v’s entrance time to

the communication region of an intersection, H be the set of head vehicles which is ordered by σ(v) for

all v ∈ H, and H− be the set of vehicles which are approaching to cross an intersection but not included

in the set H. Clearly, |H| is bounded by the number of all lanes from which vehicles are approaching an

intersection to cross and |H−| is also bounded by both the number of lanes and the length of lanes within

the communication region of an intersection. Note that DICA processes vehicles in H for confirmation

according to the order of vehicles in H. Once the first vehicle in H is processed and gets confirmed,

then the vehicle is removed from H. Note that if DICA is not starvation free, then there must exist at

May 16, 2017 DRAFT

15

least one vehicle v ∈ H such that the vehicle v will never (or at least take an unnecessarily very long

time to) become the first element in the ordered set H. Thus, to prove the starvation free property of

DICA, it suffices to show that, for any vehicle v ∈ H, the vehicle v will be removed from H in finite

time. To show this, we can consider the last vehicle vlast in the ordered set H. If σ(vlast) ≤ σ(v) for

all v ∈ H−, then the vehicle vlast will be cleared right after all other vehicles in H are confirmed and

this is the earliest time for vlast to be removed from H. On the other hand, if σ(vlast) > σ(v) for all

v ∈ H− as the worst situation for vlast, then the vehicle vlast might need to wait until all (|H|+ |H−|)

vehicles get confirmed to be considered for confirmation. Thus, it is clear that the vehicle vlast will be

cleared from H in finite time.

B. Computational Complexity

In this section, we analyze the computational complexity of DICA shown in Algorithm 1. Recall that

S is the set of vehicles within the communication region of an intersection that has been confirmed to

cross. Let us assume that there are n vehicles in S , i.e., |S| = n. Then we have the following result on

the computational complexity analysis of DICA.

Proposition 3. DICA has O(n2L3
m) computational complexity where Lm is the maximum length of

intersection crossing routes in an intersection.

Proof. Let vi be the vehicle which is currently being processed by ICA for intersection crossing con-

firmation. Also let Nm := maxk∈S′ Nk where S ′ = S ∪ {vi} and Nk is the number of occupancies

in the vehicle k’s DTOT. Then, in line 3 (Algorithm 1), it is easy to see that creating DTOT from

the TSS and vehicle size information in the vehicle vi’s REQUEST message involves only O(Nm)

computational complexity. In line 4 (Algorithm 1), as explained in Section II, the front vehicle checking

function checkFV() does a simple comparison with every confirmed vehicle in S to see if there are

any vehicles which might affect the vehicle vi’s DTOT and modifies the DTOT if it is necessary to

ensure enough separation time and distance between the vehicle vi and other vehicles in front. And

this process requires computational complexities O(nNm). Then, in line 5 (Algorithm 1), the function

getCV() is called to identify the set of vehicles C in S whose DTOTs might be in space-time conflict

with the vehicle vi’s DTOT. (Note that, as shown in Algorithm 2, C is an ordered set according to time

of collision and it is clearly C ⊆ S .) Thus, to return the set C from the set S , this function performs n

times of space-time conflict checking between the vehicle vi and vehicles in S . If a nonempty set C is

returned in line 5 (Algorithm 1), then, in lines 6 ∼ 10 (Algorithm 1), the vehicle vi’s DTOT is iteratively

updated until the set C becomes empty within the while loop. (As one can see in Algorithms 1 and 2,

May 16, 2017 DRAFT

16

these steps are indeed the main part of the DICA algorithm and involve some computationally expensive

operations. Hence, we describe the computational complexity of steps within the while loop separately

in the next paragraph.) After the while loop, as the last steps in Algorithm 1 in lines from 11 to 13,

the space-time conflict free DTOT for the vehicle vi is stored, converted into TSS, and then sent to

vi so that the vehicle can cross the intersection according to the DTOT. Clearly, these steps are fairly

simple in terms of computation and in fact require O(1) complexity. Next, we analyze the computational

complexity of steps within the while loop.

Space-time conflict checking steps: As described in Section II, space-time conflict checking in getCV()

is done using DTOTs of vehicles. Specifically, the two nested if blocks from line 6 to line 14 in

Algorithm 2 perform this operation. For space conflict checking, it is checked if there exists nonempty

intersections between two occupancies: one from DTOT of the vehicle vi and another from DTOT of

one of the vehicles in the set S . This is done in the outer if block and requires n ·N2
m times of iteration

in the worst case. If two vehicles have a space conflict, then Algorithm 2 proceeds to check for time

conflict. To check time overlapping between two space conflicting occupancies, the function needs to

calculate time intervals for these occupancies during which each vehicle occupies its occupancy. This

can be done easily by comparing occupancy time between occupancies within the same DTOT. As an

example, for a given occupancy Oi
k which is the k-th occupancy within the vehicle vi’s DTOT, the lower

and upper bounds for the occupancy time can be determined by space overlapping checking between the

occupancies Oi
k and Oi

k′ for k′ = {1, · · · , Nm} \ k. Thus, the two function calls to getOTI() within

the if block involve the computational complexity of O(Nm). Once the occupancy time intervals are

determined, it is a straightforward calculation to check time overlapping as shown in line 9 of Algorithm

2 and it takes O(1) computational complexity. After identifying all space-time conflicting vehicles from

the set S and storing them to the set C, Algorithm 2 then sorts the set C according to the ascending

order of occupancy times of space-time conflicting occupancies and returns the set. Note that |C| ≤ n

and n ≪ Nm in general. Hence, this sorting operation can be done with O(nlog2Nm) computational

complexity. If we consider all these calculation steps in the getCV() function, then one can see that

the overall computational complexity for space-time conflict checking steps in getCV() is O(nN3
m)

DTOT adjustment for collision avoidance: Once the set C is returned from the function getCV(), the

DICA algorithm updates the vehicle vi’s DTOT to avoid space-time conflict with DTOTs of the vehicles

in the set C. In line 7 (Algorithm 1), it is shown that the first vehicle vj in the set C is considered

for updating the vehicle vi’s DTOT. As described in Section II, our update strategy to avoid space-time

conflict is to make the vehicle vi enter the intersection area a little bit late so as to give enough time

for vehicle vj to cross the intersection safely. For this, the DICA algorithm first needs to compute the

May 16, 2017 DRAFT

17

delay time needed to avoid the space-time conflict with the vehicle vj . Since the occupancy time interval

I(Oj
k) for the vehicle vj’s earliest space-time conflicting occupancy has already been determined from

the function getCV(), it is easy to calculate this delay time in this update process. Once the delay time

is determined, then the remaining step is simply to change the occupancy times of all the occupancies

in the vehicle vi’s DTOT to be delayed and this results in O(Nm) computational complexity.

As described above, the number of vehicles in the set S is n when the function getCV() is called

for the first time in line 5 (Algorithm 1). Then, within the while loop, the function updateDTOT()

adjusts the vehicle vi’s DTOT to avoid collision with the first vehicle in the set C and this step reduces

the number of vehicles in the set C that can potentially collide with the vehicle vi at least by one.

Thus, in the worst case, the number of vehicles in the set C returned by the second call of getCV()

within the while loop is (n − 1). If we assume the worst case for every following iterations within

the while loop until the set C becomes empty, then it is easy to see that the functions getCV() and

updateDTOT() are called n times within the while loop. This implies that, since the computational

complexity of the function updateDTOT() is significantly lower than that of the function getCV(),

the overall computational complexity of the while loop can be considered as O(n2N3
m).

Note that the maximum number of occupancies Nm depends on both the time that it takes for a

vehicle to cross the intersection and the discrete time step used to construct the DTOT by ICA. If we let

h be the discrete time step used by ICA and Tm be the time it takes for a vehicle to completely cross

an intersection when the vehicle starts from rest and accelerates to cross the intersection as quickly as

possible, then we have N̄m := Tm/h as an upper bound for Nm. Note that Tm depends on the length of

an intersection crossing route that a vehicle takes to cross an intersection. If we let Lm be the maximum

length out of all intersection crossing routes for an intersection, then N̄m can be expressed in terms of

Lm instead of Tm. Specifically, if Lm is long enough so that a vehicle can reach its maximum allowed

speed vm within an intersection before it completely crosses the intersection, then it can be shown that

N̄m = (2amLm + v2m)/(2amvmh) where am is the maximum acceleration rate of a vehicle. On the

other hand, if Lm is not long enough for a vehicle to reach vm while crossing an intersection, then it

is also relatively straightforward to show that N̄m = (
√

2Lm/am)/h. (These two different cases are

illustrated in Figure 4.) If we fix values for h, vm, and am, then one can see that N̄m for the former case

is proportional to Lm while, for the latter case, N̄m is proportional to the square root of Lm. Hence, if

we substitute Lm for Nm in the computational complexity O(n2N3
m) that we derived above, then we

finally have O(n2L3
m) as the overall computational complexity of DICA.

May 16, 2017 DRAFT

18

v

vm

t0

case 1

case 2

tm tm

Figure 4: Two different cases for shortest intersection crossing time (Tm) calculation. (Case 1 is the

situation when Lm is too short to reach vm and case 2 is the situation when Lm is long enough to reach

vm while a vehicle is crossing an intersection.)

IV. ALGORITHM IMPROVEMENTS

According to the computational complexity analysis result described in the previous section, it is true

that the original DICA algorithm that is shown in Algorithms 1 and 2 is somewhat conservative in terms

of computational cost to be used in practice. In this section, we present several approaches that can be

used to improve the overall computational complexity of the algorithm.

A. Reduced Number of Vehicles for Space-Time Conflict Check

As shown in Algorithm 2, all confirmed vehicles in the set S are examined to obtain the set of space-

time conflicting vehicles C for a new unconfirmed head vehicle vi. However, we see that this computation

process can be improved by excluding vehicles that cannot be in space-time conflict with the vehicle

vi under any circumstances from the set S . For example, a confirmed vehicle vj ∈ S who has an

intersection crossing time interval that is not overlapping with the vehicle vi’s intersection crossing time

interval can be excluded. Note that the intersection crossing time interval of a confirmed vehicle can be

easily determined by the lower bound of the occupancy time τlb(Ofirst) of the vehicle’s first occupancy

Ofirst and the upper bound of the occupancy time τub(Olast) of the vehicle’s last occupancy Olast in the

vehicle’s confirmed DTOT. In addition to these vehicles, vehicles in the set S whose intersection crossing

routes are compatible with that of vehicle vi can also be excluded. Hence, if we let S∗ be the subset

of all confirmed vehicles in set S that can be obtained after excluding all above mentioned vehicles in

determining the set C, then the resulting computational complexity for the space-time conflict checking in

function getCV() becomes O(α1nN
3
m) where α1 := ñ/n, ñ = |S∗|, n = |S|, and Nm is the maximum

May 16, 2017 DRAFT

19

number of occupancies of all vehicles that are in the set S and also the vehicle that is currently under

consideration for confirmation. (See the proof of Proposition 3 for the precise definition of Nm.)

B. Efficient Space Conflict Check

Note that, for any two vehicles coming from different directions, they can collide with each other only

within some parts of their intersection crossing routes. Thus, not all occupancies of a vehicle’s DTOT

needs to be checked for space conflict with another vehicle’s DTOT. For example, the two vehicles

vi and vj in Figure 1 have very short ranges of intersection crossing routes that are space conflicting

with each other. Thus, the occupancies to be checked can be reduced to {Oi
2, O

i
3} and {Oj

5
, Oj

6
} from

their entire DTOTs. Since the number of occupancies in a DTOT is very large in general, this can

improve computational speed considerably. Note that, since the intersection crossing routes are fixed

for a specific intersection, we can predetermine these space conflicting short ranges offline only one

time for all pairs of incompatible intersection crossing routes. Hence, this extra preparation process does

not incur an additional computational cost during the online operation of DICA. If we use DTOT∗ to

denote the subset of the original DTOT for a vehicle that can be obtained from this approach, then the

computational complexity of the function getCV() in Algorithm 2 can be expressed as O(α3
2nN

3
m)

where α2 := Ñm/Nm and Ñm is the maximum number of occupancies of all vehicles that are in the set

S∗ and the vehicle that is currently under consideration for confirmation.

C. Approximate Occupancy Time Interval Calculation

As explained in Section 3, ICA checks if an occupancy of a vehicle is conflicting in time with

another vehicle’s occupancy using occupancy time intervals that can be obtained from each vehicle’s

DTOT. However, the way to obtain an occupancy time interval presented in the proof of Proposition 3

is somewhat naive in the sense of computational complexity. In fact, as analyzed in the proof, such an

exhaustive search involves computational complexity of O(Nm). To simplify this computation process,

we propose to estimate the occupancy time interval for a certain occupancy based on the vehicle’s speed,

length, and acceleration rate instead of performing the exhaustive search. To clarify this idea, let us

consider an example. For simplicity of explanation, we consider a case when a vehicle is moving in a

straight line as shown in Figure 5. Let Oi
k be the occupancy for which the DICA algorithm needs to

determine the occupancy time interval I(Oi
k) = [τlb(O

i
k), τub(O

i
k)], L(v

i) be the vehicle length of the

vehicle vi, h be the sampling time interval, xk be the center position of the Oi
k along the straight line.

Then the algorithm first estimates the vehicle’s speed and acceleration rate around the occupancy Oi
k

from xk, xk−1, xk+1, and h. Occupancies at xk−1, xk+1 are very close to the occupancy Oi
k and are

May 16, 2017 DRAFT

20

i

kO

)(i

klb Ot)(i

kub Ot)(i

kOt

t

)(),(i

k

i

k vAvV

kx

)(ivL

Figure 5: Approximate occupancy time interval calculation for a vehicle with the through route

not shown in Figure 5 for simplicity. Specifically, if we let Vk−(vi) and Vk+(vi) be the speed of the

vehicle vi from Oi
k−1

to Oi
k and from Oi

k to Oi
k+1

respectively, then these speeds can be approximated

as follows:

Vk−(vi) ≈
xk − xk−1

h
, Vk+(vi) ≈

xk+1 − xk
h

From these speeds, we now approximate the acceleration rate of the vehicle as follows:

Ak(v
i) ≈

Vk+(vi)− Vk−(vi)

h

where Ak(v
i) denotes the acceleration of the vehicle vi at the occupancy Oi

k. If we take the average of

the speeds around Oi
k, then we can also approximate Vk(v

i) which is the speed of the vehicle vi at Oi
k.

Note that since the length of a vehicle L(vi) is just a few meters in general, the actual motion of the

vehicle vi within the occupancy Oi
k can be approximated fairly accurately by Vk(v

i) and Ak(v
i).

Now, since it is a straightforward process to estimate τlb(O
i
k) and τub(O

i
k) from L(vi), Vk(v

i), and

Ak(v
i), we omit the details of these calculations in this paper. For the case when the vehicle is moving

on a curved path, we can still use the same method to approximate Vk(v
i) and Ak(v

i). But, in this case,

we may need to add a short extra distance to the L(vi) to estimate τlb(O
i
k) and τub(O

i
k) more accurately.

Such an extra distance can be simply determined by the curvature of the path that is represented by

the DTOT of a vehicle. Finally, if we apply this approximation method for an occupancy time interval

calculation in the getOTI() function, then the computational complexity of the function getCV()

improves from O(n2N3
m) to O(n2N2

m).

D. Efficient Occupancies Comparison

In addition to all the techniques described above, the overall computational complexity of the Algorithm

1 can be improved further if we employ an efficient searching method such as the bisection method in the

May 16, 2017 DRAFT

21

process of time-conflict checking between two DTOT∗s. If we employ this bisection approach for time-

conflict checking as shown in Algorithm 3, then the computational complexity of the function getCV()

can be improved significantly from O(n2N3
m) to O(n2N2

m log2Nm).

All of the improvement techniques discussed in this section are incorporated into the function getCV()

to improve the overall computational complexity of the space-time conflict checking process. Algorithm

3 shows this modified getCV() function which is now called enhanced_getCV(). In Algorithm 3,

S∗ represents the set of already confirmed vehicles that is obtained from the process in Section IV-A

and DTOT∗ represents the subset of original DTOT for a vehicle that can be obtained from the approach

in Section IV-B. The function getOTI() within the while loop is now replaced by the new function

getEstOTI() that calculates the occupancy time interval approximately as described in Section IV-C.

Lastly, the approach for efficient time conflict checking that is presented in Section IV-D is implemented

throughout the while loop of the DICA algorithm.

Proposition 4. Enhanced DICA has O(αn2Lm log2 Lm) computational complexity where α := α2
1α2 ≪

1, n is the number of vehicles already confirmed to cross an intersection, and Lm is the maximum length

of intersection crossing routes in an intersection.

Proof. First, note that the only part in Algorithm 1 that is affected by this proposed enhancement is that the

number of confirmed vehicles to be considered for a space-time conflict check is reduced from n = |S| to

ñ = |S∗| where ñ = α1n and α1 ∈ (0, 1]. Thus, in Algorithm 1, the functions enhanced_getCV() and

updateDTOT() are now called α1n times. Next, we also note that, since nothing is changed due to this

improvement in the updateDTOT() function whose computational complexity is already significantly

lower than that of the function getCV(), it suffices to analyze the computational complexity of the

function enhanced_getCV() presented in Algorithm 3 for the overall computational complexity of

the enhanced DICA.

Now, as one can see in Algorithm 3, the entire block within the outer for loop is executed for α1n

times since the number of confirmed vehicles to be checked for a space-time conflict with the vehicle vi

is reduced from n to α1n due to the approach discussed in Section IV-A. Then, within the for loop, for

each vehicle vj in the set S∗, occupancies from each vehicle’s DTOT are evaluated for space and time

conflict which typically requires N2
m times occupancy comparison operation where Nm is the maximum

number of occupancies in a vehicle’s DTOT. However, in the enhanced_getCV() function, we first

note that the maximum number of occupancies for each vehicle’s DTOT to be tested for space-time

conflict is reduced from Nm to Ñm where Ñm = α2Nm and α2 ∈ (0, 1] due to the approach presented in

Section IV-B. Another important improvement is that the computational complexity for the occupancy time

May 16, 2017 DRAFT

22

Algorithm 3 enhanced getCV(S∗,DTOT (vi))

1: C = ∅

2: for vj in S∗ do

3: for Oj
kj

in DTOT ∗(vj) do

4: if vj not in C then

5: high = |DTOT ∗(vi)| − 1

6: low = 0

7: while low 6= high do

8: middle = (high + low)/2

9: Call getEstOTI(Oj
kj
) → I(Oj

kj
) := [τlb(O

j
kj
), τub(O

j
kj
)]

10: Call getEstOTI(Oi
middle) → I(Oi

middle) := [τlb(O
i
middle), τub(O

i
middle)]

11: if I(Oj
kj
) ∩ I(Oi

middle) 6= ∅ then

12: Assign τlb(O
j
kj
) → vj .f irstT imeAtCollision

13: Push vj into C

14: Sort C in ascending order of firstTimeAtCollision

15: else if τ(Oj
kj
) > τ(Oi

middle) then

16: low = middle

17: else if τ(Oj
kj
) < τ(Oi

middle) then

18: high = middle

19: end if

20: end while

21: end if

22: end for

23: end for

interval calculation is improved from O(Nm) to O(1) within another enhanced function getEstOTI()

as discussed in Section IV-C. Therefore, the overall computational complexity of the outer for loop can

be estimated as O(α1α
2
2nN

2
m). However, note that this is the case when we use the same occupancies

comparison method as used in the original getCV() function. As shown in Algorithm 3, the process

of occupancies comparison is now performed based on the bisection search method. Roughly speaking,

for given n and Nm, this efficient search method improves the overall computational complexity of the

function from O(nN2
m) to O(nNm log2Nm) as discussed in Section IV-D. If we combine this and others

May 16, 2017 DRAFT

23

discussed above for the overall computational complexity of the enhanced_getCV() function, then

we have O(α1α2nNm log2Nm). Recall that the enhanced_getCV() function is called at α1n times in

the main while loop as discussed above, we have O(α2
1α2n

2Nm log2 Nm) as the overall computational

complexity of DICA.

As we have analyzed already in the proof of Proposition 3, Nm is linearly proportional to the maximum

length of intersection crossing routes Lm. Hence, if we substitute Lm for Nm, then we finally have

O(αn2Lm log2 Lm) as the overall computational complexity of enhanced DICA where α := α2
1α2 ≪

1.

V. SIMULATION

In this section, we present simulation results that demonstrate the improved performance of the

enhanced DICA over the original algorithm. The performance of the enhanced algorithm is also compared

with that of an optimized traffic light intersection control.

A. Simulation Setup

To evaluate the performance of the original DICA and the enhanced DICA, we implemented both

algorithms in a microscopic road traffic simulation software, called the Simulation of Urban MObility

(SUMO) [26], and performed extensive intersection traffic simulations. In our simulation, the simulated

situation is an intersection crossing traffic on a typical isolated four way intersection with three incoming

lanes, one of which is a dedicated lane for left-turning vehicles, and two outgoing lanes on each road

as shown in Figure 6. We set 70km/h as the maximum allowed speed vm for all incoming vehicles.

To make the simulation more realistic, we let vehicles approach an intersection with different speeds

when they enter into the communication region of the intersection. Specifically, when a new vehicle is

spawned outside of the communication region, we assign the initial speed of the vehicle randomly within

the range from 40% to 100% of the maximum allowed speed vm. Thus, a vehicle keeps this random

initial speed until it enters the communication region and then it either follows another vehicle or is

confirmed by ICA with a feasible DTOT. The maximum acceleration (amax) and deceleration (amin)

rates for vehicles that are used in simulations are 2m/s2 and 4.5m/s2, respectively. The size of a vehicle

used in simulations is 5 meters long and 1.8 meters wide. Since, in some cases, a vehicle may need

to stop just before the entrance line of the intersection region to avoid collisions with other vehicles,

the distance from the entrance line of the communication region to the entrance line of the intersection

region should be long enough so that a vehicle can stop from its maximum speed vm. Thus, from the

value used for vm = 70km/h and the maximum deceleration rate amin = 4.5m/s2, we need at least

May 16, 2017 DRAFT

24

v2m/(2amin) ≈ 42.03m. So, we use 50m for the distance from the entrance line of the communication

region to the entrance line of the intersection region. The time step that is used in simulation is 0.05

seconds. In most cases, a simulation terminates when the simulation time reaches 10 minutes.

In our simulations, vehicles are spawned according to several random variables in order to generate

various traffic volumes as well as traffic patterns. Specifically, a Bernoulli random variable XV is used to

spawn a vehicle at each simulation time step on each incoming road. In particular, a vehicle is spawned

if XV = 1 and not spawned if XV = 0 with Pr(XV = 1) = pV where Pr(E) is the probability

of an event E and 0 ≤ pV ≤ 1 is the probability that a vehicle is spawned. Thus, by adjusting pV ,

we can generate various traffic volumes. In addition to this traffic volume variation, we also assign the

probabilities for each vehicle to have different routes. We use a three-states random variable XP to assign

an intersection route to a vehicle probabilistically when the vehicle is generated. Three states of the random

variable XP are {Left, Straight,Right} with Pr(XP = Left) = pL, Pr(XP = Straight) = pS , and

Pr(XP = Right) = pR being the probability of turning left, going straight, and turning right to cross an

intersection, respectively. As shown in Table I, we set pL = 0.2, pS = 0.6, and pR = 0.2 for all traffic

volume cases to generate 20% of all incoming vehicles for left turing, 60% for going straight, and the

other 20% for right turning. To create variations on the traffic pattern with this random variable XP , we

generate a random number at each simulation time step from the range [0, 1] with uniform distribution.

However, a random number generated in programming languages is not completely random in general due

to its dependency on the seed number used for random number generation. For example, if we generate a

random number with a fixed random seed number, the random number generated at simulation time step

t will be the same whenever we run a simulation. Thus, we use several different random seed numbers to

generate different traffic patterns. Table I summarizes the parameters used for various traffic volumes and

patterns that were used in many of our simulations. As shown in the table, we use three random seeds

to generate three different intersection traffic patterns for each traffic volume. Thus, to obtain simulation

data for each traffic volume, we run three simulations with different traffic patterns for each simulation

and then use the averages of these simulation results as the result for each traffic volume case. The

intersection crossing traffics generated in most of our simulations are balanced traffics in the sense that

the number of vehicles generated in each incoming road are about the same. However, for a simulation

to show the starvation free property of the proposed DICA algorithm, the intersection traffic is purposely

designed to be unbalanced where the number of vehicles for minor approaching roads is roughly 30%

of the vehicles in major roads.

In the following discussion on our simulation results, simulation time means the simulated time used

in simulation program and computation time, which will be discussed later in Section V-B1, means the

May 16, 2017 DRAFT

25

Table I: Parameters used for various traffic volumes and patterns. (∗ Expected number of vehicles per 10

minutes.)

Parameter Value

Traffic volumes∗ 100 / 200 / 300 / 400 / 500

pV 0.03 / 0.06 / 0.08 / 0.11 / 0.14

pL 0.20

pS 0.60

pR 0.20

Random seeds 12 / 21 / 66

actual elapsed time that it takes for a computer to run a simulation. Also, in Section V-B3, the traffic

control performance of the enhanced DICA is compared with that of a traffic light algorithm with fixed

cycles. To have a comparable traffic light program, we computed the optimal signal cycles for different

traffic volume cases by using the exponential cycle length model C0 = 1.5Le1.8Y from [27]. In the

model, L represents the total lost time within the cycle. The lost time for each phase is assumed to be 4

seconds [28]. Thus, L = 4 × 4s = 16s. Y is the sum of critical phase flow ratios. The duration for the

yellow light of each phase is 3 seconds.

All simulations were run on a Core i7 computer with 3.40GHz, 8GB RAM and Windows system. The

interface programs with SUMO were coded in Python.

Figure 6: A screenshot of simulation which illustrates a situation when vehicles with conflicting routes

cross an intersection simultaneously.

May 16, 2017 DRAFT

26

B. Simulation Results

Computation times and performances of three different traffic patterns for all five volume cases are

recorded from simulations. Figure 6 shows a screenshot of simulation in SUMO when vehicles of different

routes are crossing an intersection simultaneously without occurrence of collisions. In this situation, the

through vehicle from North goes inside the intersection shortly after the vehicle from West to East clears

the conflicting space and the through vehicle from East starts to enter the intersection although the route

of the vehicle is conflicting with that of the vehicle from North. Vehicles whose DTOTs are not conflicting

with these two can pass the intersection at the same time. For example, the right-turning vehicle from

South also crosses the intersection at the same time as the other vehicles in Figure 6.

1) Computation Time: Figure 7 (a) compares the computation times of the original DICA, the enhanced

DICA, and the optimized traffic light algorithm. Figure 7 (b) shows how much computational improvement

was made through each computational improvement technique discussed in Sections IV-A, IV-B, IV-C,

and IV-D. Note that since the computational improvement technique in SectionIV-D is implemented based

on the computational improvement technique in Section IV-B, we had to combine techniques from both

Sections IV-D and IV-B to show the improvement due to the technique in Section IV-D indirectly. Here,

we show the computation times comparison for only one traffic volume case with 300 vehicles per 10

minutes since the trends for other volume cases are similar. The vertical axis in Figure 7 is the computation

time in hour unit which is represented in logarithmic scale. As shown in Figure 7, the enhanced DICA

that implements all improvements discussed in Section IV takes significantly less computation time, i.e.

only 0.4% computation time of the original algorithm. When we apply each computational improvement

technique individually, our result shows that it takes about 11% of the computation time of the original

DICA with the technique in Section IV-A, 59% with the technique in Section IV-B, 13% with the

technique in Section IV-C, and 6% with techniques in Sections IV-B and Section IV-D together. If we

combine all of these individual improvement altogether to estimate the collective improvement, then we

have about 0.45% computation time of the original DICA which is similar to the computation time result

with the enhanced DICA in which all these techniques are implemented.

Table II compares the computation times between the enhanced DICA and the optimized traffic

light algorithm for all five traffic volume cases. From the results shown in the table, we note that

the computation time for the optimized traffic light algorithm gradually increases as the traffic volume

increases. However, since the optimized traffic light algorithm has O(1) computational complexity, its

computation time cannot be affected by the number of vehicles around an intersection. Thus, roughly

speaking, one can say that the computation time of the optimized traffic light for a particular traffic volume

May 16, 2017 DRAFT

27

(a) (b)

0.1

1

10

300

C
o
m

p
u

ta
ti

o
n

T

im
e
 (

lo
g

 h
)

Traffic Volume

(number of vehicles per 10 minutes)

Original DICA

IV-A

IV-B

IV-C

IV-D + IV-B

0.01

0.1

1

10

300

C
o
m

p
u

ta
ti

o
n

T

im
e
 (

lo
g

 h
)

Traffic Volume

(number of vehicles per 10 minutes)

Original DICA

Enhanced DICA

Optimized Traffic Light

Figure 7: Computation times comparison for traffic volume with 300 vehicles per 10 minutes: (a) original

DICA with different algorithms, (b) original DICA with different improvement techniques. (The symbol

IV-x represents the improvement technique in Section IV-x where x = { A, B, C, D }.)

case is in fact the time required for the simulation software SUMO to run a simulation with the number

of vehicles for that particular traffic volume case. Therefore, the actual computation time of the enhanced

DICA for a particular traffic volume case can be roughly approximated by subtracting the computation

time of the optimized traffic light for the case from the computation time of the enhanced DICA presented

in the table. For example, for the traffic volume with 500 vehicles, the actual computation time for the

enhanced DICA can be approximated as 0.031(= 0.058− 0.027) hours which is 1.86 minutes. Note that

this 1.86 minutes is the computation time taken by the algorithm to handle 500 vehicles. Thus this in turn

implies that it takes only 0.2232 seconds to handle each vehicle. An exception to this approximation is

the case with 100 vehicles traffic volume case where the computation time for optimized traffic light takes

longer time than that of the enhanced DICA. The reason for this result can be understood by considering

the fact that, in such a low traffic volume situation, the average number of vehicles to be simulated by

SUMO at each simulation time step is smaller in the enhanced DICA case since vehicles are crossing an

intersection much faster without waiting at an intersection under the enhanced DICA than the optimized

traffic light as shown in Section V-B3.

2) Liveness and Safety: Although we have theoretically showed the liveness of DICA, it is better to

have simulation results that support the theory. Since the simulation in this section is only a verification,

May 16, 2017 DRAFT

28

Table II: Computation time comparison between enhanced DICA and optimized traffic light

Traffic vsolume
100 200 300 400 500

(Number of vehicles per 10 minutes)

Optimized Traffic light (h) 0.014 0.017 0.020 0.024 0.027

Enhanced DICA (h) 0.011 0.024 0.026 0.042 0.058

0 2000 4000 6000 8000 10000 12000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Simulation Time (s)

N
um

be
r

of
 V

eh
ic

le
s

Figure 8: The number of vehicles which wait to cross the intersection over time.

we run a simulation with 10, 000 vehicles instead of giving a restriction on the simulation time. The

simulation ends after all 10, 000 vehicles have exited the simulation scene. We recorded the number

of vehicles that are waiting to cross the intersection at each simulation time step and plot the number

profile in Figure 8. As shown in the figure, the number of vehicles drops to zero in almost a linear way

within a finite time which demonstrates that every vehicle was able to cross the intersection eventually

which proves the proposition 1 in Section III-A. We also performed a set of simulations for the case

of unbalanced traffic situation where the number of vehicles on minor roads is only 30% of that of

major roads to demonstrate the fairness of DICA. To show the fairness of the algorithm, we recorded the

average trip times for major roads and minor roads respectively for every traffic volumes. As shown in

Table III, one can find that the average trip time of the minor roads is about the same as that of the major

roads. This shows that there is not a case that some vehicles cannot get confirmation or will experience

a very long time to be confirmed which demonstrates the proposition 2 in Section III-A.

Table III: Average trip time comparison between major roads and minor roads in an unbalanced traffic

Traffic volume
100 200 300 400 500

(Number of vehicles per 10 minutes)

Average trip time on major roads (s) 6.17 6.60 7.38 8.15 10.15

Average trip time on minor roads (s) 6.21 6.57 7.38 7.90 9.63

May 16, 2017 DRAFT

29

0

100

200

300

400

500

600

0-1 1-2 2-3 3-4 4-5 Above 5
N

u
m

b
e
r

o
f

In
s
ta

n
c
e
s
*

Inter-Vehicle Distance (m)

Figure 9: Histogram of the inter-vehicle distance within the intersection. (* An instance means the

situation when a pair of vehicles are separated by the calculated inter-vehicle distance.)

To validate the safety property (i.e., collision freeness) of DICA through simulation, we computed the

inter-vehicle distance between every pair of vehicles within an intersection at every second in simulation

time. Since each vehicle is represented as a polygon, a 5 m long and 1.8 m wide rectangle more precisely,

we obtained this data based on an algorithm of the shortest distance calculation between two polygons. A

histogram of the recorded inter-vehicle distances is shown in Figure 9. Clearly, the inter-vehicle distance

must be less than or equal to zero if two vehicles are in a collision and must be positive otherwise. As

one can see from the figure, there is no instance observed throughout the entire simulation with less than

1m inter-vehicle distance, which is a clear indication that there is no collision inside the intersection.

Note that Figure 9 is demonstrating the safety of the DICA algorithm, the safety problem that vehicles

cannot follow confirmed DTOT correctly pertaining to the robustness of DICA will be studied in our

future work.

3) Control Performance: The overall traffic control performance of the enhanced DICA is also evalu-

ated and compared with that of the optimized traffic light algorithm based on the following performance

measures. For each vehicle, we recorded the trip time that is the time taken for a vehicle from the

moment when it enters into the communication region of an intersection until the vehicle completely

crosses the intersection region. From the recorded trip time data for all crossed vehicles, we calculated

several related statistic information which are the average trip time and the standard deviation of trip

time. Besides these trip time related performance measures, we also calculated the percentage of all

crossed vehicles against the total number of generated vehicles, which we call the throughput. However,

note that neither the average trip time nor the throughput alone is sufficient to correctly evaluate the

May 16, 2017 DRAFT

30

(a) (b)

(c) (d)

0

5

10

15

20

25

30

100 200 300 400 500

A
ve

r
a
g

e

T

r
ip

 T
im

e
 (

s
)

Traffic Volume

(number of vehicles per 10 minutes)

Optimized Traffic Light

Enhanced DICA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400 500

T
h

r
o
u

g
h

p
u

t

Traffic Volume

(number of vehicles per 10 minutes)

Optimized Traffic Light

Enhanced DICA

0

5

10

15

20

25

30

100 200 300 400 500

E
ff

e
c
ti

ve

A
ve

r
a
g

e
 T

r
ip

T

im
e
 (

s
)

Traffic Volume

(number of vehicles per 10 minutes)

Optimized Traffic Light

Enhanced DICA

0

2

4

6

8

10

12

14

16

18

100 200 300 400 500S
ta

n
d
a
r
d

D
e
vi

a
ti

o
n

o
f

T
r
ip

T

im
e

(s
)

Traffic Volume

(number of vehicles per 10 minutes)

Optimized Traffic Light

Enhanced DICA

Figure 10: Performance comparison between enhanced DICA and optimized traffic light: (a) average trip

time, (b) throughput, (c) effective average trip time, (d) standard deviation of trip time.

performance of an algorithm. In fact, both of these measures should be considered together to correctly

compare and evaluate the performances of different intersection traffic control algorithms. For this reason,

we calculated the ratio of average trip time to throughput, which we call the effective average trip time,

and believe that this could show performance of an algorithm better. Comparison of the performance

between the enhanced DICA and the optimized traffic light control algorithm are shown in Figure 10.

From this result, we can see that, since the throughputs of the two algorithms are always similar, the

profiles of average trip time and effective average trip time also show similar trends. The enhanced DICA

always performs better than optimized traffic light for the first four traffic volume cases. In the case of

the traffic volume with 500 vehicles, the average trip time performance of the enhanced DICA becomes

closer to that of optimized traffic light. Also, the enhanced DICA has a bit larger standard deviation of

trip time than the optimized traffic light. In short, the enhanced DICA performs much better than the

optimized traffic light from low to medium traffic volume cases while its performance becomes worse

and closer to the performance of the optimized traffic light for heavy traffic volumes.

We note that this result is mainly due to the fundamental difference between individual vehicle based

May 16, 2017 DRAFT

31

traffic coordination algorithms and traffic flow based coordination algorithms. To see this, we can consider

a heavy traffic situation when all incoming roads are congested. In such a situation, we know that most

vehicles start to cross an intersection at rest when they are allowed to cross the intersection either by

green light under traffic light algorithm or confirmation under the proposed DICA. Under a traffic light

control, if a vehicle is crossing an intersection, then it is highly likely that a few more following vehicles

can also cross the intersection without being stopped. However, in the case when vehicles are controlled

by an individual vehicle based coordination algorithm like our enhanced DICA, it is possible to have a

situation where vehicles from different roads are permitted alternatively to cross an intersection, which

inevitably results in more frequent stops than the case of traffic light control. This is the reason why the

enhanced DICA is performing worse and closer to the optimized traffic light in the heavy traffic volume

situation. In fact, this result reveals an important point that, to achieve the best throughput performance, it

is necessary to combine both strategies: an individual vehicle based coordination in normal traffic volume

and a traffic flow based coordination in congested situation. According to this result, we are currently

developing algorithms that incorporate the advantage of traffic flow based algorithms when congested

into the proposed enhanced DICA.

Another simulation was performed to validate the transient traffic control performance of DICA when

the traffic volume is changing. We run a simulation with 20 minutes long simulation time during which

the traffic volume increases from the case of 100 vehicles to 500 vehicles per 10 minutes. At each

simulation time step, the ratio of the vehicle number generated to the number of vehicles that have exited

the intersection, which we call the flow rate ratio, was calculated to see how much congestion can occur

and also how long it takes to address the congestion. The flow rate ratio measured during the simulation

time is plotted in Figure 11. In this figure, if the flow rate ratio is close to 1, then it means that all vehicles

approached to an intersection have already crossed the intersection and there are no vehicles waiting to

cross at that time. The simulation time starts from 300s in the figure since the flow rate ratio needs some

time to be stable. From the figure, we can also see that before the increase of the traffic volume, the flow

rate ratios of the two algorithms are very similar. After 600s at when the traffic volume is changed to

the 500 vehicles case, the flow rate ratio of the optimized traffic light increased a lot. Figure 11 shows

that DICA is more resilient to the change of traffic volume than the optimized traffic light.

VI. CONCLUSION

In this paper, we first introduced our algorithm developed for autonomous and connected intersection

traffic management, which is called the discrete-time occupancies trajectory (DTOT) based intersection

traffic coordination algorithm (DICA). Subsequently, we showed that the original DICA is deadlock

May 16, 2017 DRAFT

32

300 400 500 600 700 800 900 1000 1100 1200
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Simulation Time (s)

F
lo

w
 R

at
e

R
at

io

Optimized Traffic Light
Enhanced DICA

Figure 11: Flow rate ratio when traffic volume changes from 100 to 500.

free and also starvation free. We then analyzed the computational complexity of the original DICA and

enhanced the algorithm so that it can have better overall computational efficiency. Simulation results show

that the computational efficiency of the algorithm is improved significantly after the enhancement and

the properties of starvation free and safety are guaranteed. We also validated that the overall throughput

performance of our enhanced DICA is better than that of an optimized traffic light control mechanism

in case when the traffic is not congested. Currently, it is in-progress to integrate the grouping strategy

used in traffic flow based intersection control mechanisms into our DICA to achieve the best throughput

performance in all traffic volume situations. We are also working on enhancing the algorithm to deal with

sudden emergence of special vehicles such as emergency ambulances or police cars that have the highest

priority in real traffic through efficient usage of intersection space. In the future, assumptions like perfect

communication, accurate prediction of DTOT will be relaxed and methods to deal with car failures will

be studied to make the algorithm more applicable to real situations. As one of future works, DICA will

be generalized to work with mixed traffic where autonomous vehicles and human-driven vehicles coexist.

REFERENCES

[1] R. Horowitz and P. Varaiya, “Control design of an automated highway system,” Proceedings of the IEEE, vol. 88, no. 7,

pp. 913–925, 2000.

[2] DARPA, “The darpa urban challenge,” 2007. [Online]. Available: http://archive.darpa.mil/grandchallenge/

[3] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner, “Three decades of driver assistance systems:

Review and future perspectives,” IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 4, pp. 6–22, 2014.

[4] J. Markoff, “Google cars drive themselves, in traffic,” The New York Times, vol. 10, no. A1, p. 9, 2010.

May 16, 2017 DRAFT

http://archive.darpa.mil/grandchallenge/

33

[5] L. W. Chen and C. C. Chang, “Cooperative traffic control with green wave coordination for multiple intersections based

on the internet of vehicles,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. PP, no. 99, pp. 1–15,

2016.

[6] A. Konar, I. G. Chakraborty, S. J. Singh, L. C. Jain, and A. K. Nagar, “A deterministic improved q-learning for path planning

of a mobile robot,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 5, pp. 1141–1153, Sept

2013.

[7] T.-H. Li and S.-J. Chang, “Autonomous fuzzy parking control of a car-like mobile robot,” IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans, vol. 33, no. 4, pp. 451–465, 2003.

[8] A. Mammeri, D. Zhou, and A. Boukerche, “Animal-vehicle collision mitigation system for automated vehicles,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 9, pp. 1287–1299, Sept 2016.

[9] A. Colombo and D. Del Vecchio, “Efficient algorithms for collision avoidance at intersections,” in Proceedings of the 15th

ACM international conference on Hybrid Systems: Computation and Control. ACM, 2012, pp. 145–154.

[10] S. Le Vine, A. Zolfaghari, and J. Polak, “Autonomous cars: The tension between occupant experience and intersection

capacity,” Transportation Research Part C: Emerging Technologies, vol. 52, pp. 1–14, 2015.

[11] E. Onieva, U. Hernández-Jayo, E. Osaba, A. Perallos, and X. Zhang, “A multi-objective evolutionary algorithm for the

tuning of fuzzy rule bases for uncoordinated intersections in autonomous driving,” Information Sciences, vol. 321, pp.

14–30, 2015.

[12] J. Lee and B. Park, “Development and evaluation of a cooperative vehicle intersection control algorithm under the connected

vehicles environment,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 1, pp. 81–90, 2012.

[13] J. Wu, A. Abbas-Turki, and A. El Moudni, “Cooperative driving: an ant colony system for autonomous intersection

management,” Applied Intelligence, vol. 37, no. 2, pp. 207–222, 2012.

[14] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29–41, 1996.

[15] A. A. Malikopoulos and C. G. Cassandras, “Decentralized optimal control for connected and automated vehicles at an

intersection,” arXiv preprint arXiv:1602.03786, 2016.

[16] K. Dresner and P. Stone, “A multiagent approach to autonomous intersection management,” Journal of artificial intelligence

research, vol. 31, pp. 591–656, 2008.

[17] Z. Li, M. Chitturi, D. Zheng, A. Bill, and D. Noyce, “Modeling reservation-based autonomous intersection control in

vissim,” Transportation Research Record: Journal of the Transportation Research Board, no. 2381, pp. 81–90, 2013.

[18] Q. Jin, G. Wu, K. Boriboonsomsin, and M. Barth, “Advanced intersection management for connected vehicles using a

multi-agent systems approach,” in Intelligent Vehicles Symposium (IV), 2012 IEEE. IEEE, 2012, pp. 932–937.

[19] C. Wuthishuwong, A. Traechtler, and T. Bruns, “Safe trajectory planning for autonomous intersection management by using

vehicle to infrastructure communication,” EURASIP Journal on Wireless Communications and Networking, vol. 2015, no. 1,

pp. 1–12, 2015.

[20] D. Carlino, S. D. Boyles, and P. Stone, “Auction-based autonomous intersection management,” in 16th International IEEE

Conference on Intelligent Transportation Systems (ITSC 2013). IEEE, 2013, pp. 529–534.

[21] M. Vasirani and S. Ossowski, “A market-inspired approach for intersection management in urban road traffic networks,”

Journal of Artificial Intelligence Research, vol. 43, pp. 621–659, 2012.

[22] S. Azimi, G. Bhatia, R. Rajkumar, and P. Mudalige, “Reliable intersection protocols using vehicular networks,” in Cyber-

Physical Systems (ICCPS), 2013 ACM/IEEE International Conference on. IEEE, 2013, pp. 1–10.

May 16, 2017 DRAFT

34

[23] K.-D. Kim and P. R. Kumar, “An mpc-based approach to provable system-wide safety and liveness of autonomous ground

traffic,” IEEE Transactions on Automatic Control, vol. 59, no. 12, pp. 3341–3356, 2014.

[24] H. Kowshik, D. Caveney, and P. Kumar, “Provable systemwide safety in intelligent intersections,” IEEE transactions on

vehicular technology, vol. 60, no. 3, pp. 804–818, 2011.

[25] Q. Lu and K.-D. Kim, “Intelligent intersection management of autonomous traffic using discrete-time occupancies

trajectory,” Journal of Traffic and Logistics Engineering Vol, vol. 4, no. 1, pp. 1–6, 2016.

[26] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent development and applications of sumo–simulation of

urban mobility,” International Journal On Advances in Systems and Measurements, vol. 5, no. 3&4, 2012.

[27] D. Cheng, Z. Z. Tian, and C. J. Messer, “Development of an improved cycle length model over the highway capacity

manual 2000 quick estimation method,” Journal of transportation engineering, vol. 131, no. 12, pp. 890–897, 2005.

[28] T. R. Board, Highway Capacity Manual, National Academy of Sciences, Transportation Research Board, Washington, DC,

2000.

May 16, 2017 DRAFT

	I Introduction
	II DTOT-based Intersection Traffic Management
	II-A Interaction between ICA and AV
	II-B DTOT-based Intersection Traffic Coordination
	II-B1 Collision Avoidance with Front Vehicles
	II-B2 Vehicles for Collision Avoidance
	II-B3 DTOT Update

	III Analysis
	III-A Liveness
	III-B Computational Complexity

	IV Algorithm Improvements
	IV-A Reduced Number of Vehicles for Space-Time Conflict Check
	IV-B Efficient Space Conflict Check
	IV-C Approximate Occupancy Time Interval Calculation
	IV-D Efficient Occupancies Comparison

	V Simulation
	V-A Simulation Setup
	V-B Simulation Results
	V-B1 Computation Time
	V-B2 Liveness and Safety
	V-B3 Control Performance

	VI Conclusion
	References

