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Abstract Machine learning algorithms have been effectively applied into
various real world tasks. However, it is difficult to provide high-quality
machine learning solutions to accommodate an unknown distribution of input
datasets; this difficulty is called the uncertainty prediction problems. In this
paper, a margin-based Pareto deep ensemble pruning (MBPEP) model is
proposed. It achieves the high-quality uncertainty estimation with a small value
of the prediction interval width (MPIW) and a high confidence of prediction
interval coverage probability (PICP) by using deep ensemble networks. In
addition to these networks, unique loss functions are proposed, and these
functions make the sub-learners available for standard gradient descent learning.
Furthermore, the margin criterion fine-tuning-based Pareto pruning method is
introduced to optimize the ensembles. Several experiments including predicting
uncertainties of classification and regression are conducted to analyze the
performance of MBPEP. The experimental results show that MBPEP achieves a
small interval width and a low learning error with an optimal number of
ensembles. For the real-world problems, MBPEP performs well on input
datasets with unknown distributions datasets incomings and improves learning
performance on a multi task problem when compared to that of each single
model.

Keywords uncertainty prediction, ensemble pruning, loss function, margin
criterion tuning

1. Introduction

Machine learning has been successful in many areas such as memristive
designing [1], conversational system [2], ECG signal recognition [3], autonomous
vehicles [4] and brain-inspired network construction [5-7]. Normally, the data
distributions in testing datasets should be get close to those of the training datasets, if
good learning results to be obtained. However, in many situations that are instances of
the uncertainty prediction problem, such as in obtaining a skin cancer diagnosis [8],
dog breed classification [8], lesion segmentation [9], reinforcement learning [10],
noisy data uncertainty [11] and model uncertainty [8] [12]; the distributions of test
datasets are unknown. In these cases, it is difficult for traditional learning models to
achieve good performance.
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Some researchers used Bayesian neural networks that depended on the prior
distribution of the datasets [10] [13], and Markov chain Monte Carlo [10] and [14] to
solve the uncertainty prediction problems. However, such approaches are
computationally expensive when they are applied into the large scale networks. To
avoid the prior distributional assumption, we deal with uncertainty prediction as a
prediction intervals (P1) problem [15], which uses upper and lower bounds to quantify
the degree of uncertainty. The previous studies [15] [16] [17] redefined the prediction
intervals into the two targets, namely, the minimum being the width between the
upper and lower bounds, and the maximum being the prediction interval coverage
probability. As the loss functions in the above studies are nonconvex according to
[16], the prediction intervals cannot be calculated by the standard gradient descent
method, which increases the complexity of solving this kind of problems. To
overcome this difficulty, we design a simple and intuitive loss function that is unified
and convex behind the last layer of the network; the network can be learned with the
standard gradient descent.

Furthermore, due to the high degree of uncertainty degree of outputs, it is
difficult to assess the PI performance by using only one neural network, so combining
several neural networks into an ensemble one becomes a suitable method of solving
the PI problem. Unfortunately, to the best of our knowledge, no previous study has
linked the optimal number of ensembles with the PI. In this manuscript, we introduce
a Pareto pruning method based on margin criterion fine-tuning (MCFT) to tackle this
problem.

Overall, the margin-based Pareto deep ensemble pruning (MBPEP) model is
built on the deep models; and these models are ensemble-pruned to account for the
prediction’s uncertainty in this manuscript. The remainder of this paper is organized
as follows. Section 2.1 briefly discusses the unique loss functions in each sub-learner.
Section 2.2 introduces the Pareto pruning method based on margin criterion fine-
tuning. Section 2.3 describes the entire learning procedure of MBPEP. In Section 3, a
series of experiments are used to quantify the loss functions and the ensemble pruning.
MBPEP is tested on some real-world benchmarks in Section 4. Conclusions are given
in Section 5.

2. Materials and Methods

2.1 Unique loss function for prediction intervals

We treat the Pl problems as prediction intervals [15] processes that do not
depend on any prior assumption. The learned intervals are narrow, and the output’s
uncertainty is accounted for. Let the inputs X be targeted by Y ; and the upper and
lower bounds of the prediction are denoted by \fL and \fu in this manuscript. The

prediction interval coverage probability ( PICP ) and mean prediction interval width
(MPIW ) are the essential metrics in Pl ; and their usual mathematical formulas are
as follows:
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where N denotes the number of samples, and k; denotes the indicator (k, =1 if
Y (X,) <Y, <Y, (X,); otherwise, k, =0). According to a previous work [18], the
values of PCIP will be decreased if MPIW narrows. Unfortunately, these two

metrics are usually difficult to be keep in balance. In this manuscript, this restriction
is slightly alleviated by allowing some of targets Y to not fall into the range

between Y, and Y, to some degree in Eq. (2). Thus, the MPIW can be
represented as follows:

MPIW =507, () Y, (X )k ©)

In what follows, to allow PICP to remain at a reasonable value, the confidence
level 1—¢ is defined (where ¢, namely denotes the deviation level) as the degree
of tolerance; the corresponding output PICP should be greater than 1—¢ .
According to the description of LUBE [15], MPIW is contained in the loss function

to obtain a smaller value. Additionally, —PICP is obtained by maximizing the
corresponding regularization term as follows:

LOSS, joe = wa+ exp(c max(0, (1— ¢) — PICP))) 4)

where ¢ denotes the penalty coefficient, and the regularization term has the
exponential form. The loss function is designed to minimize the MPIW while
keeping the value of PICP greater than confidence level 1—¢ in the meanwhile.

Normally, similarly to the PI framework of LUBE in Eq.(4), the loss function is
nonconvex or nondifferentiable. The weights and bias of the neural networks may be
trapped in local minima when gradient descent optimization and an evolutionary
algorithm are used, such as employing the simulated annealing to solve Eq. (4). To
design a computation framework that can avoid the nonconvex problem of computing

Y, and Y,, more nonlinear activation operators are added in the MBPEP. These
operators can ensure the differentiability and convexity in each sub-learner; thus,
those sub-learners can be easily solved by the gradient descent methods such as

stochastic gradient descent, AdaDelta [19], Adam [20], etc. The complete feed-
forward architecture for the base learner of MBPEP is shown in Fig. 1.
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Fig. 1: Feed-forward network structure of the base leaner of MBPEP. It consists of the deep layer
architecture and outputs the loss determinated by the MPIW and PICP .
InFig. 1, o denotes the standard activation functions (such as the Sigmoid and Relu,
which determined by the architecture of the network). When the layer architecture of
the network is not very deep, the Sigmoid function is used as the activation operator.
As to the deep layer architecture, the Relu function is used due to its good gradient
propagation characteristics [21]. To avoid over-fitting phenomenon, a dropout
mechanism [22] is added in each layer by randomly selecting units to be dropped. The
fixed retention probability of dropout is set to 0.8. Before the upper and lower bounds
Y, and Y, , the structure of the base leaner can be replaced by the standard forms
such as feed-forward, recurrent and convolutional layers, according to various real-
world problems. To allow the weights in the base learner to converge, the indicator
k. in Eq.(1) is effectively qualified, and the activation functions are added on the

difference between the upper bounds, lower bounds and targets Y , as follows:
k =c(Y, -Y)®oc(Y —Y,) (5)
where ® denotes the elementwise product operator. Consistently with (1), our
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Similarly, to the calculation of MPIW in Eq.(3), the differences of upper and lower
bounds \?U (Xi)—\fL(Xi) are kept the same in MBPEP, as they are computed by the
non-linear operators in the last layer of the neural network. The new mathematical
expression for our MPIW, 50 IS:

1 .- - - -
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From Eqg. (6), it can be seen that the new MPIW can be simplified and kept the
N ~ ~
same as in the original framework: MPIW,gocp :%Z(YU(Xi)—YL(Xi))ki. It is
i=1

worth noting that to allow the derivation of the loss function derivable, the hinge
regularization term is introduced in the loss function (Eq.(4)) of our MBPEP method
that can be easily converted to the product of the penalty constant ¢ and a nonlinear
Relu operator, the derivative of which can be easily computed:

LOSSygeep = MPIW,gpep +C- Relu((l—¢)— PICPMBPEP) ()



2.2  Ensemble pruning

In Section 2.1, we have introduced the architecture of the base learner in MBPEP,
but there is still a problem of determining the number of base learners are needed for
achieving good performance. In the previous studies ([15], [18], [23-24]), the
numbers of the base learners were pre-defined, and researchers did not relate the
learning performance to the number of the ensembles. In this section, we further
explore the particular metric of measuring the ensemble performance and determining
the relationship between the learning performance and the number of ensembles.

In this manuscript, the Pareto evolution [25] method as a bi-objective
evolutionary algorithm is used to deal with this problem. The training losses of base
learners described in Eq. (7) are used to measure the learning performance. Moreover,
considering that the differences of the sub-learners’ outputs may be vary, the learners
that output narrow boundary intervals are selected first in the ensembles. To this end,
margin criterion fine-tuning (MCFT) is added to measure the performance of each sub

learner. Assuming that there are T~ base learners H™ ={H,.... H_.} in the
ensembles, Y!(x) denotes the upper bound with respect to i, inputs x that is

determined by t, sub-learner, and Y!(x,) means the corresponding lower bound.
The margin for x, is defined as the mean value between the upper and lower bounds
among the ensembles H™, and can be represented as follows:
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Next, we score the margin of the ensembles of all datasets by:
13 .
C.(X)= ngog[m argin(x)] 9)

where N denotes the number of the training samples. According to Eq. (8), it is
observed that if the output boundary intervals of those base learners are quite large,
the corresponding margin criterion score C_.(X) will be high. The learning

performance of the ensembles can be described as the summation of the losses
(according to Eq. (7)) and their margin criterion score C,.(X):

f(H)=C,.(X)+Loss (10)

As the learning performance and the number of sub-learners are two objects in the
optimization space, we treat this problem as a bi-objective programming formulation
and minimize it as follows:

arg min__ . (f(H"), sum(s)) (11)

where s denotes the chosen indicator (s, =1 if a sub-learner H, is chosen;

otherwise, s, =0). Thus sum(s) represents the number of the ensemble size.

Unlike other single-objective algorithms [26-27], the ‘domination’ conception is
introduced, which disturbs the ensemble size continuously and measures the

difference between f(H") and sum(s) during the iteration process.



2.3 Margin-based Pareto deep ensemble pruning (MBPEP) algorithm

In this section, the complete learning pipelines of MBPEP are described as
follows:

Step 1: Data sampling.

At the beginning of the training process, the dataset is randomly re-sampled by
the classical bootstrap. The number of the bootstrap repetitions is predefined at the
start of training.

Step 2: Parameter initialization.

At this step, the configurations of MBPEP is initialized, such as the hidden size,
the type of the activation functions, the number of the batches, the maximum number
of the epochs, and the maximum number of the base learners, is initialized. In the
following Sections 3 and 4, in order to measure the performances of MBPEP and the
other state-of-the-art models, some of these hyper parameters are kept fixed. In
particular, the number of outputs for each sub learner should be fixed at two, which
represents the upper and lower bounds.

Step 3: Training.
Assume that H; and HT* represent the original and optimal ensemble pools,

where HT* - HT. The architectures of the base learners have been discussed in

deail in Section 2.1; and each of them is trained independently with the gradient
descent method to obtain the optimal weights and biases. Due to the scalable
computation framework in Fig. 2, in order to measure the uncertainty prediction
performance of different loss functions in Section 3.2.1, the loss functions in this step
need to be changed, and the other steps need to remain fixed.

Step 4: Ensemble pruning.

A number of the base learners are quite redundant. To save storage space and
accelerate prediction speed, they need to be pruned. The ensemble process has been
discussed in detail in Section 2.2; the optimal base leaners are selected to construct
the new ensembles. To measure the pruning performance of MBPEP, the pruning
process should to be combined with other algorithms while the other steps remain
fixed.

Step 5: Integration.

In the integration phase, we use the simple median voting method to fuse several
outputs of optimal ensembles to the final upper and lower bounds. Of course, other
nontrainable [28-29] and trainable integration methods [30-31] can also be used.

Step 6: Testing.

The optimized base learners are used to test the uncertainty prediction dataset.

The complete learning process is shown in Fig. 2.
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Fig. 2: Complete learning process of MBPEP. It contains the sampling, initialization, training, pruning,
integration and testing steps. In the training stage, all sub-learners are trained independently, and some of
these learners are pruned in the pruning step. Finally, these optimal ensembles are fused by median voting.

3.  Performance analysis

3.1 Configuration

Several UCI datasets [32] are used as benchmarks in this section. The description
of these datasets is shown in Tab. 1; each of them is split into three parts; the training,
validation and testing datasets. The feed-forward architecture is used for the sub-
learners. In Section 3.2, various loss functions and ensemble pruning methods are
compared. In Section 3.3, MBPEP is tested to compare its effectiveness to that of

several ensemble pruning methods.
TABLE 1: UCI DATASETS

Data description

Dataset Training size Validation size Testing size
Adult 24421 9768 14653
Arcene 450 180 270
Australian 3325 1330 1995
Breast-cancer 285 114 170
Disorders 173 69 103
Heart 135 54 81
Wine 89 36 53
lonosphere 176 70 105
Kr-vs-kp 1598 639 959
Letter 10000 4000 6000
Optdigits 1912 760 1151
Satimage 1155 462 693
Sonar 695 278 416
Spambase 2301 920 1380
Tic-tac-toe 479 192 287
Vehicle 473 189 284

Vote 218 87 130




3.2 Comparison experiments

3.2.1 Comparison of various loss functions for uncertainty prediction

In this Section, MBPEP is evaluated to capture the synthetic data that combines
of the real data sets with various noise distributions. The example dataset is a one-
dimensional toy regression [33], in which the regression formulation can be written as:

y=x*+¢&, where the noise data ¢ follows the Gaussian distribution. In this

section, we will show the advantage of MBPEP over other uncertainty estimation
models, such as the Lower Upper Bound Estimation model (LUBE) [15] and the
Concrete Dropout model (CD) [34]. As described in Section 2.1, the LUBE
uncertainty estimation model is similar to our model and outputs two boundaries and
a loss function constructed by MPIW and PICP . However, the loss function of
LUBE is nonconvex and can be optimized by the simulated annealing method
described in this paper. The CD model outputs two nodes that estimate the mean and
variance values of a Gaussian distribution; and negative log likelihood (NLL) is used
as the loss function. In contrast, for the MBPEP model, a more unified computation
framework that combines the corresponding loss function L., (composed of

MPIW and the hinge loss form of the PICP architecture to predict uncertainty)
and Pareto ensemble pruning is used. Additionally, non-pruning MBPEP without
ensemble pruning (NP-MBPEP) is used as a baseline to measure performance of a
model without the ensemble pruning technique. The results are shown in Fig. 3.
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Fig. 3: Outputs of (a) LUBE, (b) CD, (c) NP-MBPEP, and (d) MBPEP. The output boundaries assume
the Gaussian distribution.

Specifically, ¢ is the noise that follows the Gaussian distribution and the
confidence level (1—¢) is setto 0.95 in this section. As described in Fig. 3, the red

points denote the noisy datasets. The gray area between the black thick lines denotes



the ensemble PI boundaries that are determined by the upper and lower boundaries.
The blue lines denote the ground truth curves. Fig. 3 shows that the Pl boundaries of
LUBE and NP-MBPEP hardly capture the real truth curves at the inflection points.
However, for the CD and MBPEP models, the Pl boundaries can perfectly fit the truth
curves and cover all of the samples. In particular, for MBPEP, they can restore the
inflection regions that cannot be fitted effectively by the none-pruning MBPEP.

As MBPEP does not need to assume in advance the distribution of data samples,
unlike the Gaussian distribution of noise data in the preceding paragraph, we further
explore the performance of these models applied to samples with exponential function
y =exp(x)+¢&, where & means the exponential noise. The results are shown in Fig.
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Fig. 4: Outputs of (a) LUBE, (b) CD, (c) NP-MBPEP, and (d) MBPEP. The output boundaries are under
the exponential distribution.

Fig. 4 shows that the interval width between the upper and lower bounds of model
CD is too large, indicating that it cannot effectively capture the other distributions of
the data samples other than the Gaussian distribution. As to the other models, the
LUBE model can output ideal boundaries except for the point of inflection under the
exponential distribution. In contrast, MBPEP can fit the true data tendency most
perfectly. The experiments demonstrate that MBPEP is a distribution-free model that
can efficiently capture datasets under any distribution.

3.2.2 Comparison of ensemble pruning methods to standard ensembles

In this section, the effect of the ensemble pruning technique will be explored
under the optimal number of ensembles, and its performance on uncertainty
classification tasks will be examined. To calculate the effectiveness of pruning, the
combinations of [5,10,20,30,50,70,100] sub-learners are constructed, and the
testing time consuming is used as the metric. Performances of MBPEP and NP-

MBPEP is compared in Fig. 5. It is clearly observed that the ensemble pruning
technique can reduce the testing time significantly compared to that of NP-MBPEP



significanlly, with the increase of the original ensemble size. According to Fig. 5, if
there are more sub-learners being trained, a significant amount of time is saved.
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Fig. 5: Testing efficiency comparison of MBPEP and NP-MBPEP for various original ensemble sizes.

Black and red columns correspond to MBPEP and NP-MBPEP, respectively.

3.2.3 Comparison to other pruning methods

In this section, the characteristics of several ensemble pruning models aiming to

choose some competent sub leaners in the pool of the ensembles are explored and
compared. For readability, these methods are briefly described as follows:

Dynamic ensemble selection performance (DES-P) pruning: DES-P [35] tends to
select the ensembles that achieve the best competence level on k nearest
neighbors on the datasets. In DES-P, the competence of pruning is computed by
subtracting the performance of a random classifier from the estimation.
Kullback-Leibler (KL) pruning: Kullback-Leibler [35], an important metric in
information theory, is used to compute the competence. The Gaussian potential
function is also used in the Kullback-Leibler pruning.

Dynamic Frienemy indecision ensemble pruning (DFP) [36] is an ensemble
pruning method that focuses on defining the competence region of each dataset.
As to the pruning stage, the model detects the indecision region and prunes the
classifiers in which the decision boundaries do not cross the level of competence
of the test samples. In the dynamic selection stage, DFP chooses the classifiers
that were preprocessed by the pruning stage.

Margin Distance Minimization (MDM) pruning: The margin distance [37]
defines the quantity ¢ between outputs of ensemble classifiers and labels. The
Quantity ¢ equals to 1 if the label is correctly classified. Otherwise, it is equal
to -1 if the label is misclassified. The signature vector of ensemble classifier is
computed by the summation of ¢ for the selected classifiers. This method is
aimed to explore the optimized ensemble classifiers that ensure that all ¢ have
positive values. The distance p of Margin Distance Minimization pruning is

set to 0.075 in this manuscript.

Meta-pruning [37] regards the ensemble pruning problem as a meta-problem,
and different meta-features are extracted to train the meta-classifier. Meta-
features that are used to estimate the competence level of the base learners
demonstrate more robust pruning results. The meta-pruning rule is to learn
whether a base learner has enough competence level for the incoming datasets.
Meta-dynamic ensemble selection. Oracle (META-DES.O) [38] is inspired by
the meta-pruning based on the Oracle. In contrast to meta-pruning, meta-feature



selection is optimized by the Binary Particle Swarm Optimization (BPSO).

Afterwards, the meta-classifiers are integrated by the majority voting scheme.
TABLE 2: Test errors of ensemble pruning methods

Test error(%)

KL MDM Meta META-
Datasets Ours DES-P pruning DFP pruning pruning DES.O
Adult 17.22 20.04 31.56 22.02 17.67 20.16 19.38
Arcene 15.73 33.33 20.83 33.33 39.10 21.21 30.30
Australian 15.68 17.98 14.76 18.42 14.80 15.53 13.15
Breast-cancer 27.43 24.21 29.80 26.31 28.70 28.82 21.05
Disorders 30.40 32.45 36.58 35.08 33.71 31.16 31.50
Heart 20.43 19.58 23.54 24,74 21.40 19.93 23.71
Wine 1.13 1.69 1.69 3.38 1.69 1.69 4.3
lonosphere 4.35 7.75 431 7.75 431 6.03 4.32
Kr-vs-kp 5.32 5.02 6.16 5.87 6.16 5.68 6.63
Letter 16.65 20.75 17.24 21.39 18.48 22.80 26.53
Optdigits 3.57 4.67 9.16 5.30 3.58 3.72 4.83
Satimage 10.83 11.44 12.33 12.80 12.33 12.57 24.81
Sonar 24.84 25.63 31.06 31.88 24.95 25.70 28.98
Spambase 6.54 7.70 9.33 7.70 6.60 6.68 7.57
Tic-tac-toe 18.13 20.88 21.26 24.05 20.88 2341 20.88
Vehicle 22.44 21.78 25.73 30.71 23.36 24.42 20.14
Vote 4.36 4.23 4.64 4,72 4.15 4.32 4.44
Count of wins 10 1 1 0 2 0 3
Direct wins 12 15 16 14 14 13

In this section, in order to measure the performance of margin criterion fine-
tuning (MCFT) in MBPEP, ensemble pruning methods that have been described in
preceding paragraph are benchmarked on 17 datasets from the UCI datasets. Each
result is recomputed under 30 times. To intuitively show the performance of each
ensemble pruning method, we first measure the testing errors on the uncertainty
classification tasks, shown in Tab. 2. According to Tab. 2, MCFT shows the best
performance on 10 datasets (58.82%) of the total number of datasets, which is
superior to results of other ensemble pruning methods. The reason is that MCFT can
effectively search the sub learners, which maintains the low training losses and the
margin criterion score (Eq. 10). Tab. 2 shows that our ensemble pruning method can
effectively improve classification performance for uncertainty prediction problems.

3.3 Optimal number of the sub learners

To obtain the optimal ensembles to predict uncertainty, optimal ensemble size is an
important metric in ensemble pruning methods. The optimized ensembles’
performance on the uncertainty classification tasks is shown in Tab. 3. It is easily
observed that MCFT achieves the smallest ensemble sizes on the 58.8% (10/17) sets
of all data sets, while the other methods do so on less than 41.2% (7/17) of datasets.
Tab. 3 also demonstrates that MCFT can be less time-consuming than are other
ensemble pruning methods at the testing stage. Tab. 3 shows that our ensemble
pruning method can effectively shrink the number of sub-learners with uncertainty

predictions.
TABLE 3: Optimal ensembles among ensemble pruning methods
Optimal ensembles
Datasets ours DES-P KL DFP MDM Meta META-

pruning pruning pruning DES.O




Adult 10.22 11.36 14.76 18.56 8.67 11.16 19.30

Arcene 11.73 18.63 20.83 28.56 19.10 21.21 18.76
Australian 11.40 15.83 14.76 24.43 8.50 11.73 12.83
Breast-cancer 8.43 9.46 26.10 21.03 7.80 9.82 10.20
Disorders 12.70 24.70 24.58 22.16 17.71 13.96 24.10
Heart 9.43 32.43 17.94 15.06 13.60 11.93 14.16
Wine 2.98 13.90 5.75 3.90 5.98 4,11 3.70
lonosphere 5.45 13.53 10.50 6.47 10.73 8.46 6.47
Kr-vs-kp 4.29 35.76 10.61 8.93 7.20 10.12 9.40
Letter 6.35 23.59 7.33 5.24 11.23 10.53 7.46
Optdigits 23.57 22.46 25.16 23.13 23.76 25.80 23.06
Satimage 17.73 38.03 22.26 24.20 25.96 22.91 22.90
Sonar 11.34 13.68 31.06 16.73 34.95 20.70 23.16
Spambase 17.54 23.90 23.33 26.93 36.60 21.38 26.93
Tic-tac-toe 18.32 11.86 21.26 11.10 33.23 15.63 9.76
Vehicle 16.54 15.96 17.73 24.00 27.36 24.42 31.53
Vote 2.46 3.57 5.14 3.17 5.45 6.02 2.90
Count of wins 10 2 0 1 3 0 1
Direct wins 14 17 14 14 16 15

4. Real-world problems

4.1  Uncertainty quality metrics assessment by benchmarking

TABLE 4: Three different uncertainty prediction metrics applied to nine regression benchmarking datasets

Loss PICP MPIW
Ours CD LUBE Ours CD LUBE Ours CD LUBE
Boston 1.04+0.09 176+0.28 1.3340.05 0.81+0.01 0.89+0.02 0.92+0.01 0.48+0.03 0.87+0.03 1.16+0.02
Concrete 1.06+0.02 1.234+0.06 116+0.02 0.90+0.00 0.92+0.01 0.94+0.01 0.71+0.04 1.00+0.02 1.09+0.01
Energy 0.34+0.01 0.50+0.02 0.47£0.01 0.95+0.01 0.99+0.00 0.97£0.01 0.49+0.01 0.50+0.02 0.47£0.01
Kin8nm 0.58+0.02 114+0.01 1244001 0.97+0.00 0.97+0.00 0.96+0.00 112+0.01 114+0.01 1254001
Naval 0.18+0.02 0.31£0.01 0.27£0.01 1.00+£0.00 0.99+0.00 0.98+0.00 0.48+0.01 0.31£0.01 0.28+0.01
Power 0.30+0.01 0.9140.00 0.86+0.00 0.96+0.00 0.96+0.00 0.95+0.00 0.88+£0.02 0.91+0.00 0.86+£0.00
Wine 325+021 4134031 3.13+0.19 0.84+0.01 0.90+0.01 0.92+0.01 12140.02 250+0.02 2.33+0.02
Yacht 0.10+0.01 0.31£0.02 0.23+0.02 0.88+0.01 0.98+0.01 0.96+0.01 0.0940.01 0.3040.02 0.17+0.00
Year 2.04+NA 290+ NA 247£NA 0.98+NA 0.96+NA 0.96+NA 2.60+NA 291+NA 248+ NA

To measure the quality of uncertainty prediction, MBPEP is benchmarked on nine
UCI regression datasets. Due to different loss functions and model architectures
having been used in previous models, it is unfair to directly compare the performance
among these models. As a PI model, MBPEP uses a unique loss function to shrink the
width between the upper and lower bounds. Other loss functions include the Concrete
Dropout model (CD) [34] that has been described in Section 3.2.1. To convert the
mean and variance into the metrics PICP and MPIW, according to [23], the mean and
standard deviation of the uncertainty are set equal to (v, —v)/2 and (v, -Y)/3.98

respectively. As for LUBE model [15] that also has been described in Section 3.2.1,

in contrast to our MBPEP, it only uses fixed activation functions (the Sigmoid
function in the paper), and soft activations are not involved in constructing the MPIW.



Three quality assessment metrics learning losses, PICP and MPIW are employed. The
results are shown in Tab. 4. Each result is recomputed 20 times and is presented in the
form of mean + standard error . The number of hidden units of each base learner is
set to 100, and the inputs are normalized to [0,1]. The loss metric in Tab. 4 shows

that our model achieves the minimum learning losses on most of datasets.
Additionally, our model also achieves the narrowest interval width (the minimum
value of MPIW ) on most of these datasets. As to the coverage probability metric
(PICP), our loss function is comparable to the other two losses.

4.2  Real-world classification on MNIST and SVHN

In this section, MBPEP is applied to evaluate its uncertainty classification
performance on the real-world datasets. The training dataset is MNIST [39], and the
test dataset is SVHN [40]. MNIST is a standard digital character benchmark dataset
that contains 60000 and 10000 of digits, while SVHN is composed of letters of the
alphabets instead of digits. As these two datasets have different data distributions, this
experiment can uncover our method’s uncertainty classification ability. In particular,
each image in SVHN needs to be resized to the same size as that of MNIST images.
Fig. 5 shows several images from these two datasets.

Qq
A

Fig. 5: (a). Examples of handwritten digits from MNIST (b). Examples of images of
letters from SVHN

The classical Lenet-5 architecture, which consists of 2 convolutional layers, 2

pooling layers and a fully connection layer, is used as the base leaner in this

experiment. MBPEP is compared to state-of-the-art models such as Deep ensembles

with adversarial training (DE) [23] and MC-dropout [10] on 1000 samples of MNIST



and SVHN. Due to the ground truth labels belonging to [0,9], when the known

dataset (MNIST) inputs are used in learning, outputs will show large values of
probabilities, and when the unknown dataset (SVHN) inputs are processed, the
confidence degrees of probabilities will shrunk. We calculate the conditional
entropies of output predictive probabilities for unique labels to evaluate the quality of
uncertainty estimation.
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Flg 6: Dlstrlbutlons of the entropy values for three dlfferent models The panels from
left to right show the performances of DE, MBPEP and MC-dropout. The top row of
these panels shows the test examples from the known dataset (MNIST), and the
bottom row shows the test examples from the unknown dataset (SVHN).

Due to 1000 samples of MNIST and SVHN being too many for one figure, the
entropy values of 30 samples for labels 1, 2, 5 and 7 are shown in Fig. 6.
The top row shows that all three models achieve the lowest entropy values, and the
performance of MBPEP is more stable than that of other methods. As to the
uncertainty prediction performance in the bottom row of Fig. 6, the results show that
MBPEP achieves the highest uncertainty degrees. Although DE and MC-dropout also
exhibit some uncertainty degrees, their output entropy values show high variances.
These results indicate that MBPEP is a superior model for handling uncertainty tasks.



4.3  Multitask problem
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Fig. 7: Applying uncertainty estimation to a multitask learning scene. The log mel
spectra are feed as inputs. The joint learning of the convolutional autoencoder and the
stack convolution recurrent network deals with the novelty detection and acoustic
classification tasks.

In this section, MBPEP is applied into the multitask uncertainty learning that aims
to enhance the performance with respect to the 10T acoustic task. The training dataset
contains 5140 positive samples belonging to 3 labels; the testing dataset contains
2999 negative samples that can be considered as ‘novelty’, and 509 positive samples
belonging to 3 labels that are the same as those in training dataset. We aim to
simultaneously detect the novelty samples and classify the remaining positive samples.
The jointly learning method of novelty detection and classification tasks is proposed.
Fig. 7 shows our multitask learning framework that incorporates the log mel spectra
[41] and has two pipelines. In the training phase, the convolutional autoencoder only
rebuilds the space of the positive samples while the novelty samples can not been
effectively reconstructed, and Stacked CRNN [42] classifier is responsible for
learning the determination boundaries of every positive samples. In the testing phase,
the convolutional autoencoder is used for novelty detector and Stacked CRNN
predicts the positive samples that are filtered by the autoencoder. As to the multi-task
loss function, the multiple outputs of MBPEP models are with the CVAE output and
CRNN . Hence, we construct the loss function of the jointly uncertainty learning
similarly to [43]:

L08S 5 =Weyae * LOSScyae +Werwy * LOSScany (12)

where Lossg,, IS the Softmax uncertainty likelihood function [40], and Loss,. IS

the uncertainty loss function in Eq. (7). In Table 5, several experiments are presented
to show the performance of our multitask learning. The accuracy and the
precision/recall are used as model metrics to evaluate the performance of detection
and classification.

To quantitatively analyze the performance of multitask learning, the optimal
weights which are predicted by the MBPEP to predefined weights for each
independent task. In Tab. 5, the performance of each independent model and multitask
learning model with optimal weights or predefined weights is shown. (Note: “De.”



denotes detection, and “Cla.” denotes classification weights in Tab. 5) It is observed
that if combined loss of two tasks is modeled by jointly uncertainty MBPEP learning,
the corresponding detection accuracy and precision/recall of classification can be

improved.
TABLE 5: Quantitative comparison of performance of uncertainty predicted weights to predefined learning
novelty detection and classification

Loss Task weights Detection Classification
De. Cla. Accuracy(%) Precision/Recall
Detection only 1 0 51.88% 0.80, 0.82
Classification only 0 1 53.58% 0.82, 0.85
Average weights 05 05 53.53% 0.87, 0.89
Uncertainty predicted | 53, ¢ gg 60.05% 0.93,0.93
Optimal weights
2 task uncertainty weighting 034 0 54.77% 0.81, 0.86
2 task uncertainty weighting 0 0.66 57.21% 0.85, 0.91

5. Conclusions

In this manuscript, the margin-based Pareto deep ensemble pruning (MBPEP)
model is derived to deal with the uncertainty estimation problems. Consisting of
several sub-learners pruned by the modified Pareto algorithm, MBPEP achieves a
small mean prediction interval width (MPIW) with a large prediction interval
coverage probability (PICP). Specifically, the loss function of each sub-learner is
reconstructed to link MPIW and PICP, and more nonlinear operators are added to
allow the sub-leaner to be easily solved by the standard gradient descents.

Various loss functions and ensemble pruning methods are compared; the results
of the experiments show that MBPEP can achieve a narrow interval width, reducing
the testing time consuming and optimal ensembles under low learning errors, which
demonstrates that MBPEP is a powerful tool for uncertainty estimation. It can output
a high uncertainty degree when facing the real-world unknown data distribution
problem (MNIST and SVHN).

Understandably, MBPEP also has a weakness. In Tab. 4, its metric PICP is not
clearly superior to others methods’. In the future research, we will discuss the
relationship between PICP and MPIW and continue to explore advancing the model
to deal with the uncertainty estimation problems.
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