Skip to main content
Log in

A hybrid fuzzy filtering - fuzzy thresholding technique for region of interest detection in noisy images

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Noise leads to the ambiguity in regions of interest detection by corrupting the pixel information and is a vital problem in image processing domain. A novel hybrid technique based on fuzzy filtering and fuzzy thresholding is proposed here to extract the object regions accurately in presence of Gaussian noises. The proposed method is automated, does not need any parameter tuning as well does not need prior knowledge of the image or noise. An asymmetrical triangular fuzzy filter with median center coupled with a thresholding based on fuzziness minimization technique are implemented for this purpose. The fuzzy thresholding technique helps to classify the pixels with low signal-to-noise ratio (SNR) caused either due to noise or by the application of noise removal process. The proposed technique is applied in benchmark images corrupted by noises and are compared with some of the popular algorithms of object detection. The results indicate that the proposed method has superior performance in terms of peak signal-to-noise ratio (PSNR) and mean square error (MSE) value for images corrupted with Gaussian noises with standard deviation upto 1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Notes

  1. https://mmcheng.net/msra10k/

  2. http://saliencydetection.net/dut-omron/

  3. http://www.vision.caltech.edu/Image_Datasets/Caltech256/

  4. http://ivipc.uestc.edu.cn/project/FanmanMengSMCB/

References

  1. Amza C (2012) A review on neural network-based image segmentation techniques

  2. Baldwin JF, Karale SB (2003) Asymmetric triangular fuzzy sets for classification models. In: Palade V, Howlett RJ, Jain L (eds) Knowledge-based intelligent information and engineering systems. Springer, Berlin, pp 364–370

    Google Scholar 

  3. Bezdek JC, Ehrlich R, Full W (1984) Fcm: the fuzzy c-means clustering algorithm. Comput Geosci 10 (2):191– 203

    Article  Google Scholar 

  4. Bhattacharyya S (2011) A brief survey of color image preprocessing and segmentation techniques. Journal of Pattern Recognition Research 1(1):120–129

    Article  Google Scholar 

  5. Boukerma H, Choisy C, Farah N, Cheriet M (2018) The efficiency of the nshpz-hmm: theoretical and practical study. Appl Intell 48(12):4660–4677. https://doi.org/10.1007/s10489-018-1217-z

    Article  Google Scholar 

  6. Boyat AK, Joshi BK (2014) Image denoising using wavelet transform and wiener filter based on log energy distribution over poisson-gaussian noise model. In: 2014 IEEE international conference on computational intelligence and computing research, pp 1–6

  7. Buades A, Coll B, Morel JM (2005) Image denoising by non-local averaging. In: Proceedings. (ICASSP’05). IEEE international conference on acoustics, speech, and signal processing, 2005. https://doi.org/10.1109/ICASSP.2005.1415332, vol 2, pp ii/25–ii/28

  8. Buades A, Coll B, Morel JM (2011) Non-local means denoising. Image Processing on Line 1:208–212. https://doi.org/10.5201/ipol.2011.bcm_nlm

    Article  MATH  Google Scholar 

  9. Chen B, Huang S, Liang Z, Chen W, Pan B (2019) A fractional order derivative based active contour model for inhomogeneous image segmentation. Appl Math Modell 65:120–136. https://doi.org/10.1016/j.apm.2018.08.009. http://www.sciencedirect.com/science/article/pii/S0307904X18303986

    Article  MathSciNet  Google Scholar 

  10. Chi Y, Chan SH (2018) Fast and robust recursive filter for image denoising. In: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1708– 1712

  11. Ciecholewski M (2015) Automated coronal hole segmentation from solar euv images using the watershed transform. J Vis Commun Image Represent 33:203–218

    Article  Google Scholar 

  12. Citrin S, Azimi-Sadjadi MR (1992) A full-plane block kalman filter for image restoration. IEEE Trans Image Process 1(4):488–495

    Article  Google Scholar 

  13. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095. https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  14. Danielyan A, Vehvilainen M, Foi A, Katkovnik V, Egiazarian K (2009) Cross-color bm3d filtering of noisy raw data. In: 2009 international workshop on local and non-local approximation in image processing. IEEE, pp 125–129

  15. Dave RN (1991) Characterization and detection of noise in clustering. Pattern Recogn Lett 12(11):657–664

    Article  Google Scholar 

  16. Deng G, Cahill LW (1993) An adaptive gaussian filter for noise reduction and edge detection. In: 1993 IEEE conference record nuclear science symposium and medical imaging conference, vol 3, pp 1615–1619

  17. Dhanachandra N, Manglem K, Chanu YJ (2015) Image segmentation using k -means clustering algorithm and subtractive clustering algorithm. Prog Comput Sci 54:764–771. Eleventh international conference on image and signal processing

    Article  Google Scholar 

  18. Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307

    Article  Google Scholar 

  19. Elyor K, Lee G (2013) Automatic object segmentation using mean shift and growcut. In: The 19th Korea-Japan joint workshop on frontiers of computer vision, pp 184–189

  20. Frosio I, Kautz J (2019) Statistical nearest neighbors for image denoising. IEEE Trans Image Process 28 (2):723–738

    Article  MathSciNet  MATH  Google Scholar 

  21. George G, Oommen RM, Shelly S, Philipose SS, Varghese AM (2018) A survey on various median filtering techniques for removal of impulse noise from digital image. In: 2018 conference on emerging devices and smart systems (ICEDSS). https://doi.org/10.1109/ICEDSS.2018.8544273, pp 235–238

  22. Getreuer P (2012) Chan-vese segmentation. Image Processing on Line 2:214–224

    Article  Google Scholar 

  23. Ghosh P, Mali K, Das SK (2018) Chaotic firefly algorithm-based fuzzy c-means algorithm for segmentation of brain tissues in magnetic resonance images. J Vis Commun Image Represent 54:63–79

    Article  Google Scholar 

  24. Guo L, Chen L, Chen CP, Zhou J (2018) Integrating guided filter into fuzzy clustering for noisy image segmentation. Digital Signal Processing 83:235–248. https://doi.org/10.1016/j.dsp.2018.08.022. http://www.sciencedirect.com/science/article/pii/S1051200418301465

    Article  Google Scholar 

  25. Han B, Wu Y (2019) Active contours driven by global and local weighted signed pressure force for image segmentation. Pattern Recognit 88:715–728. https://doi.org/10.1016/j.patcog.2018.12.028. http://www.sciencedirect.com/science/article/pii/S0031320318304497

    Article  Google Scholar 

  26. Chang H, Yeung D-Y, Xiong Y (2004) Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004. https://doi.org/10.1109/CVPR.2004.1315043, vol 1, pp I–I

  27. Huang LK, Wang MJJ (1995) Image thresholding by minimizing the measures of fuzziness. Pattern Recogn 28(1):41–51

    Article  Google Scholar 

  28. Jia H, Ma J, Song W (2019) Multilevel thresholding segmentation for color image using modified moth-flame optimization. IEEE Access 7:44,097–44,134. https://doi.org/10.1109/ACCESS.2019.2908718

    Article  Google Scholar 

  29. Jia H, Peng X, Song W, Lang C, Xing Z, Sun K (2019) Hybrid multiverse optimization algorithm with gravitational search algorithm for multithreshold color image segmentation. IEEE Access 7:44,903–44,927. https://doi.org/10.1109/ACCESS.2019.2908653

    Article  Google Scholar 

  30. Jianzhuang L, Wenqing L, Yupeng T (1991) Automatic thresholding of gray-level pictures using two-dimension otsu method. In: International conference on circuits and systems, vol 1, pp 325–327

  31. Jin L (2017) Complex impulse noise removal from color images based on super pixel segmentation. J Vis Commun Image Represent 48:54–65

    Article  Google Scholar 

  32. Jin R, Weng G (2019) A robust active contour model driven by fuzzy c-means energy for fast image segmentation. Digital Signal Processing 90:100–109. https://doi.org/10.1016/j.dsp.2019.04.004. http://www.sciencedirect.com/science/article/pii/S1051200418305451

    Article  MathSciNet  Google Scholar 

  33. Kalaimani G, Manojkumar K, Kumar SS (2019) Median filtering for removal of maximum impulse noise from images with a decision based model. J Comput Theor Nanosci 16(2):562–567

    Article  Google Scholar 

  34. Kim KI, Kwon Y (2010) Single-image super-resolution using sparse regression and natural image prior. IEEE Trans Pattern Anal Mach Intell 32(6):1127–1133. https://doi.org/10.1109/TPAMI.2010.25

    Article  Google Scholar 

  35. Ko S, Lee YH (1991) Center weighted median filters and their applications to image enhancement. IEEE Transactions on Circuits and Systems 38(9):984–993

    Article  Google Scholar 

  36. Krinidis S, Chatzis V (2009) Fuzzy energy-based active contours. IEEE Trans Image Process 18(12):2747–2755

    Article  MathSciNet  MATH  Google Scholar 

  37. shiaw Kuo S, Johnston JD (2001) Spatial noise shaping based on human visual sensitivity and its application to image coding. In: Proceedings 2001 international conference on image processing (Cat. No.01CH37205), vol 2, pp 17–20

  38. Kwan HK (2003) Fuzzy filters for noisy image filtering. In: Proceedings of the 2003 international symposium on circuits and systems, 2003. ISCAS ’03, vol 4, pp IV–IV

  39. Lei T, Jia X, Zhang Y, Liu S, Meng H, Nandi AK (2018) Superpixel-based fast fuzzy c-means clustering for color image segmentation. IEEE Trans Fuzzy Syst 27(9):1–1

    Google Scholar 

  40. Li Y, Cao G, Yu Q, Li X (2018) Active contours driven by non-local gaussian distribution fitting energy for image segmentation. Appl Intell 48(12):4855–4870. https://doi.org/10.1007/s10489-018-1243-x

    Article  Google Scholar 

  41. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  42. Mancas M, Gosselin B, Macq B (2005) Segmentation using a region-growing thresholding. In: Image processing: algorithms and systems IV. International Society for Optics and Photonics, vol 5672, pp 388–399

  43. Morar A, Moldoveanu F, Gröller E (2012) Image segmentation based on active contours without edges. In: 2012 IEEE 8th international conference on intelligent computer communication and processing, pp 213–220

  44. Mustafa WA, Yazid H (2016) Background correction using average filtering and gradient based thresholding. J Telecommunication Electr Comput Eng (JTEC) 8(5):81–88

    Google Scholar 

  45. Mustafa WA, Yazid H (2016) Illumination and contrast correction strategy using bilateral filtering and binarization comparison. J Telecommunication Electr Comput Eng (JTEC) 8(1):67–73

    Google Scholar 

  46. Mustafa WA, Yazid H, Yaacob SB (2014) Illumination normalization of non-uniform images based on double mean filtering. In: 2014 IEEE international conference on control system, computing and engineering (ICCSCE 2014). https://doi.org/10.1109/ICCSCE.2014.7072746, pp 366–371

  47. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9 (1):62–66

    Article  Google Scholar 

  48. Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294

    Article  Google Scholar 

  49. Peng S, Lucke L (1994) Fuzzy filtering for mixed noise removal during image processing. In: Proceedings of 1994 IEEE 3rd international fuzzy systems conference, vol 1, pp 89–93

  50. Sarker S, Chowdhury S, Laha S, Dey D (2012) Use of non-local means filter to denoise image corrupted by salt and pepper noise. Signal & Image Processing 3(2):223

    Google Scholar 

  51. Sha C, Hou J, Cui H (2016) A robust 2d otsu’s thresholding method in image segmentation. J Vis Commun Image Represent 41:339–351

    Article  Google Scholar 

  52. Shrestha S (2014) Image denoising using new adaptive based median filters. arXiv preprint arXiv:1410.2175

  53. Shreyamsha Kumar BK (2013) Image denoising based on gaussian/bilateral filter and its method noise thresholding. SIViP 7(6):1159–1172. https://doi.org/10.1007/s11760-012-0372-7

    Article  Google Scholar 

  54. Stein CM (1981) Estimation of the mean of a multivariate normal distribution. Ann Stat 9(6):1135–1151

    Article  MathSciNet  MATH  Google Scholar 

  55. Timofte R, De V, Gool LV (2013) Anchored neighborhood regression for fast example-based super-resolution. In: 2013 IEEE international conference on computer vision. https://doi.org/10.1109/ICCV.2013.241, pp 1920–1927

  56. Timofte R, De Smet V, Van Gool L (2014) A+: adjusted anchored neighborhood regression for fast super-resolution. In: Asian conference on computer vision. Springer, pp 111–126

  57. Trivedi MM, Bezdek JC (1986) Low-level segmentation of aerial images with fuzzy clustering. IEEE Trans Syst Man Cybern 16(4):589–598. https://doi.org/10.1109/TSMC.1986.289264

    Article  Google Scholar 

  58. Turkmen I (2016) The ann based detector to remove random-valued impulse noise in images. J Vis Commun Image Represent 34:28–36

    Article  Google Scholar 

  59. Unajan MC, Gerardo BD, Medina RP (2019) A modified otsu-based image segmentation algorithm (obisa). In: Proceedings of the international multiconference of engineers and computer scientists, pp 363–366

  60. Ville DVD, Nachtegael M, der Weken DV, Kerre EE, Philips W, Lemahieu I (2003) Noise reduction by fuzzy image filtering. IEEE Trans Fuzzy Syst 11(4):429–436

    Article  Google Scholar 

  61. Wang X, Wan Y, Li R, Wang J, Fang L (2016) A multi-object image segmentation c–v model based on region division and gradient guide. J Vis Commun Image Represent 39:100–106

    Article  Google Scholar 

  62. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873. https://doi.org/10.1109/TIP.2010.2050625

    Article  MathSciNet  MATH  Google Scholar 

  63. Yu G, Sapiro G (2011) DCT image denoising: a simple and effective image denoising algorithm. Image Processing on Line 1:292–296. https://doi.org/10.5201/ipol.2011.ys-dct

    Article  Google Scholar 

  64. Zhao F, Fan J, Liu H, Lan R, Chen CW (2019) Noise robust multiobjective evolutionary clustering image segmentation motivated by the intuitionistic fuzzy information. IEEE Trans Fuzzy Syst 27(2):387–401. https://doi.org/10.1109/TFUZZ.2018.2852289

    Article  Google Scholar 

Download references

Acknowledgements

The financial support received under DST INSPIRE Faculty grant is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Das.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, S., Das, S. & Datta, A. A hybrid fuzzy filtering - fuzzy thresholding technique for region of interest detection in noisy images. Appl Intell 50, 1112–1132 (2020). https://doi.org/10.1007/s10489-019-01551-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01551-z

Keywords

Navigation