Skip to main content
Log in

Reduced-order observer-based robust leader-following control of heterogeneous discrete-time multi-agent systems with system uncertainties

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, the leader-following control of heterogeneous discrete-time multi-agent systems (HD_MASs) in the presence of system uncertainties under directed topology is addressed. It aims to achieve reference tracking, disturbance rejection and robust control while the references and disturbances are generated by an autonomous exosystem. In practice, these agents are often different types of devices, thus they have different internal dynamics. Moreover, it is difficult to measure all states of each aircraft due to high cost or technical limitation. In this case, a novel leader-following output consensus problem is formulated and solved in this paper. Firstly, an appropriate linear transformation is proposed to divide the state information of each agent into measurable and unmeasurable parts. Then the reduced-order observer is designed only for unmeasurable parts. Based on the designed observer, the distributed feedback controller is proposed such that the outputs of all followers reach the same trajectory with the leader. In light of the internal model principle and discrete-time algebraic Riccati equation, the robust leader-following consensus of HD_MASs is achieved. Furthermore, this paper extends the results to continuous-time multi-agent systems. Finally, several simulation experiments are presented to verify the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zeng XL, Liu ZY, Hui Q (2015) Energy equipartition stabilization and cascading resilience optimization for geospatially distributed cyber-physical network systems[J]. IEEE Trans Syst Man Cybern: Syst 45(1):25–43

    Article  Google Scholar 

  2. He W, Ge WL, Li YC, Liu YJ, Yang CG, Sun CY (2017) Model identification and control design for a humanoid robot[J]. IEEE Trans Syst Man Cybern: Syst 47(1):45–57

    Article  Google Scholar 

  3. Deng C, Yang GH (2019) Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems[J]. Automatica 103:62–68

    Article  MathSciNet  Google Scholar 

  4. Wang BH, Wang JC, Zhang B, Chen WS, Zhang ZQ (2018) Leader-follower consensus of multivehicle wirelessly networked uncertain systems subject to nonlinear dynamics and actuator fault[J]. IEEE Trans Autom Sci Eng 15(2):492–505

    Article  Google Scholar 

  5. Wang BH, Chen WS, Wang JC, Zhang B (2018) Cooperative tracking control of multiagent systems: a heterogeneous coupling network and intermittent communication framework[J]. IEEE Trans Cybern 99:1–13

    Google Scholar 

  6. Pan YJ, Werner H, Huang ZP, Bartels M (2017) Distributed cooperative control of leader-follower multi-agent systems under packet dropouts for quadcopters[J]. Syst& Control Lett 106:47–57

    Article  MathSciNet  Google Scholar 

  7. Hua CC, Chen JN, Li YF (2017) Leader-follower finite-time formation control of multiple quadrotors with prescribed performance[J]. Int J Syst Sci 48(12):2499–2508

    Article  MathSciNet  Google Scholar 

  8. Dong XW, Zhou Y, Ren Z, Zhong YS (2017) Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[J]. IEEE Trans Ind Electron 64(6):5014–5024

    Article  Google Scholar 

  9. Wang BH, Chen WS, Zhang B (2019) Semi-global robust tracking consensus for multi-agent uncertain systems with input saturation via metamorphic low-gain feedback[J]. Automatica 103:363–373

    Article  MathSciNet  Google Scholar 

  10. Liu J, Yu Y, Sun J, Sun CY (2018) Distributed event-triggered fixed-time consensus for leader-follower multiagent systems with nonlinear dynamics and uncertain disturbances[J]. Int J Robust Nonlinear Control 28 (11):3543–3559

    Article  MathSciNet  Google Scholar 

  11. Duan J, Zhang HG, Wang YC, Han J (2018) Output consensus of heterogeneous linear MASs by self-triggered MPC scheme[J]. Neurocomputing 315:476–485

    Article  Google Scholar 

  12. Zheng YJ, Wang QL, Sun CY (2018) Adaptive consensus tracking of first-order multi-agent systems with unknown control directions[C]. In: International symposium on neural networks. Springer, Cham, pp 407–414

  13. Cai YL, Zhang HG, Zhang K, Liang YL (2019) Distributed leader-following consensus of heterogeneous second-order time-varying nonlinear multi-agent systems under directed switching topology[J]. Neurocomputing 325:31–47

    Article  Google Scholar 

  14. Shariati A, Tavakoli M (2017) A descriptor approach to robust leader-following output consensus of uncertain multi-agent systems with delay. IEEE Trans Autom Control 62(10):5310–5317

    Article  MathSciNet  Google Scholar 

  15. Lin HQ, Wei QL, Liu DR, Ma HW (2016) Adaptive tracking control of leader-following linear multiagent systems with external disturbances[J]. Int J Syst Sci 47(13):3167–3179

    Article  Google Scholar 

  16. Su YF, Huang J (2012) Cooperative output regulation of linear multi-agent systems. IEEE Trans Autom Control 57(4):1062–1066

    Article  MathSciNet  Google Scholar 

  17. Liang HJ, Zhang HG, Wang ZS, Wang JY (2015) Cooperative robust output regulation for heterogeneous second-order discrete-time multi-agent systems. Neurocomputing 162:41–47

    Article  Google Scholar 

  18. Xiao F, Chen TW (2018) Adaptive consensus in leader-following networks of heterogeneous linear systems. IEEE Trans Control Netw Syst 5(3):1169–1176

    Article  MathSciNet  Google Scholar 

  19. Xu XL, Chen SY, Huang W, Gao LX (2013) Leader-following consensus of discrete-time multi-agent systems with observer-based protocols. Neurocomputing 118:334–341

    Article  Google Scholar 

  20. Chen YZ, Qu XJ, Dai GP, Aleksandrov AY (2015) Linear-transformation-based analysis and design of state consensus for multi-agent systems with state observers. J Franklin Inst 352(9):3447–3457

    Article  MathSciNet  Google Scholar 

  21. Zhu JW, Yang GH, Zhang WA, Yu L (2017) Cooperative tracking control for linear multi-agent systems with external disturbances under a directed graph. Int J Syst Sci 48(4):1–9

    MathSciNet  MATH  Google Scholar 

  22. Li ZK, Wen GH, Duan ZS, Ren W (2015) Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans Autom Control 60(4):1152–1157

    Article  MathSciNet  Google Scholar 

  23. Yan YM, Huang J (2018) Cooperative robust output regulation problem for discrete-time linear time-delay multi-agent systems[J]. Int J Robust Nonlinear Control 28(3):1035–1048

    Article  MathSciNet  Google Scholar 

  24. Hu WF, Liu L, Feng G (2018) Robust cooperative output regulation of heterogeneous uncertain linear multi-agent systems by intermittent communication[J]. J Franklin Inst 355(3):1452–1469

    Article  MathSciNet  Google Scholar 

  25. Yu L, Wang JZ (2013) Robust cooperative control for multi-agent systems via distributed output regulation. Syst Control Lett 62(11):1049–1056

    Article  MathSciNet  Google Scholar 

  26. Huang J (2004) Nonlinear output regulation: theory and applications[M], SIAM

  27. Fax JA, Murray RM (2004) Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control 49(9):1465–1476

    Article  MathSciNet  Google Scholar 

  28. Tuna SE (2008) LQR-based coupling gain for synchronization of linear systems. arXiv:0801.3390

  29. Liang HJ, Zhang HG, Wang ZS (2015) Distributed-observer-based cooperative control for synchronization of linear discrete-time multi-agent systems[J]. ISA Trans 59:72–78

    Article  Google Scholar 

  30. Hu YB, Lam J, Liang JL (2013) Consensus of multi-agent systems with luenberger observers. J Franklin Inst 350(9):2769–2790

    Article  MathSciNet  Google Scholar 

  31. Abdessameud A, Tayebi A (2018) Distributed output regulation of heterogeneous linear multi-agent systems with communication constraints[J]. Automatica 91:152–158

    Article  MathSciNet  Google Scholar 

  32. Sato M, Satoh A (2011) Flight control experiment of multipurpose-aviation-laboratory-alpha in-flight simulator[J]. J Guid Control Dyn 34(4):1081–1096

    Article  Google Scholar 

  33. Sato M (2009) Robust model-following controller design for LTI systems affected by parametric uncertainties: a design example for aircraft motion. Int J Control 82(4):689–704

    Article  MathSciNet  Google Scholar 

  34. Wen G, Chen CL, Liu YJ (2018) Formation control with obstacle avoidance for a class of stochastic multiagent systems[J]. IEEE Trans Ind Electron 65(7):5847–5855

    Article  Google Scholar 

  35. Xia Y, Na X, Sun Z, et al. (2016) Formation control and collision avoidance for multi-agent systems based on position estimation[J]. ISA Trans 61:287–296

    Article  Google Scholar 

  36. Lu MB, Liu L (2017) Cooperative output regulation of linear multi-agent systems by a novel distributed dynamic compensator[J]. IEEE Trans Autom Control 62(12):6481–6488

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61433004, 61627809, 61621004), and the Liaoning Revitalization Talents Program (XLYC1801005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaguang Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 3.1

Since the matrix pairs (Ai, Bi) are stabilizable, (Ai, Ci) are detectable, for any \(\lambda _{i}\in \mathcal {C}\), the matrix pairs (AiλiIn, B) with n × (n + q) dimensions are full row rank, and the matrix pairs \(\left ({\begin {array}{*{20}{c}} A_{i}-\lambda _{i} I_{n} \\ C_{i} \end {array}} \right )\) with (n + p) × n dimensions are full column rank. For any invertible matrix \(\mathcal {T}_{i}\), one has \(Rank~ \mathcal {T}_{i}^{-1}(A_{i}-\lambda _{i} I_{n}, B_{i})\mathcal {T}_{i}=Rank~ (\hat {A}_{i}-\lambda _{i} I_{n}, \hat {B}_{i}\mathcal {T}_{i})=n,\) i.e., there exist matrices Ki such that \(\hat {A}_{i}+\hat {B}_{i}\mathcal {T}_{i}K_{i}\) are Schur. Then, there exist matrices \(\bar {K}_{i}=\mathcal {T}_{i}K_{i}\) such that \(\hat {A}_{i}+\hat {B}_{i}\bar {K}_{i}\) are Schur. For any invertible matrix \(\mathcal {T}_{i}\), one also has \( Rank~ \left ({\begin {array}{*{20}{c}} A_{i}-\lambda _{i} I_{n} \\ C_{i} \end {array}} \right )=Rank~ \left ({\begin {array}{*{20}{c}} \mathcal {T}_{i}^{-1} & \mathbf {0}\\ \mathbf {0} & I_{p} \end {array}} \right ) \left ({\begin {array}{*{20}{c}} A_{i}-\lambda _{i} I_{n} \\ C_{i} \end {array}} \right )\mathcal {T}_{i}\). Since \(C_{i}\mathcal {T}_{i}=(I_{p}, \mathbf {0})\), we have \(\left ({\begin {array}{*{20}{c}} \mathcal {T}_{i}^{-1} & \mathbf {0}\\ \mathbf {0} & I_{p} \end {array}} \right )\left ({\begin {array}{*{20}{c}} A_{i}-\lambda _{i} I_{n} \\ C_{i} \end {array}} \right )\mathcal {T}_{i}=\left ({\begin {array}{*{20}{c}} A_{i}^{11}-\lambda _{i} I_{p} & A_{i}^{12}\\ A_{i}^{21} & A_{i}^{22}-\lambda _{i} I_{n-p}\\ I_{p} & \mathbf {0} \end {array}} \right )\). Therefore, the matrices \(\left ({\begin {array}{*{20}{c}} A_{i}^{12} \\ A_{i}^{22}-\lambda _{i} I_{n-p} \end {array}} \right )\)are full column rank, i.e., the matrix pairs \((A_{i}^{22}, A_{i}^{12})\) are detectable, for any \(\lambda _{i}\in \mathcal {C}\). The proof has been completed.

Appendix B: Proof of Lemma 3.3

Since the gain matrix Li is defined as \(L_{i}=A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}\), we have

$$ \begin{array}{@{}rcl@{}} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} &\quad&(A_{i}-s_{i}L_{i}C_{i})P_{i}(A_{i}-s_{i}L_{i}C_{i})^{*}-P_{i} \\ &= & A_{i}P_{i}{A_{i}^{T}}-s_{i}^{*}A_{i}P_{i}{C_{i}^{T}}{L_{i}^{T}}-s_{i}L_{i}C_{i}P_{i}{A_{i}^{T}}+s_{i}s_{i}^{*}L_{i}C_{i}P_{i}{C_{i}^{T}}{L_{i}^{T}}-P_{i}\\ & = & A_{i}P_{i}{A_{i}^{T}}-s_{i}^{*}A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}-s_{i}A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} &\quad& +s_{i}s_{i}^{*}A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}-P_{i}\\ & = &A_{i}P_{i}{A_{i}^{T}}-P_{i}-A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}+(1+s_{i}s_{i}^{*}-s_{i}^{*}-s_{i})A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}.\\ & = &-Q_{i}+(1+s_{i}s_{i}^{*}-s_{i}^{*}-s_{i})A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}. \end{array} $$
(27)

According to Lyapunov stability theory, \(\forall P_{i}={P_{i}^{T}}>0\), the matrices AisiLiCi are stabilizable for \(s_{i}\in \mathcal {C}\), if and only if (AisiLiCi)Pi(AisiLiCi)Pi < 0, i.e.

$$ -Q_{i}+(1+s_{i}s_{i}^{*}-s_{i}^{*}-s_{i})A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}<0. $$
(28)

Since \(Q_{i}={Q_{i}^{T}}\), there exist matrices \(Q_{si}=Q_{s_{i}}^{T}>0\) such that \(Q_{s_{i}}=Q_{s_{i}}^{-1}Q_{i}\). Post-multiplying and pre-multiplying (28) by \(Q_{s_{i}}^{-1}\), respectively, one has

$$ -I_{n}+|s_{i}-1|^{2}Q_{s_{i}}^{-1}A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}Q_{s_{i}}^{-1}<0, $$
(29)

where \(1+s_{i}s_{i}^{*}-s_{i}^{*}-s_{i}=(1-s_{i})(1-s_{i})^{*}=|s_{i}-1|^{2}\). By the (29), we get

$$ -1+|s_{i}-1|^{2}\lambda_{k}[Q_{s_{i}}^{-1}A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}Q_{s_{i}}^{-1}]<0, $$
(30)

if the eigenvalues \(\lambda _{k}[Q_{s_{i}}^{-1}A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}Q_{s_{i}}^{-1}]>0\) and satisfy \(|s_{i}-1|^{2}<\frac {1}{max_{k=1,2,\ldots , n}\lambda _{k}[Q_{s_{i}}^{-1}A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}Q_{s_{i}}^{-1}]},\) the (30) holds. Moreover, if \(\lambda _{k}[Q_{s_{i}}^{-1}A_{i}P_{i}{C_{i}^{T}}(C_{i}P_{i}{C_{i}^{T}})^{-1}C_{i}P_{i}{A_{i}^{T}}Q_{s_{i}}^{-1}]=0, k=1, 2,\ldots , n\), the (30) also holds for any \(s_{i}\in \mathcal {C}\). Similarly, if \(c_{i}\in \mathcal {C}\) is distributed in the stable domain \({\varPhi }_{c_{i}}=\{c_{i}\in \mathcal {C}: |c_{i}-1|^{2}<\delta _{c_{i}}\},\) where \(\delta _{c_{i}}^{-1}=max_{k=1,2,\ldots , n}\lambda _{k}[Q_{c_{i}}^{-1}{A_{i}^{T}}P_{i}B_{i}({B_{i}^{T}}P_{i}B_{i})^{-1}{B_{i}^{T}}P_{i}A_{i}Q_{c_{i}}^{-1}], Q_{c_{i}}=Q_{c_{i}}^{-1}Q_{i}>0\), the matrices Ai + ciBiKi are Schur. This completes the proof.

Appendix C: Proof of Theorem 3.1

If the digraph \(\mathcal {G}\) contains a directed spanning tree, according to Lemma 2.1, all eigenvalues of the matrix \(\theta {\mathcal{H}}\) have positive real parts. By the Jordan canonical form theorem, there is a nonsingular matrix TsRN×N satisfying \(\theta {\mathcal{H}}=T_{s}JT_{s}^{-1}\), where \(J=block~ diag(J_{N_{1}}(\lambda _{1}^{\prime }), \ldots , J_{N_{m}}(\lambda _{m}^{\prime })),N_{1}+\ldots +N_{m}=N, \lambda _{1}^{\prime }<\ldots <\lambda _{m}^{\prime }, \lambda _{1}=\cdots =\lambda _{N_{1}}=\lambda _{1}^{\prime }, \lambda _{N_{1}+1}=\lambda _{N_{1}+2}=\cdots =\lambda _{N_{1}+N_{2}}=\lambda _{2}^{\prime }, \ldots \lambda _{N_{1}+N_{2}+\cdots +N_{m-1}+1}=\lambda _{N_{1}+N_{2}+\cdots +N_{m-1}+2}=\cdots =\lambda _{N_{1}+N_{2}+\cdots +N_{m-1}+N_{m}}=\lambda _{m}^{\prime }, J_{N_{l}}(\lambda _{l}^{\prime })=\left ({\begin {array}{*{20}{c}} \lambda _{l}^{\prime } & 1 & & \\ &\lambda _{l}^{\prime }& {\ddots } & \\ & & {\ddots } & 1\\ & & & \lambda _{l}^{\prime } \end {array}} \right ), l=1,\ldots , m,\) Let \(T_{1}=\left ({\begin {array}{*{20}{c}} I_{Np} & \mathbf {0} & \mathbf {0} & \mathbf {0} \\ \mathbf {0} & I_{N(n-p)}& \mathbf {0} & \mathbf {0}\\ \mathbf {0} & \mathbf {0} & \theta {\mathcal{H}}\otimes I_{s_{m}} & \mathbf {0}\\ \mathbf {0} & I_{N(n-p)} & \mathbf {0} & I_{N(n-p)} \end {array}} \right ),\\ T_{2}=\left ({\begin {array}{*{20}{c}} T_{s}\otimes I_{p} & \mathbf {0} & \mathbf {0} & \mathbf {0} \\ \mathbf {0} & T_{s}\otimes I_{n-p} & \mathbf {0} & \mathbf {0}\\ \mathbf {0} & \mathbf {0} & T_{s}\otimes I_{s_{m}} & \mathbf {0}\\ \mathbf {0} & \mathbf {0} & \mathbf {0} & T_{s}\otimes I_{n-p} \end {array}} \right ),\)\(\bar {A}_{c} =T_{2}^{-1}T_{1}^{-1}A_{c}T_{1}T_{2}= \left ({\begin {array}{*{20}{c}} \bar {A}_{c}^{11} & \bar {A}_{c}^{12}\\ \mathbf {0} & A_{22}-LA_{12} \end {array}} \right ),\) where

\(\bar {A}_{c}^{11}=\left ({\begin {array}{*{20}{c}} A_{11}+B_{1}K_{2}(J\otimes I_{p}) & A_{12}+B_{1}K_{1}(J\otimes I_{n-p}) & B_{1}K_{3}(J\otimes I_{s_{m}}) \\ A_{21}+B_{2}K_{2}(J\otimes I_{p}) & A_{22}+B_{2}K_{1}(J\otimes I_{n-p})& B_{2}K_{3}(J\otimes I_{s_{m}}) \\ I_{N}\otimes G_{2} & \mathbf {0} & I_{N}\otimes G_{1} \end {array}} \right ), \bar {A}_{c}^{12}=\left ({\begin {array}{*{20}{c}} B_{1}K_{1}(J\otimes I_{n-p}) \\ B_{2}K_{1}(J\otimes I_{n-p})\\ \mathbf {0} \end {array}} \right )\). It is obvious that Ac is stabilizable if and only if \(\bar {A}_{c}\) is stabilizable. According to Theorem 3 in [27], Ac is Schur if and only if \(\left ({\begin {array}{*{20}{c}} \hat {A}_{i}+\lambda _{i}\hat {B}_{i}(K_{2i}, K_{1i}) &\lambda _{i}\hat {B}_{i}K_{3i}\\ (G_{2}, ~\mathbf {0}) & G_{1} \end {array}} \right )\) and \(A_{i}^{22}-L_{i}A_{i}^{12}, i=1, 2, \ldots , N\) are Schur. This completes the proof.

Appendix D: Proof of Theorem 3.2

According to Theorem 3.1, Ac is stabilizable if and only if \(A_{i}^{22}-L_{i}A_{i}^{12}\) and \(\left ({\begin {array}{*{20}{c}} \hat {A}_{i}+\lambda _{i}\hat {B}_{i}(K_{2i}, K_{1i}) &\lambda _{i}\hat {B}_{i}K_{3i}\\ (G_{2}, ~\mathbf {0}) & G_{1} \end {array}} \right )\)are Schur. It thus follows from Lemma 3.1 that \((A_{i}^{22}, A_{i}^{12})\) is completely detectable. The gain matrix \(L_{i}=A_{i}^{22}P_{i}(A_{i}^{12})^{T}(A_{i}^{12}P_{i}(A_{i}^{12})^{T})^{-1}\) can be obtained by the following discrete-time algebraic Riccati equation

$$ \small A_{i}^{22}P_{i}(A_{i}^{22})^{T}-P_{i}-A_{i}^{22}P_{i}(A_{i}^{12})^{T}(A_{i}^{12}P_{i}(A_{i}^{12})^{T})^{-1}A_{i}^{12}P_{i}(A_{i}^{22})^{T}+Q_{i}=0. $$
(31)

Let \(\mathcal {K}_{i}=(K_{2i}, K_{1i}, K_{3i})\), we have \(\left ({\begin {array}{*{20}{c}} \hat {A}_{i}+\lambda _{i}\hat {B}_{i}(K_{2i}, K_{1i}) &\lambda _{i}\hat {B}_{i}K_{3i}\\ (G_{2},~ \mathbf {0}) & G_{1} \end {array}} \right )=\mathcal {A}_{i}+\lambda _{i}{\mathcal{B}}_{i}\mathcal {K}_{i}\). By Lemmas 3.1 and 3.2, the matrix pairs \((\mathcal {A}_{i}, {\mathcal{B}}_{i})\) are stabilizable. Then, according to Lemma 3.3, if λi is distributed in the stable domain Φi, \(\mathcal {A}_{i}+\lambda _{i}{\mathcal{B}}_{i}\mathcal {K}_{i}\) is Schur, where \(\mathcal {K}_{i}=-({\mathcal{B}}_{i}^{T}\mathcal {P}_{i}{\mathcal{B}}_{i})^{-1}{\mathcal{B}}_{i}^{T}\mathcal {P}_{i}\mathcal {A}_{i}\), and \(\mathcal {P}_{i}\) can be solved by (12). Therefore, the system Ac is Schur. This completes the proof.

Appendix E: Proof of Theorem 3.3

According to the proof in Theorem 3.2, it is easy to find suitable feedback gain matrix such that the nominal form Ac of system matrix \(\bar {A}_{c}\) is Schur. To solve the robust leader-following consensus problem by distributed feedback controller (9), the following Sylvester equation is considered

$$ \bar{X}_{c}A_{0}=\bar{A}_{c}\bar{X}_{c}+\bar{W}_{c}, $$
(32)

with \(\bar {X}_{c}\in R^{N(2n-p+s_{m})\times s}\). For each sufficiently small Δ, \(\bar {A}_{c}\) is stable. By the Assumption 3.2, (32) has an unique solution \(\bar {X}_{c}\). Let \(\bar {X}_{c}=(\bar {X}_{c1}^{T}, \bar {X}_{c2}^{T}, \bar {X}_{c3}^{T}, \bar {X}_{c4}^{T})^{T}\), where \(\bar {X}_{c1}, \bar {X}_{c2}, \bar {X}_{c3}\) and \(\bar {X}_{c4}\) have appropriate dimensions, we have

$$ \begin{array}{lll} \bar{X}_{c3}A_{0} &= (\theta \mathcal{H}\otimes G_{2})\bar{X}_{c1}+(I_{N}\otimes G_{1})\bar{X}_{c3}-(\theta \mathcal{A}_{0}\otimes G_{2}F_{0})(1_{N}\otimes I_{s})\\ &= (\theta \mathcal{H}\otimes G_{2})\bar{X}_{c1}+(I_{N}\otimes G_{1})\bar{X}_{c3}-(\theta \mathcal{H}\otimes G_{2}F_{0})(1_{N}\otimes I_{s})\\ &= (I_{N}\otimes G_{1})\bar{X}_{c3}+(I_{N}\otimes G_{2})[(\theta \mathcal{H}\otimes I_{p})\bar{X}_{c1}-(\theta \mathcal{H}\otimes F_{0})(1_{N} \otimes I_{s})]. \end{array} $$
(33)

Since (ING1, ING2) incorporates a pN-copy internal model of A0, on the basis of Lemma 3.2, we obtain

$$ (\theta \mathcal{H}\otimes I_{p})\bar{X}_{c1}-(\theta \mathcal{H}\otimes F_{0})(1_{N} \otimes I_{s})=(\theta \mathcal{H}\otimes I_{p})[\bar{X}_{c1}-(I_{N}\otimes F_{0})(1_{N} \otimes I_{s})]=0. $$
(34)

Moreover, the matrix \({\mathcal{H}}\) is reversible, we have \(\bar {X}_{c1}-(I_{N}\otimes F_{0})(1_{N} \otimes I_{s})=0\). Let \(\hat {\zeta }(k)=\zeta (k)-\bar {X}_{c}\omega (k)\), and consider the following equation

$$ \small \hat{\zeta}(k+1)= \zeta(k+1)-\bar{X}_{c}\omega(k+1)= \bar{A}_{c}\zeta(k)+(\bar{W}_{c}-\bar{A}_{c}\bar{X}_{c}-\bar{W}_{c})\omega(k)= \bar{A}_{c}\hat{\zeta}(k). $$
(35)

Since \(\bar {A}_{c}\) is Schur for each sufficiently small Δ, thus \(\hat {\zeta }(k)\rightarrow 0 ~(k\rightarrow \infty )\), then \(x_{m}(k)-\bar {X}_{c1}\omega (k)\rightarrow 0 ~(k\rightarrow \infty )\). The purpose of this paper is to solve the robust leader-follower consensus of HD_MASs (1) and (2), i.e. \(e_{i}(k)=y_{i}(k)-y_{r}(k)\rightarrow 0, k\rightarrow \infty \). After the linear transformation (5), the error ei(k) can be expressed as ei(k) = xmi(k) − yr(k) = xmi(k) − F0ω(k). The global form of ei(k) could be denoted as \(e(k)=x_{m}(k)-(I_{N}\otimes F_{0})(1_{N}\otimes I_{s})\omega (k)=x_{m}(k)-\bar {X}_{c1}\omega (k)\rightarrow 0, k\rightarrow \infty \). Therefore, the robust leader-follower consensus of HD_MASs (1) and (2) under directed topology is solved.

Appendix F: Proof of Theorem 4.1

By Theorem 3.1, Ac is Hurwitz if and only if the matrices \(A_{i}^{22}-L_{i}A_{i}^{12}\) and \(\left ({\begin {array}{*{20}{c}} \hat {A}_{i}+\lambda _{i}\hat {B}_{i}(K_{2i}, K_{1i}) &\lambda _{i}\hat {B}_{i}K_{3i}\\ (G_{2}, ~\mathbf {0}) & G_{1} \end {array}} \right )\)are Hurwitz, where λi(λ1λ2 ≤⋯ ≤ λN), i = 1, 2,…, N are the eigenvalues of the matrix \({\mathcal{H}}\). Let \(\mathcal {A}_{i}=\left ({\begin {array}{*{20}{c}} \hat {A}_{i} & \mathbf {0} \\ (G_{2},~ \mathbf {0}) & G_{1} \end {array}} \right ),\)\({\mathcal{B}}_{i}=\left ({\begin {array}{*{20}{c}} \hat {B}_{i}\\ \mathbf {0} \end {array}} \right ),\)and \(\mathcal {K}_{i}=(K_{2i}, K_{1i}, K_{3i})=-(min~Re(\lambda _{i}))^{-1}({\mathcal{B}}_{i})^{T}\mathcal {P}_{i}\), where \(\mathcal {P}_{i}\) is the solution of the following Riccati equation

$$ \mathcal{A}_{i}^{T}\mathcal{P}_{i}+\mathcal{P}_{i}\mathcal{A}_{i}+I_{n+p}-\mathcal{P}_{i}\mathcal{B}_{i}\mathcal{B}_{i}^{T}\mathcal{P}_{i}=\mathbf{0}, $$
(36)

we have \( \left ({\begin {array}{*{20}{c}} \hat {A}_{i}+\lambda _{i}\hat {B}_{i}(K_{2i}, K_{1i}) &\lambda _{i}\hat {B}_{i}K_{3i}\\ (G_{2},~ \mathbf {0}) & G_{1} \end {array}} \right )=\mathcal {A}_{i}+\lambda _{i}{\mathcal{B}}_{i}\mathcal {K}_{i}, i=1,2,\ldots , N\). By Lemma 3.2, the matrix pair \((\mathcal {A}_{i}, {\mathcal{B}}_{i}), i=1,2,\ldots , N\) is Hurwitz. By Lemma 4.1, \(\mathcal {A}_{i}+\lambda _{i}{\mathcal{B}}_{i}\mathcal {K}_{i}\) is Hurwitz, i.e. the matrix \(\left ({\begin {array}{*{20}{c}} \hat {A}_{i}+\lambda _{i}\hat {B}_{i}(K_{2i}, K_{1i}) &\lambda _{i}\hat {B}_{i}K_{3i}\\ (G_{2}, ~\mathbf {0}) & G_{1} \end {array}} \right )\)is Hurwitz. Besides, on the basis of Lemma 3.1, the matrix \((A_{i}^{22}, A_{i}^{12})\) is completely detectable, and the gain matrix \(L_{i}=P_{i}(A_{i}^{12})^{T}R_{i}^{-1}\) can be obtained by the following continuous-time algebraic Riccati equation

$$ A_{i}^{22}P_{i}+P_{i}(A_{i}^{22})^{T}+Q_{i}-P_{i}(A_{i}^{12})^{T}R_{i}^{-1}A_{i}^{12}P_{i}=0, $$
(37)

where \(Q_{i}={Q_{i}^{T}}>0\) and \(R_{i}={R_{i}^{T}}>0\) are arbitrary positive definite matrices. Based on the above analysis, the closed loop system Ac is Hurwitz. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Zhang, H., Liang, Y. et al. Reduced-order observer-based robust leader-following control of heterogeneous discrete-time multi-agent systems with system uncertainties. Appl Intell 50, 1794–1812 (2020). https://doi.org/10.1007/s10489-019-01553-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01553-x

Keywords

Navigation