Skip to main content
Log in

Triangular coil pattern of local radius of gyration face for heterogeneous face recognition

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper puts forward a novel methodology for Heterogeneous Face Recognition (HFR), where we present a new-fangled image representation technique called the Local Radius of Gyration Face (LRGF), which has been theoretically proved to be invariant to changes in illumination, rotation and noise. Finally, a novel Local Triangular Coil Binary Pattern (LTCBP) is presented so as to apprehend the local variations of the LRGF attributes, and the method has been entitled as the Triangular Coil Pattern of Local Radius of Gyration Face (TCPLRGF). The proposed algorithm has been tested on a number of challenging databases to study the precision of the TCPLRGF method under varying condition of illumination, rotation, noise and also the recognition accuracy of sketch-photo and NIR-VIS image. The Rank-1 recognition accuracy of 98.27% on CMU-PIE Database, 98.09% on Extended Yale B Database, 96.35% on AR Face Database, 100% on CUHK Face Sketch (CUFS) Database, 89.01% on LFW Database and 98.74% on the CASIA-HFB NIR-VIS Database exhibits the supremacy of the proposed strategy in Heterogeneous Face Recognition (HFR) under various conditions, compared to other recent state-of-the-art methods. For reckoning the similarity measure between images, a hybridized approach amalgamating the Jaccard Similarity method and the standardized L1 norm approach has been taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pankanti S, Bolle RM, Jain A (2000) Biometrics: the future of identification [guest editors introduction]. Computer 33(2):46–49

    Article  Google Scholar 

  2. Jain AK, Pankanti S, Prabhakar S, Hong L, Ross A (2004) Biometrics: Agrand challenge. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on 2, 935–942, IEEE

  3. Delac K, Grgic M (2004) A survey of biometric recognition methods. In Electronics in Marine, 2004. Proceedings Elmar 2004. 46th International Symposium, 184–193, IEEE

  4. Jain AK, Li SZ (2011) Handbook of face recognition. Springer, New York

    MATH  Google Scholar 

  5. Li S, Chu R, Liao S, Zhang L (2007) Illumination invariant face recognition using NIR images. IEEE Trans Pattern Anal Mach Intell 29(4):627–639

    Article  Google Scholar 

  6. Li S (2009) Encyclopaedia of biometrics. Springer

  7. Lin D, Tang X (2006) Inter-modality face recognition. In P roceedings of European Conference on Computer Vision, 13–26

    Chapter  Google Scholar 

  8. Lei Z, Liao S, Jain AK, Li SZ (2012) Coupled discriminant analysis for heterogeneous face recognition. IEEE Trans Inf Forensics Secur 7(6):1707–1716

    Article  Google Scholar 

  9. Sharma A, Jacobs D (2011) Bypassing synthesis: Pls for face recognition with pose, low-resolution and sketch. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 593–600

  10. Kan M, Shan S, Zhang H, Lao S, Chen X (2016) Multi-view discriminant analysis. IEEE Trans Pattern Anal Mach Intell 38(1):188–194

    Article  Google Scholar 

  11. Tang X, Wang X (2004) Face sketch recognition. IEEE Trans Circuits Syst Video Technol 14(1):50–57

    Article  Google Scholar 

  12. Chen J, Yi D, Yang J, Zhao G, Li S, Pietikainen M (2009) Learning mappings for face synthesis from near infrared to visual light images. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition 156–163

  13. Han H, Klare BF, Bonnen K, Jain AK (2013) Matching composite sketches to facephotos: a component-based approach. IEEE Trans Inf Forensics Secur 8(1):191–204

    Article  Google Scholar 

  14. Wang X, Tang X (2009) Face photo-sketch synthesis and recognition. IEEE Trans Pattern Anal Mach Intell 31(1):1955–1967

    Article  Google Scholar 

  15. Li J, Hao P, Zhang C, Dou M (2008) Hallucinating faces from thermal infrared images. In Proceedings IEEE International Conference on Image Processing, 465–468

  16. Gao X, Wang N, Tao D, Li X (2012) Face sketchphoto synthesis and retrieval using sparse representation. IEEE Trans Circuits Syst Video Technol 22(8):1213–1226

    Article  Google Scholar 

  17. Wang N, Li J, Tao D, Li X, Gao X (2013) Heterogeneous image transformation. Elsevier J Pattern Recogn Lett 34:77–84

    Article  Google Scholar 

  18. Peng C, Gao X, Wang N, Tao D, Li X, Li J (2016) Multiple representation-based face sketch-photo synthesis. IEEE Trans Neural Netw, xx x, 1–13

  19. Wang N, Tao D, Gao X, Li X, Li J (2013) Transductive face sketch-photo synthesis. IEEE Trans Neural Netw 24(9):1364–1376

    Article  Google Scholar 

  20. Gao X, Zhong J, Li J, Tian C (2008) Face sketch synthesis algorithm on e-hmm and selective ensemble. IEEE Trans Circuits Syst Video Technol 18(4):487–496

    Article  Google Scholar 

  21. Ojala T, Pietikinen M, Menp T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  22. Ren J, Jiang X, Yuan J (2013) Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans Image Process 22(10):4049–4060

    Article  MathSciNet  Google Scholar 

  23. Klare BF, Jain AK (2013) Heterogeneous face recognition using kernel prototype similarities. IEEE Trans Pattern Anal Mach Intell 35(6):1410–1422

    Article  Google Scholar 

  24. Zhang W, Wang X, Tang X (2011) Coupled information-theoretic encoding for face photo-sketch recognition. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 513–520

  25. Zhu J, Zheng W, Lai J, Li S (2014) Matching nir face to Vis face using transduction. IEEE Trans Inf Forensics Secur 9(3):501–514

    Article  Google Scholar 

  26. D’eniz O, Bueno G, Salido J, De la Torre F (2011) Face recognition using histograms of oriented gradients. Pattern Recogn Lett 32(12):1598–1603

    Article  Google Scholar 

  27. Gong D, Li Z, Liu J, Qiao Y (2013) Multi-feature canonical correlation analysis for face photo-sketch image retrieval. In Proceedings of ACM International Conference on Multimedia 617–620

  28. Peng C, Gao X, Wang N, Li J (2016) Graphical representation for heterogeneous face recognition. IEEE Trans Pattern Anal Mach Intell xx (x), 1–13

  29. Roy H, Bhattacharjee D (2018) A ZigZag pattern of local extremum logarithm difference for illumination-invariant and heterogeneous face. Adv Comput Syst Secur 121–135. https://doi.org/10.1007/978-3-662-56499-8_1

    Google Scholar 

  30. Kar A, Sarkar S, Bhattacharjee D (2017) Local Centre of Mass Face for face recognition under varying illumination. Multimed Tools Appl 76:19211–19240. https://doi.org/10.1007/s11042-017-4579-z

    Article  Google Scholar 

  31. Lai Z, Dai D, Ren C, Huang K (2015) Multiscale logarithm difference Edgemaps for face recognition against varying lighting conditions. IEEE Trans Image Process 24(6):1735–1747

    Article  MathSciNet  Google Scholar 

  32. Wang B, Li W, Yang W, Liao Q (2011) Illumination normalization based on Weber's law with application to face recognition. IEEE Signal Process Lett 18(8):462–465

    Article  Google Scholar 

  33. Roy H, Bhattacharjee D (2016) Local-gravity-face (LG-face) for illumination-invariant and heterogeneous face recognition. IEEE Trans Inf Forensics Secur 11(7):1412–1424

    Article  Google Scholar 

  34. Roy H, Bhattacharjee D (2016) Face sketch-photo matching using the local gradient fuzzy pattern. IEEE J Intell Syst 31(3):30–39

    Article  Google Scholar 

  35. Fan CN, Zhang FY (2011) Homomorphic filtering based illumination normalization method for face recognition. Elsevier J Pattern Recogn Lett 32:1468–1479

    Article  Google Scholar 

  36. An G, Wu J, Ruan Q (2010) An illumination normalization model for face recognition under varied lighting conditions. Elsevier J Pattern Recogn Lett 31:1056–1067

    Article  Google Scholar 

  37. Faraji MR, Qi X (2014) Face recognition under varying illumination with logarithmic fractal analysis. IEEE Signal Process Lett 21(12):1457–1461

    Article  Google Scholar 

  38. Qiao S, Ma J (2018) A face recognition system based on convolution neural network, automation congress (CAC) 2018 Chinese, pp. 1923–1927

  39. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and clustering. CoRR, abs/1503.03832

  40. Ding S, Zhao X, Xu H, Zhu Q, Xue Y (2017) NSCT-PCNN image fusion based on image gradient motivation. IET Comput Vis 12(4):377–383

    Article  Google Scholar 

  41. Bian WX, Ding S, Xue Y (2017) Combining weighted linear project analysis with orientation diffusion for fingerprint orientation field reconstruction. Inf Sci 396:55–71

    Article  Google Scholar 

  42. Ding S, Bian WX, Sun T, Xue Y (2017) Fingerprint enhancement rooted in the spectra diffusion by the aid of the 2D adaptive Chebyshev band-pass filter with orientation-selective. Inf Sci 415:233–246

    Article  MathSciNet  Google Scholar 

  43. Sinha P, Balas B, Ostrovsky Y, Russell R (2006) Face recognition by humans: Ninetenn results all computer vision researchers should know about. Proc IEEE 94:1948–1962

    Article  Google Scholar 

  44. Sim T, Baker S, Bsat M (2002) The CMU pose, illumination, and expression (PIE) database. In automatic face and gesture recognition, 2002. Proceedings. Fifth IEEE international conference on (pp. 46–51), IEEE

  45. Belhumeur P, Georghiades A, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans on Pattern Anal Mach Learn 23(6):643–660

    Article  Google Scholar 

  46. Lee KC, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Learn 27(5):684–698

    Article  Google Scholar 

  47. Martinez A M, Benavent, RB (1998) The AR Face Database,^ CVC Technical Report #24, June

  48. Wolf L, Hassner T, Taigman Y (2009) “Similarity scores based on background samples,” in In Proc ACCV, pp. 88–97

  49. Li SZ, Lei Z, Ao M (2009) The hfb face database for heterogeneous face biometrics research. In Proceedings of IEEE International Workshop on Object Tracking and Classification Beyond and in the Visible Spectrum, Miami

  50. Marzieh O, Morteza MZ (2018) Pairwise document similarity measure based on present term set. J Big Data. https://doi.org/10.1186/s40537-018-0163-2

  51. Maritato F, Liu Y, Colonnese S, Pados DA (2016) Face recognition with L1-norm subspaces, Proc. SPIE 9857, compressive sensing V: from diverse modalities to big data analytics

  52. Sun G, Liu Q, Liu Q, Ji C, Li X (2007) A novel approach for edge detection based on the theory of universal gravity. Pattern Recogn 40(10):2766–2775

    Article  Google Scholar 

  53. Horn B (1986) Robot vision. MIT Press, Cambridge

    Google Scholar 

  54. Fattal R, Lischinski D, Werman M (2002) Gradient domain high dynamic range compression. ACM Trans Graph 21(3):249–256

    Article  Google Scholar 

  55. Land EH, McCann JJ (1971) Lightness and retinex theory. JOSA 61(1):1–11

    Article  Google Scholar 

  56. Štruc V, Pavešić N (2009) Illumination invariant face recognition by non-local smoothing, In European workshop on biometrics and identity management (pp. 1–8), Heidelberg: Springer Berlin

    Google Scholar 

  57. Chen T, Yin W, Zhou X, Comaniciu D, Huang TS (2006) Total variation models for variable lighting face recognition. IEEE Trans Pattern Anal Mach Intell 28(9):1519–1524

    Article  Google Scholar 

  58. Zhang T, Tang Y, Fang B, Shang Z, Liu X (2009) Face recognition under varying illumination using gradientfaces. IEEE Trans Image Process 18(11):2599–2606

    Article  MathSciNet  Google Scholar 

  59. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  60. Messer K, Matas J, Kittler J, Luettin J, Maitre G (1999) XM2VTSDB: the extended M2VTS database. In Second international conference on audio and video-based biometric person authentication (Vol. 964, pp. 965–966)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Kar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, A., Neogi, P.P.G. Triangular coil pattern of local radius of gyration face for heterogeneous face recognition. Appl Intell 50, 698–716 (2020). https://doi.org/10.1007/s10489-019-01545-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01545-x

Keywords

Navigation