Skip to main content
Log in

Single image dehazing using gradient channel prior

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The dehazing techniques designed so far are not so-effective at preserving texture details, especially in case of a complex background and large haze gradient image. Therefore, the exploration of new alternatives for designing an effective prior is desirable. Thus, in this research work, Gradient profile prior (GPP) is designed to evaluate depth map from hazy images. The transmission map is also improved by utilizing Guided anisotropic diffusion and iterative learning based image filter (GADILF). The restoration model is also improved to reduce the effect of pixels saturation and color distortion from restored images. Performance analysis demonstrates that GPP can naturally restore the hazy image especially at the edges of sudden changes in the obtained depth map. Through extensive analysis, it has been found that GPP based dehazing can effectively suppress visual artefacts for hazy images and yield high-quality results as compared to the competitive dehazing techniques both quantitatively and qualitatively. Moreover, the relatively high computational speed of the proposed technique will facilitate it in real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen B-H, Huang S-C, Li C-Y, Kuo S-Y (2018) Haze removal using radial basis function networks for visibility restoration applications. IEEE Transactions on Neural Networks and Learning Systems 29(8):3828–3838

    Article  Google Scholar 

  2. Cai B, Xu X, Jia K, Qing C, Tao D (2016) Dehazenet: an end-to-end system for single image haze removal. IEEE Trans Image Process 25(11):5187–5198

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen B-H, Huang S-C (2016) Edge collapse-based dehazing algorithm for visibility restoration in real scenes. J Disp Technol 12(9):964–970

    Article  Google Scholar 

  4. Gibson KB, Vo DT, Nguyen TQ (2012) An investigation of dehazing effects on image and video coding. IEEE Trans Image Process 21(2):662–673

    Article  MathSciNet  MATH  Google Scholar 

  5. Shi L-F, Chen B-H, Huang S-C, Larin AO, Seredin OS, Kopylov AV, Kuo S-Y (2018) Removing haze particles from single image via exponential inference with support vector data description. IEEE Trans Multimedia 20(9):2503–2512

    Article  Google Scholar 

  6. Oakley JP, Bu H (2007) Correction of simple contrast loss in color images. IEEE Trans Image Process 16 (2):511–522

    Article  MathSciNet  Google Scholar 

  7. Narasimhan SG, Nayar SK (2000) Chromatic framework for vision in bad weather. In: Cvpr, IEEE, p 1598

  8. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Article  Google Scholar 

  9. Bala J, Lakhwani K (2019) Performance evaluation of various desmogging techniques for single smoggy images. Modern Physics Letters B, 1950056

    Article  Google Scholar 

  10. Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: European Conference on Computer Vision, Springer, pp 184– 199

  11. Fattal R (2014) Dehazing using color-lines. ACM Trans Graph (TOG) 34(1):13

    Article  Google Scholar 

  12. Berman D, Avidan S et al (2016) Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1674–1682

  13. Li B, Peng X, Wang Z, Xu J, Feng D (2017) Aod-net: All-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp 4770–4778

  14. Santra S, Chanda B (2016) Day/night unconstrained image dehazing. In: 2016 23rd International Conference on Pattern Recognition (ICPR), IEEE, pp 1406-1411

  15. Koschmieder H (1938) Luftlicht und sichtweite. Naturwissenschaften 26(32):521–528

    Article  Google Scholar 

  16. McCartney EJ (1976) Optics of the Atmosphere: Scattering by Molecules and Particles. Wiley, New York, p 421

    Google Scholar 

  17. Kushwaha AKS, Srivastava R (2015) Framework for dynamic background modeling and shadow suppression for moving object segmentation in complex wavelet domain. J Electron Imaging 24(5):051005

    Article  Google Scholar 

  18. Song Y, Li J, Wang X, Chen X Single image dehazing using ranking convolutional neural network. IEEE Transactions on Multimedia

  19. Santra S, Mondal R, Chanda B (2018) Learning a patch quality comparator for single image dehazing. IEEE Trans Image Process 27(9):4598–4607. https://doi.org/10.1109/TIP.2018.2841198

    Article  MathSciNet  Google Scholar 

  20. Liu Q, Gao X, He L, Lu W (2018) Single image dehazing with depth-aware non-local total variation regularization. IEEE Trans Image Process 27(10):5178–5191. https://doi.org/10.1109/TIP.2018.2849928

    Article  MathSciNet  MATH  Google Scholar 

  21. Li J, Zhang H, Yuan D, Sun M (2015) Single image dehazing using the change of detail prior. Neurocomputing 156:1–11

    Article  Google Scholar 

  22. Zhao H, Xiao C, Yu J, Xu X (2015) Single image fog removal based on local extrema. IEEE/CAA Journal of Automatica Sinica 2(2):158–165

    Article  MathSciNet  Google Scholar 

  23. Ge G, Wei Z, Zhao J (2015) Fast single-image dehazing using linear transformation. Optik-International Journal for Light and Electron Optics 126(21):3245–3252

    Article  Google Scholar 

  24. Ding M, Wei L (2015) Single-image haze removal using the mean vector l2-norm of rgb image sample window. Optik-International Journal for Light and Electron Optics 126(23):3522– 3528

    Article  Google Scholar 

  25. Li Z, Zheng J, Zhu Z, Yao W, Wu S (2015) Weighted guided image filtering. IEEE Trans Image Process 24(1):120–129

    Article  MathSciNet  MATH  Google Scholar 

  26. Papari G, Idowu N, Varslot T (2016) Fast bilateral filtering for denoising large 3d images. IEEE Trans Image Process 26(1):251–261

    Article  MathSciNet  MATH  Google Scholar 

  27. Chaudhury KN, Sage D, Unser M (2011) Fast bilateral filtering using trigonometric range kernels. IEEE Trans Image Process 20(12):3376–3382

    Article  MathSciNet  MATH  Google Scholar 

  28. Anwar MI, Khosla A (2017) Vision enhancement through single image fog removal. Engineering Science and Technology, an International Journal 20(3):1075–1083

    Article  Google Scholar 

  29. Cui T, Tian J, Wang E, Tang Y (2017) Single image dehazing by latent region-segmentation based transmission estimation and weighted l1-norm regularisation. IET Image Process 11(2):145–154

    Article  Google Scholar 

  30. Wang W, Yuan X, Wu X, Liu Y (2017) Fast image dehazing method based on linear transformation. IEEE Trans Multimedia PP(99):1–1

    Google Scholar 

  31. Gao Y, Hu H, Li B, Guo Q, Pu S (2019) Detail preserved single image dehazing algorithm based on airlight refinement. IEEE Trans Multimedia 21(2):351–362. https://doi.org/10.1109/TMM.2018.2856095

    Article  Google Scholar 

  32. Baig N, Riaz MM, Ghafoor A, Siddiqui AM (2016) Image dehazing using quadtree decomposition and entropy-based contextual regularization. IEEE Signal Process Lett 23(6):853–857. https://doi.org/10.1109/LSP.2016.2559805

    Article  Google Scholar 

  33. Santra S, Mondal R, Chanda B (2018) Learning a patch quality comparator for single image dehazing. IEEE Trans Image Process 27(9):4598–4607

    Article  MathSciNet  Google Scholar 

  34. Liu Q, Gao X, He L, Lu W (2018) Single image dehazing with depth-aware non-local total variation regularization. IEEE Trans Image Process 27(10):5178–5191

    Article  MathSciNet  MATH  Google Scholar 

  35. Ancuti C, Ancuti CO (2014) Effective contrast-based dehazing for robust image matching. IEEE Geosci Remote Sens Lett 11(11):1871–1875. https://doi.org/10.1109/LGRS.2014.2312314

    Article  Google Scholar 

  36. Schechner YY, Narasimhan SG, Nayar SK (2003) Polarization-based vision through haze. Appl Opt 42 (3):511–525

    Article  Google Scholar 

  37. Kopf J, Neubert B, Chen B, Cohen M, Cohen-Or D, Deussen O, Uyttendaele M, Lischinski D (2008) Deep photo: Model-based photograph enhancement and viewing, Vol. 27 ACM

    Article  Google Scholar 

  38. Tan RT Visibility in bad weather from a single image

  39. Fattal R (2008) Single image dehazing. ACM Trans Graph (TOG) 27(3):72

    Article  Google Scholar 

  40. Tarel J-P, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th International Conference on Computer Vision (ICCV), IEEE, pp 2201–2208

  41. Zhu Q, Mai J, Shao L (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24(11):3522–3533

    Article  MathSciNet  MATH  Google Scholar 

  42. Middleton W (1957) Vision through the atmosphere in geophysik ii/geophysics ii

    Chapter  Google Scholar 

  43. Meng G, Wang Y, Duan J, Xiang S, Pan C (2013) Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the IEEE International Conference on Computer Vision, pp 617–624

  44. Omer I, Werman M (2004) Color lines: image specific color representation. In: Null, IEEE, pp 946–953

  45. Shu Q, Wu C, Liu RW, Chui KT, Xiong S (2018) Two-phase transmission map estimation for robust image dehazing. In: International Conference on Neural Information Processing, Springer, pp 529–541

    Chapter  Google Scholar 

  46. Chen C, Do MN, Wang J (2016) Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In: European Conference on Computer Vision, Springer, pp 576–591

    Chapter  Google Scholar 

  47. Liu Y, Li H, Wang M (2017) Single image dehazing via large sky region segmentation and multiscale opening dark channel model. IEEE Access 5:8890–8903

    Article  Google Scholar 

  48. Zhang L, Wang S, Wang X (2018) Saliency-based dark channel prior model for single image haze removal. IET Image Process 12(6):1049–1055

    Article  Google Scholar 

  49. Li J, Hu Q, Ai M Haze and thin cloud removal via sphere model improved dark channel prior. IEEE Geoscience and Remote Sensing Letters

  50. Li C, Guo J, Porikli F, Fu H, Pang Y (2018) A cascaded convolutional neural network for single image dehazing. IEEE Access 6:24877–24887

    Article  Google Scholar 

  51. Yang D, Sun J (2018) Proximal dehaze-net: a prior learning-based deep network for single image dehazing. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 702–717

    Google Scholar 

  52. Ren W, Liu S, Zhang H, Pan J, Cao X, Yang M-H (2016) Single image dehazing via multi-scale convolutional neural networks. In: European Conference on Computer Vision, Springer, pp 154–169

    Chapter  Google Scholar 

  53. Ren W, Ma L, Zhang J, Pan J, Cao X, Liu W, Yang M-H (2018) Gated fusion network for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3253–3261

  54. Su A, Sun X, Zhang Y, Yu Q (2016) Efficient rotation-invariant histogram of oriented gradient descriptors for car detection in satellite images. IET Comput Vis 10(7):634–640. https://doi.org/10.1049/iet-cvi.2015.0333

    Article  Google Scholar 

  55. Singh D, Kumar V (2019) Image dehazing using moore neighborhood-based gradient profile prior. Signal Process Image Commun 70:131–144

    Article  Google Scholar 

  56. Liu G, Zhou Z, Zhong H, Xie S (2014) Gradient descent with adaptive momentum for active contour models. IET Comput Vis 8(4):287–298. https://doi.org/10.1049/iet-cvi.2013.0089

    Article  Google Scholar 

  57. Kiani A, Sahebi MR (2015) Edge detection based on the shannon entropy by piecewise thresholding on remote sensing images. IET Comput Vis 9(5):758–768. https://doi.org/10.1049/iet-cvi.2013.0192

    Article  Google Scholar 

  58. Dong H, Dong S (2014) Image-based surface deformation for multi-view three-dimensional facial reconstruction. IET Comput Vis 8(6):498–509. https://doi.org/10.1049/iet-cvi.2013.0188

    Article  Google Scholar 

  59. Lee WY, Li CY, Yen JY (2017) Integrating wavelet transformation with markov random field analysis for the depth estimation of light-field images. IET Comput Vis 11(5):358–367. https://doi.org/10.1049/iet-cvi.2016.0151

    Article  Google Scholar 

  60. Srivastava R, Prakash O, Khare A (2016) Local energy-based multimodal medical image fusion in curvelet domain. IET Comput Vis 10(6):513–527. https://doi.org/10.1049/iet-cvi.2015.0251

    Article  Google Scholar 

  61. Li Z, Zheng J (2015) Edge-preserving decomposition-based single image haze removal. IEEE Trans Image Process 24(12):5432–5441

    Article  MathSciNet  MATH  Google Scholar 

  62. Zuo W, Zhang L, Song C, Zhang D, Gao H (2014) Gradient histogram estimation and preservation for texture enhanced image denoising. IEEE Trans Image Process 23(6):2459–2472

    Article  MathSciNet  MATH  Google Scholar 

  63. Caye Daudt R, Le Saux B, Boulch A, Gousseau Y (2019) Guided anisotropic diffusion and iterative learning for weakly supervised change detection. In: Computer Vision and Pattern Recognition Workshops

  64. Li B, Ren W, Fu D, Tao D, Feng D, Zeng W, Wang Z Reside: A benchmark for single image dehazing. arXiv:1712.04143

  65. Tarel J-P, Hautiere N, Cord A, Gruyer D, Halmaoui H (2010) Improved visibility of road scene images under heterogeneous fog. In: Intelligent vehicles symposium (IV), 2010 IEEE, Citeseer, pp 478–485

  66. Tarel J-P, Hautiere N, Caraffa L, Cord A, Halmaoui H, Gruyer D (2012) Vision enhancement in homogeneous and heterogeneous fog. IEEE Intell Transp Syst Mag 4(2):6–20

    Article  Google Scholar 

  67. Kede Ma WL, Wang Z (2015) Perceptual evaluation of single image dehazing algorithms. In: Image Processing, Proc, IEEE Citeseer, pp 3600–3604

  68. Cosmin Ancuti CDV, Ancuti CO (2016) D-hazy: A dataset to evaluate quantitatively dehazing algorithms. In: IEEE International Conference on Image Processing (ICIP), ICIP’16, pp 2226–2230

  69. Hautiere N, Tarel J-P, Aubert D, Dumont E (2011) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis & Stereology 27(2):87–95

    Article  MathSciNet  MATH  Google Scholar 

  70. Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilbag Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Kumar, V. & Kaur, M. Single image dehazing using gradient channel prior. Appl Intell 49, 4276–4293 (2019). https://doi.org/10.1007/s10489-019-01504-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01504-6

Keywords

Navigation