Skip to main content
Log in

A self-organizing map based hybrid chemical reaction optimization algorithm for multiobjective optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Multiobjective particle swarm optimisation (MOPSO) is faced with convergence difficulties and diversity deviation, owing to combined learning orientations and premature phenomena. In MOPSO, leader selection is an important factor that can enhance the algorithm convergence rate. Inspired by this case, and aimed at balancing the convergence and diversity during the searching procedure, a self-organising map is used to construct the neighbourhood relationships among current solutions. In order to increase the population diversity, an extended chemical reaction optimisation algorithm is introduced to improve the diversity performance of the proposed algorithm. In view of the above, a self-organising map-based multiobjective hybrid particle swarm and chemical reaction optimisation algorithm (SMHPCRO) is proposed in this paper. Furthermore, the proposed algorithm is applied to 35 multiobjective test problems with all Pareto set shape and compared with 12 other multiobjective evolutionary algorithms to validate its performance. The experimental results indicate its advantages over other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhou A, Qu BY, Li H et al (2011) Multiobjective evolutionary algorithms: a survey of the state of the art [J]. Swarm Evol Comput 1(1):32–49

    Article  Google Scholar 

  2. Girão-Silva R, Craveirinha J, Gomes T et al (2017) A network-wide exact optimization approach for multiobjective routing with path protection in multiservice multiprotocol label switching networks [J]. Eng Optim 49(7):1226–1246

    Article  MathSciNet  Google Scholar 

  3. Wang G, Chen J, Cai T et al (2013) Decomposition-based multi-objective differential evolution particle swarm optimization for the design of a tubular permanent magnet linear synchronous motor [J]. Eng Optim 45(9):1107–1127

    Article  MathSciNet  Google Scholar 

  4. Li X, Deb K, Fang Y (2017) A derived heuristics based multi-objective optimization procedure for micro-grid scheduling [J]. Eng Optim 49(6):1078–1096

    Article  MathSciNet  Google Scholar 

  5. Tejani GG, Pholdee N, Bureerat S et al (2018) Multiobjective adaptive symbiotic organisms search for truss optimization problems [J]. Knowl-Based Syst 161(1):398–414

    Article  Google Scholar 

  6. Liagkouras K (2018) A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem[J]. Knowl-Based Syst

  7. Li H, Wang L, Hei X et al (2018) A decomposition-based chemical reaction optimization for multi-objective vehicle routing problem for simultaneous delivery and pickup with time windows[J]. Memetic Computing 10(1):103–120

    Article  Google Scholar 

  8. Zhang Q, Zhou A, Jin Y (2008) RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm [J]. IEEE Trans Evol Comput 12(1):41–63

    Article  Google Scholar 

  9. Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition [J]. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  10. Zhang H, Zhou A, Zhang Q et al (2016) A self-organizing multiobjective evolutionary algorithm [J]. IEEE Trans Evol Comput 20(5):792–806

    Article  MathSciNet  Google Scholar 

  11. Bergh FVD (2002) An analysis of particle swarm optimizers. University of Pretoria, Pretoria

    Google Scholar 

  12. Jiang Q, Wang L, Hei X et al (2016) The performance comparison of a new version of artificial raindrop algorithm on global numerical optimization [J]. Neurocomputing 179:1–25

    Article  Google Scholar 

  13. Lam AYS, Li VOK (2012) Chemical reaction optimization: a tutorial [J]. Memet Comput 4(1):3–17

    Article  Google Scholar 

  14. Lam AYS, Li VOK, Yu JJQ (2012) Real-coded chemical reaction optimization [J]. IEEETrans Evol Comput 16(3):339–353

    Article  Google Scholar 

  15. Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems [J]. Appl Intell 48(4):805–820

    Article  Google Scholar 

  16. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization [J]. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  17. Zapotecas Martínez S, Coello Coello CA (2011) A multi-objective particle swarm optimizer based on decomposition [C]. Proceedings of the 13th annual conference on Genetic and evolutionary computation. ACM 69–76

  18. Zhu Q, Lin Q, Chen W et al (2017) An external archive-guided multi-objective particle swarm optimization algorithm [J]. IEEE Trans Cybern 47(9):2794–2808

    Article  Google Scholar 

  19. Lin Q, Li J, Du Z et al (2015) A novel multi-objective particle swarm optimization with multiple search strategies [J]. Eur J Oper Res 247(3):732–744

    Article  MathSciNet  MATH  Google Scholar 

  20. Li Z, Nguyen TT, Chen SM et al (2015) A hybrid algorithm based on particle swarm and chemical reaction optimization for multi-object problems [J]. Appl Soft Comput 35:525–540

    Article  Google Scholar 

  21. Duan H, Gan L (2014) Orthogonal multi-objective chemical reaction optimization approach for the brushless DC motor design [J]. IEEE Trans Magn 51(1):1–7

  22. Bechikh S, Said LB (2014) An indicator-based chemical reaction optimization algorithm for multi-objective search [C]. GECCO (Companion):85–86

  23. Cheng R, Jin Y, Narukawa K et al (2015) A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling [J]. IEEE Trans Evol Comput 19(6):838–856

    Article  Google Scholar 

  24. Deb K, Thiele L, Laumanns M, Zitzle E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Abraham A, Jain L, Goldberg R (eds) Evolutionary multiobjective optimization. Theoretical advances and applications. Springer, USA, pp 105–145

    Chapter  Google Scholar 

  25. Huband S, Barone L, While RL et al (2005) A scalable multi-objective test problem toolkit [C]. EMO 3410:280–295

    MATH  Google Scholar 

  26. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S, (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition, Technical Report CES-487, The School of Computer Science and Electronic Engineering, University of Essex, Tech Rep, Colchester

  27. Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  28. Li H, Wang L, Hei X (2016) Decomposition-based chemical reaction optimization (CRO) and an extended CRO algorithm for multiobjective optimization [J]. J Comput Sci 17:174–204

    Article  MathSciNet  Google Scholar 

  29. Bechikh S, Chaabani A, Ben Said L (2014) An efficient chemical reaction optimization algorithm for multi-objective optimization [J]. IEEE Trans Cybern 45(10):1–1

  30. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume [J]. Eur J Oper Res 181(3):1653–1669

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank them for sharing their source codes and providing guidelines to tune the control parameters. This work is partly supported by the National Natural Science Foundation of China under Grant 61272283, 61073091, 61100173, 61403304 and 14JK1511. The statements made herein are solely the responsibility of the author[s].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongye Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, L. A self-organizing map based hybrid chemical reaction optimization algorithm for multiobjective optimization. Appl Intell 49, 2266–2286 (2019). https://doi.org/10.1007/s10489-018-1358-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1358-0

Keywords

Navigation