
https://doi.org/10.1007/s10489-019-01592-4

Evolutionary dataset optimisation: learning algorithm quality
through evolution

Henry Wilde1 · Vincent Knight1 · Jonathan Gillard1

© The Author(s) 2019

Abstract
In this paper we propose a novel method for learning how algorithms perform. Classically, algorithms are compared on
a finite number of existing (or newly simulated) benchmark datasets based on some fixed metrics. The algorithm(s) with
the smallest value of this metric are chosen to be the ‘best performing’. We offer a new approach to flip this paradigm.
We instead aim to gain a richer picture of the performance of an algorithm by generating artificial data through genetic
evolution, the purpose of which is to create populations of datasets for which a particular algorithm performs well on a given
metric. These datasets can be studied so as to learn what attributes lead to a particular progression of a given algorithm.
Following a detailed description of the algorithm as well as a brief description of an open source implementation, a case
study in clustering is presented. This case study demonstrates the performance and nuances of the method which we call
Evolutionary Dataset Optimisation. In this study, a number of known properties about preferable datasets for the clustering
algorithms known as k-means and DBSCAN are realised in the generated datasets.

Keywords Evolutionary algorithm · Optimisation · Algorithm design · Artificial data generation

1 Introduction

This work presents a novel approach to learning the
quality and performance of an algorithm through the use of
evolution. When an algorithm is developed to solve a given
problem, the designer is presented with questions about
the performance of their proposed method and its relative
performance against existing methods. This is an inherently
difficult task. However, under the current paradigm, the
standard response to this situation is to use a known fixed
set of datasets - or simulate new datasets themselves -
- and a common metric amongst the proposed method and
its competitors. The collated algorithms are then assessed
based on this metric with often minimal consideration for

� Henry Wilde
wildehd@cardiff.ac.uk

Vincent Knight
knightva@cardiff.ac.uk

Jonathan Gillard
gillardjw@cardiff.ac.uk

1 School of Mathematics, Senghennydd Rd, Cardiff,
Wales CF24 4AG, UK

the appropriateness or reliability of the datasets being used,
and the robustness of the method(s) in question [1, 13, 19].

This process is not so readily observed when travelling
in the opposite direction but methods to do so exist.
Suppose that the object of interest was not an algorithm
but rather a dataset. In this case, the objective is to
determine a preferable algorithm to complete some task on
the data. There exists a number of methods employed across
disciplines to complete this task that take into account the
characteristics of the data and the context of the research
problem. These methods are often equivalent to asking
questions of the data, and include the use of diagnostic tests.
For instance, in the case of clustering, if the data displayed
an indeterminate number of non-convex blobs, then one
could recommend that an appropriate clustering algorithm
would be DBSCAN [11]. Otherwise, for scalability, k-
means may be chosen [37, 38].

The approach presented in this work aims to flip the
paradigm described here by allowing the data itself to be
unfixed. This fluidity in the data is achieved by generating
data for which the algorithm performs well (or better than
some other) through the use of an evolutionary algorithm.
The purpose of doing so is not to simply create a bank
of useful datasets but rather to allow for the subsequent
studying of these datasets. In doing so, the attributes and

Applied Intelligence (2020) 50:11 2–11917

Published online: 2 2019December7

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-019-01592-4&domain=pdf
http://orcid.org/0000-0002-3788-7691
mailto: wildehd@cardiff.ac.uk
mailto: knightva@cardiff.ac.uk
mailto: gillardjw@cardiff.ac.uk

Fig. 1 On the right: the current
path for selecting some
algorithm(s) based on their
validity and performance for a
given dataset. On the left: the
proposed flip to better
understand the space in which
‘good’ datasets exist for an
algorithm

characteristics which lead to the success (or failure) of the
algorithm may be described, giving a broader understanding
of the algorithm on the whole. Our framework is described
in Fig. 1.

This proposed flip has a number of motivations, and
below is a non-exhaustive list of some of the problems that
are presented by the established evaluation paradigm:

1. How are these benchmark examples selected? There
is no true measure of their reliability other than their
frequent use. In some domains and disciplines there are
well-established benchmarks so those found through
literature may well be reliable, but in others less so [5,
8, 36].

2. Sometimes, when there is a lack of benchmark
examples, a ‘new’ dataset is simulated to assess the
algorithm [26]. This begs the question as to how and
why that simulation is created. Not only this, but the
origins of existing benchmarks is often a matter of
convenience rather than their merit.

3. In disciplines where there are established benchmarks,
there may still be underlying problems around the true
performance of an algorithm:

(i) As an example, work by Torralba and Efros [34]
showed that image classifiers trained and evaluated
on a particular dataset, or datasets, did not perform
reliably when evaluated using other benchmark
datasets that were determined to be similar. Thus
leading to a model which lacks robustness.

(ii) The amount of learning one can gain as to the
characteristics of data which lead to good (or bad)
performance of an algorithm is constrained to the
finite set of attributes present in the benchmark data
chosen in the first place.

This work presents just one method from this new
paradigm, and that method is built around the concept of
evolution. Evolutionary algorithms (EAs) have been applied
successfully to solve a wide array of problems - particularly
where the complexity of the problem or its domain are
significant. These methods are highly adaptive and their
population-based construction (displayed in Fig. 2) allows
for the efficient solving of problems that are otherwise
beyond the scope of traditional search and optimisation
methods. EAs have been chosen here as they are simple in
design yet their capabilities encompass the difficulties of the
flipped paradigm set out above.

The use of EAs to generate artificial data is not a new
concept, however. Its applications in data generation have
included developing methods for the automated testing
of software [16, 23, 29] and the synthesis of existing or
confidential data [6]. Such methods also have a long history
in the parameter optimisation of algorithms, and recently
in the automated design of convolutional neural network
(CNN) architecture [31, 32].

Other methods for the generation or synthesis of
artificial data are numerous and range from simple
concepts such as simulated annealing [21] to swarm-based
learning techniques [2] or generative adversarial networks
(GANs) [12]. The unconstrained learning style of methods
such as CNNs and GANs aligns with that proposed in this
work. By allowing the EA to explore and learn about the
search space in an organic way, less-prejudiced insight can
be established that is not necessarily reliant on any particular
framework or agenda.

Note that the proposed methodology is not simply to use
an EA to optimise an algorithm over a search space with
fixed dimension or data type such as those set out in [6].
The shape of a dataset is considered a part of the sample

Evolutionary dataset optimisation: learning algorithm quality through evolution 1173

Fig. 2 A general schematic for
an evolutionary algorithm

space itself that can be traversed through the evolutionary
algorithm.

The remainder of the paper is structured as follows:

– Section 2 describes the structure of the proposed
method including its parameters and operators.

– Section 3 contains a case study where the success
and failure of k-means clustering is examined using
the proposed method. Included also is a comparison
between k-means and another clustering algorithm
DBSCAN.

– Section 4 concludes this paper.

2 The evolutionary algorithm

In this section, the details of an algorithm that generates data
for which a given function, or (equivalently) algorithm, is
well-suited is described. This algorithm is to be referred to
as “Evolutionary Dataset Optimisation” (EDO).

The EDO method is built as an evolutionary algorithm
which follows a traditional (generic) schema with some
additional features that keep the objective of artificial data
generation in mind. With that, there are a number of
parameters that are passed to EDO; the typical parameters
of an evolutionary algorithm are a fitness function, f , which
maps from an individual to a real number, as well as a
population size, N , a maximum number of iterations, M , a
selection parameter, b, and a mutation probability, pm. In
addition to these, EDO takes the following parameters:

– A set of probability distribution families, P . Each
family in this set has some parameter limits which form
a part of the overall search space. For instance, the
family of normal distributions, denoted by N(μ, σ 2),
would have limits on values for the mean, μ, and the
standard deviation, σ .

– A maximum number of “subtypes” for each family in
P . A subtype is an independent copy of the family
that progresses separate from the others. These are the
actual distribution objects which are traversed in the
optimisation.

– A probability vector to sample distributions from P ,
w = (

w1, . . . , w|P |
)
.

– Limits on the number of rows an individual dataset can
have,

R ∈
{
(rmin, rmax) ∈ N

2 | rmin ≤ rmax

}

– Limits on the number of columns a dataset can have,

C := (
C1, . . . , C|P |

)
where Cj

∈
{
(cmin, cmax) ∈ (N ∪ {∞})2 | cmin ≤ cmax

}

for each j = 1, . . . , |P|. That is, C defines the
minimum and maximum number of columns a dataset
may have from each distribution in P .

– A second selection parameter, l ∈ [0, 1], to allow for
a small proportion of ‘lucky’ individuals to be carried
forward.

H. Wilde et al.1174

– A shrink factor, s ∈ [0, 1], defining the relative size
of a component of the search space to be retained after
adjustment.

The concepts discussed in this section form the mecha-
nisms of the evolutionary dataset optimisation algorithm. To
use the algorithm practically, these components have been
implemented in Python as a library built on the scientific
Python stack [22, 25]. The library is fully tested and docu-
mented (at https://edo.readthedocs.io) and is freely available
online under the MIT license [33]. The EDO implementa-
tion was developed to be consistent with the current best
practices of open source software development [15].

The statement of the EDO algorithm is presented
here to lay out its general structure from a high level
perspective. Lower level discussion is provided below
where additional algorithms for the individual creation,
evolutionary operator and shrinkage processes are given
along with diagrams (where appropriate). Note that there are
no defined processes for how to stop the algorithm or adjust
the mutation probability, pm. This is down to their relevance
to a particular use case. Some examples include:

– Regular decreasing in mutation probability across the
available attributes [17].

– Stopping when no improvement in the best fitness is
found within some K consecutive iterations [18].

– Utilising global behaviours in fitness to indicate a
stopping point [20].

2.1 Individuals

Evolutionary algorithms operate in an iterative process on
populations of individuals that each represent a solution
to the problem in question. In a genetic algorithm, an
individual is a solution encoded as a bit string of, typically,
fixed length and treated as a chromosome-like object to be
manipulated. In EDO, as the objective is to generate datasets
and explore the space in which datasets exist, there is no
encoding. As such the distinction is made that EDO is an
evolutionary algorithm.

As is seen in Fig. 3, an individual’s creation is defined
by the generation of its columns. A set of instructions
on how to sample new values (in mutation, for instance,
Section 2.4) for that column are recorded in the form of a
probability distribution. These distributions are sampled and
created from the families passed in P . In EDO, the produced
datasets and their metadata are manipulated directly so that
the biological operators can be designed and be interpreted
in a more meaningful way as will be seen later in this
section.

However, one should not assume that the columns are
a reliable representative of the distribution associated with
them, or vice versa. This is particularly true of ‘shorter’
datasets with a small number of rows, whereas confidence
in the pair could be given more liberally for ‘longer’ datasets
with a larger number of rows. In any case, appropriate
methods for analysis should be employed before formal
conclusions are made.

Evolutionary dataset optimisation: learning algorithm quality through evolution 1175

https://edo.readthedocs.io

Fig. 3 An example of how an individual is first created

2.2 Selection

The selection operator describes the process by which
individuals are chosen from the current population to
generate the next. Almost always, the likelihood of an
individual being selected is determined by their fitness. This
is because the purpose of selection is to preserve favourable
qualities and encourage some homogeneity within future
generations [4].

In EDO, a modified truncation selection method is
used [14], as can be seen in Fig. 4. Truncation selection

takes a fixed number, nb = �bN�, of the fittest individuals
in a population and makes them the ‘parents’ of the
next. It has been observed that, despite its efficiency
as a selection operator, truncation selection can lead to
premature convergence at local optima [14, 24]. The
modification for EDO is an optional stage after the best
individuals have been chosen: with some small l, a number,
nl = �lN�, of the remaining individuals can be selected at
random to be carried forward. Hence, allowing for a small

Fig. 4 The selection process with the inclusion of some lucky
individuals

H. Wilde et al.1176

number of randomly selected individuals may encourage
diversity and further exploration throughout the run of the
algorithm. It should be noted that regardless of this step,
an individual could potentially be present throughout the
entirety of the algorithm.

After the parents have been selected, there are two
adjustments made to the current search space. The first
is that the subtypes for each family in P are updated to
only those present in the parents. The second adjustment
is a process which acts on the distribution parameter limits
for each subtype in P . This adjustment gives the ability
to ‘shrink’ the search space about the region observed in
a given population. This method is based on a power law
described in [3] that relies on a shrink factor, s. At each
iteration, t , every distribution subtype which is present in
the parents has its parameter’s limits, (lt , ut), adjusted.
This adjustment is such that the new limits, (lt+1, ut+1)

are centred about the mean observed value, μ, for that
parameter:

lt+1 = max

{
lt , μ − 1

2
(ut − lt)s

t

}
(1)

ut+1 = min

{
ut , μ + 1

2
(ut − lt)s

t

}
(2)

The shrinking process is given explicitly in Algorithm 5.
Note that the behaviour of this process can produce
reductive results for some use cases and is optional.

2.3 Crossover

Crossover is the operation of combining two individuals in
order to create at least one offspring. In genetic algorithms,
the term ‘crossover’ can be taken literally: two bit strings
are crossed at a point to create two new bit strings.
Another popular method is uniform crossover, which has

been favoured for its efficiency and efficacy in combining
individuals in both bit string and matrix representations [7,
28]. For EDO, this method is adapted to support dataset
manipulation: a new individual is created by uniformly
sampling each of its components (dimensions and then
columns) from a set of two ‘parent’ individuals, as shown in
Fig. 5.

Observe that there is no requirement on the dimensions
of the parents to be of similar or equal shapes. This is
because the driving aim of the proposed method is to explore
the space of all possible datasets. In the case where there
is incongruence in the lengths of the two parents, missing
values may appear in a shorter column that is sampled.
To resolve this, values are sampled from the probability
distribution associated with that column to fill in these
gaps.

2.4 Mutation

Mutation is used in evolutionary algorithms to encourage a
broader exploration of the search space at each generation.
Under this framework, the mutation process manipulates
the phenotype of an individual where numerous things
need to be modified including an individual’s dimensions,
column metadata and the entries themselves. This process is
described in Fig. 6.

As shown in Fig. 6, each of the potential mutations occur
with the same probability, pm. However, the way in which
columns are maintained assure that (assuming appropriate
choices for f and P) many mutations in the metadata and
the dataset itself will only result in some incremental change
in the individual’s fitness relative to, say, a completely new
individual.

Evolutionary dataset optimisation: learning algorithm quality through evolution 1177

Fig. 5 The crossover process between two individuals with different dimensions

3 A case study in clustering

3.1 k -means clustering

The following examples act as a form of validation for
EDO, and also highlight some of the nuances in its use. The
objective of these examples is to use the proposed method to
reproduce some known results about the clustering of data
in the absence of any external forces, and to examine how
clustering algorithms are typically evaluated. In particular,
the focus will be on the well-known k-means (Lloyd’s)
algorithm. Clustering was chosen as it is a well-understood
problem that is easily accessible - especially when restricted
to two dimensions. The k-means algorithm is an iterative,
centroid-based method that aims to minimise the ‘inertia’
of the current partition, Z = {Z1, . . . , Zk}, of some
dataset X:

I (Z, X) := 1

|X|
k∑

j=1

∑

x∈Zj

d(x, zj)
2 (3)

A full statement of the algorithm to minimise (3) is given
in Appendix A.1.

H. Wilde et al.1178

This inertia function is taken as the objective of the
k-means algorithm, and is used for evaluating the final
clustering. This is particularly true when the algorithm is not

being considered an unsupervised classifier where accuracy
may be used [13]. With that, the first example will use
this inertia as the fitness function in EDO. That is, to find
datasets which minimise I .

For the purposes of visualisation, EDO is restricted to the
space containing only two-dimensional datasets, i.e. C =
((2, 2)). In addition to this, all columns are formed from
uniform distributions where the bounds are sampled from
the unit interval. Thus, the only family in P is:

U := {U(a, b) | a, b ∈ [0, 1]} (4)

The remaining parameters are as follows: N = 100,
R = (3, 100), M = 1000, b = 0.2, l = 0, pm = 0.01,
and shrinkage is excluded. Figure 7 shows an example of
the fitness (above) and dimension (below) progression of
the evolutionary algorithm under these conditions up until
the 50th epoch.

There is a steep learning curve here; within the first
50 generations an individual is found with a fitness of
roughly 10−10 which could not be improved on for a further
900 epochs. The same quick convergence is seen in the
number of rows. This behaviour is quickly recognised as
preferable and was dominant across all the trials conducted
in this work. This preference for datasets with fewer rows is
expected given that I is the sum of the mean error from each
cluster centre. With that, when k is fixed a priori, reducing
the number of points in each cluster (i.e. the terms of the
second summation) quickly reduces the mean error of that
cluster and thus the value of I .

However, something that may be seen as unwanted is
a compaction of the cluster centres. Referring to Fig. 8a,
the best and median individuals show two clusters that are
essentially the same point whereas the worst is a random
cloud across the whole of U which was found in the
initial population. The kind of behaviour exhibited by the
best performing individuals here occurs in part because it
is allowed. There are two immediate ways in which this
allowed: first, that a near-trivial case is included in R and,
secondly, that the fitness function does nothing to penalise
the proximity of the inter-cluster means, as well as aiming
to reduce the intra-cluster means. This kind of unwanted
behaviour highlights a subtlety in how EDO should be used;
that experimentation and rigour are required to properly
understand an algorithm’s quality.

Hence, consider Fig. 8b where the individuals have been
generated with the same parameters as previously except
with adjusted row limits, R = (50, 100), so as to exclude
this trivial case. In these trials, the results are equivalent: the
worst performing individuals are without structure whilst
the best-performing individuals display clusters that are
dense about a single point despite the minimum number
of rows being increased. Supposing this was not already a
known result, we can see mounting evidence in favour of

Evolutionary dataset optimisation: learning algorithm quality through evolution 1179

Fig. 6 The stages of the mutation process

this compaction being ‘optimal’ behaviour in a dataset for
k-means clustering.

However, the fitness function may be addressed still,
and more extensive studying may be done. Indeed, the
final inertia could be considered a flawed or fragile
fitness function if it is supposed to evaluate the efficacy
of the k-means algorithm. Incorporating the inter-cluster
spread to the fitness of an individual dataset would reduce
this observed compaction. For instance, the silhouette
coefficient is a metric used to evaluate the appropriateness
of a clustering to a dataset and does precisely that. The
silhouette coefficient of a clustering of a dataset is given by
the mean of the silhouette value, S(x), of each point x ∈ Zj

in each cluster:

A(x) := 1
|Zj |−1

∑

y∈Zj \{x}
d(x, y),

B(x) := min
k �=j

1
|Zk |

∑

w∈Zk

d(x, w),

S(x) :=
{

B(x)−A(x)
max{A(x),B(x)} if |Zj | > 1
0 otherwise

(5)

The optimisation of the silhouette coefficient is analo-
gous to finding a dataset which increases both the intra-
cluster cohesion (the inverse of A) and inter-cluster sep-
aration (B). Hence, the objective of minimising inertia is
addressed by maximising cohesion. Meanwhile, the addi-
tional desire to spread out the clusters is considered by
maximising separation.

Repeating the trials with the same parameters as with
inertia, the silhouette fitness function yields the results
summarised in Fig. 9a and b. Irrespective of row limits,
the datasets produced show increased separation from one
another whilst maintaining low values in the final inertia
of the clustering as shown in Fig. 10. Again, the form of
the individual clusters is much the same. The low values
of inertia correspond to tight clusters, and the tightest
clusters are those with a minimal number of points, i.e.
a single point. As with the previous example, albeit at
a much slower rate, the preferable individuals are those
leading toward this case. That this gradual reduction in the
dimension of the individuals occurs despite adjusting the
fitness function and considering the space which excludes

H. Wilde et al.1180

a

b

Fig. 7 a Progressions for final inertia and dimension across the first 50 epochs with R = (3, 100). b Progressions for final inertia and dimension
across the first 50 epochs with R = (50, 100)

Evolutionary dataset optimisation: learning algorithm quality through evolution 1181

a

b

Fig. 8 Representative individuals based on inertia with: a R = (3, 100); b R = (50, 100). Centroids displayed as crosses

the trivial case bolsters the claim that the base case is also
optimal.

At this point, it should be noted that, due to the nature
of the implementation, any individual from any generation
may be retrieved and studied should the final results
be too concentrated on any given case. The summary
provided here is one particular way of studying the body of
datasets generated with this method and this transparency
in the history and progression of the proposed method is
something that sets it apart from other methods such as
GANs which have a reputation of providing so-called ‘black
box’ solutions.

3.2 Comparison with DBSCAN

The extent of the capabilities EDO holds as a tool to
better understand an algorithm are especially apparent
when comparing an algorithm against another (or set of
others) simultaneously. This is done by utilising the freedom
of choice in a fitness function for EDO. Consider two
algorithms, A and B, and some common metric between

them, g. Then their similarities and contrasts can be
explored by considering the differences in this metric on
the two algorithms. In terms of EDO, this means using
f = gA −gB , f = gB −gA or f = |gB − gA| as the fitness
function. By doing so, pitfalls, edge cases or fundamental
conditions for the method may be highlighted. Overall, this
process allows the researcher to more deeply learn about
the method of interest beyond the traditional method of
literature comparison on a particular example.

Consider the following use case with another clustering
algorithm of a different form, Density Based Spatial
Clustering of Applications with Noise (DBSCAN). In this
particular case, the objective is to find datasets for which
the method of interest, k-means, outperforms its alternative,
DBSCAN. Here there is no concept of inertia as DBSCAN
is density-based and is able to identify outliers [11]. As
such, a valid metric must be chosen. One such metric is the
silhouette score as defined in (5).

In this case, however, an adjustment to the fitness
function must be made so as to accommodate for the
condition of the silhouette coefficient that there must be

H. Wilde et al.1182

a

b

Fig. 9 a Progressions for silhouette and dimension across 1000 epochs at 100 epoch intervals with R = (3, 100). b Progressions for silhouette
and dimension across 1000 epochs at 100 epoch intervals with R = (50, 100)

Evolutionary dataset optimisation: learning algorithm quality through evolution 1183

a

b

Fig. 10 Representative individuals based on silhouette with: a R = (3, 100); b R = (50, 100). Centroids displayed as crosses

more than one cluster present. Let Sk(X) and SD(X) denote
the silhouette coefficients of the clustering found by k-
means and DBSCAN respectively. Then the fitness function
is defined to be:

f (X) =
⎧
⎨

⎩
SD(X) − Sk(X),

if DBSCAN identifies two or
more clusters (inc. noise)

∞ otherwise.

(6)

There are several remarks to be made here. First, note
the order of the subtraction here as EDO minimises fitness
functions by default. Also, f takes values in the range
[−2, 2] where −2 is the best, i.e. SD(X) = −1 and Sk(X) =
1. Likewise, 2 is the worst score. Finally, the silhouette
coefficient requires at least two clusters to be present and so
if DBSCAN identifies a single cluster then that individual
will be penalised heavily under this fitness function when,
in fact, that clustering may be of high quality. As such, this
fitness function may require adjustment.

It must also be acknowledged that k-means and
DBSCAN share no common parameters and so direct

comparison is more difficult. For the purposes of this
example, only one set of parameters is used but a thorough
investigation should include a parameter sweep in similar,
real-world use cases. The parameters being used are k = 3
for k-means, and ε = 0.1, MinPoints = 5
for DBSCAN. This set was chosen following informal
experimentation using the Python library Scikit-learn [27]
to find comparable parameters in the given search space
defined by the EDO parameters used previously with
R = (50, 100).

Figure 11 shows a summary of the progression of EDO
for this use case. As with the previous examples where
R = (50, 100), the variation in the population fitness is
unstable but there is a clear trend of improvement in the
best individual over the course of the run. There is also
a convergence seen in the number of rows a dataset has.
The resting dimension varied across the trials conducted
in this work but none exhibited a dramatic shift toward
the lower limit of 50 rows as with previous examples.
This is suggestive of a more competitive environment
for individuals where slight changes to an individual can
drastically alter their fitness.

H. Wilde et al.1184

Fig. 11 Progressions for difference in silhouette (k-means-preferable) and dimension across 1000 epochs at 100 epoch intervals

a

b

Fig. 12 Representative individuals from a k-means-preferable run with clustering by: a k-means; b DBSCAN. Concave and convex hulls
illustrated by shading and outline respectively

Evolutionary dataset optimisation: learning algorithm quality through evolution 1185

The effect of such changes can be seen in Fig. 12 where
representative individuals are shown for this example. Here,
the best performing individual, when clustered by k-means,
shows three clear and nicely separated clusters. Note that
they are not so tightly packed; again, this suggests that the
route to an optimal individual is less clearly defined. In
contrast, when the same dataset is clustered by DBSCAN a
single cluster is found with a single noise point held within
the convex hull of the cluster, i.e. there are overlapping
clusters (since noise points form a single cluster). Hence,
along with the fact that the larger cluster is widely spread,
it follows that the clustering has a relatively small, negative
silhouette coefficient.

Another point of interest here is the convexity of the
clusters. A known condition for the success of k-means is
that the presented clusters are of roughly equal size and
are convex. This is due to the overall objective being to
approximate the centroidal Voronoi tessellation [9]. Without
this condition, up to the correct choice of k, the algorithm
will fail to produce adequate results for either inertia or
silhouette. DBSCAN, on the other hand, does not have
this condition and is able to detect non-convex clusters

so long as they are dense enough. Figure 12 shows the
clustering found by each method and the respective convex
and concave hulls of the clusters found. The ‘concave hull’
of a cluster is taken to be the α-shape of the cluster’s data
points [10] where α is determined to be the smallest value
such that all the points in the cluster are contained in a single
polygon. The convexity of cluster Zj , denoted Cj , is then
determined to be the ratio of the area of its concave hull, Hc,
to the area of its convex hull, Hv [30]:

Cj := area(Hc)

area(Hv)
(7)

With this definition, it should be clear that a perfectly con-
vex cluster, such as a single point or line, would have Cj = 1.

It can be seen that the convexity of the clustering
found by k-means appears to be higher than that by
DBSCAN. This was apparent across all trials conducted
in this work and indicates that the condition for convex
clusters is being sought out during the optimisation process.
Meanwhile, however, it is not clear whether the performance
of DBSCAN falls owing to its parameters or the method

Fig. 13 Progressions for difference in silhouette (DBSCAN-preferable) and dimension across 1000 epochs at 100 epoch intervals

H. Wilde et al.1186

itself. This is a point where parameter sweeping would
prove most useful so as to determine a crossing point for
these two driving forces.

Now, to add to the discussion above, the inverse
optimisation should be considered. That is, using the same
parameters, the datasets for which DBSCAN outperforms
k-means with respect to the silhouette coefficient are to be
investigated. This is equivalent to using −f as the fitness
function except with the same penalty of ∞ for the case set
out in (6).

Figures 13 and 14 show the same summary as above
with the revised fitness function. Inspecting the former, it
is seen that the best fitness found is worse than with the
previous example. This, in part, is due to the fact that k-
means cannot find a clustering with negative values as no
clusters may overlap. It can, however, produce results with
small silhouette scores where the clusters are tightly packed.
Hence, the best fitness score is now −1 whereas the worst
is 2, still.

Note in the first two frames of Fig. 14a how k-means
is forced to split what is evidently a single cluster in two
whereas DBSCAN is able to identify the single cluster
and the outlying noise (Fig. 14b). The proximity of these
clusters has then dragged the silhouette score down for k-
means. Referring to Fig. 14b, this kind of behaviour is
certainly preferable for DBSCAN under these parameters:
the beginning individuals are likely random clouds (as seen
in the rightmost two frames of the figure) and the simplest
step toward a fit dataset is one that maintains that vaguely
dense body with minimal noise points far from it.

As has already been stated, the software implementation
of the EDO method has been produced in line with the best
practices of open source software development and repro-
ducible research. In aid of this, all of the source code used
in these examples (including to create the figures) has been
archived under the DOI 10.5281/zenodo.3492236. Like-
wise, all of the data produced to support this case study have
been archived under the DOI 10.5281/zenodo.3492228.

a

b

Fig. 14 Representative individuals from a DBSCAN-preferable run with clustering by: a k-means; b DBSCAN. Concave and convex hulls
illustrated by shading and outline respectively

Evolutionary dataset optimisation: learning algorithm quality through evolution 1187

https://doi.org/10.5281/zenodo.3492236
https://doi.org/10.5281/zenodo.3492228

4 Conclusion

In this paper we have introduced a novel approach to
understanding the quality of an algorithm by exploring
the space in which their well-performing datasets exist.
Following a detailed explanation of its internal mechanisms,
a case study in k-means clustering was offered as validation
for the proposed method. The method was able to
reveal some known results without prior knowledge when
investigating k-means in several scenarios, and again when
comparing k-means and another leading clustering method,
DBSCAN.

The method itself utilises biological operators to traverse
a potentially broad region of the space of all possible
datasets. This is done in an organic way with a minimal
external framework attached. The generative nature of the
proposed method also provides transparency and richness
to the solution when compared to other contemporary
techniques for artificial data generation as the entire
history of individuals is preserved. While other search and
optimisation methods exist, the decision to use an EA here
was down to this transparency and the ease with which
to implement biological operators that are both meaningful
and easily understood.

The Evolutionary Dataset Optimisation method is depen-
dent on a number of parameters set out in this work one
of which is the choice of distribution families, P; these
families go on to define the general statistical shape of
the columns of the datasets that are produced and also control
the present data types. The relationship between columns
and their associated distribution is not causal and appropri-
ate methods should be employed to understand the structure
and characteristics of the data produced before formal con-
clusions are made as set out in the case study provided.

It is known that EAs might terminate at a local optimum
and may not be able to traverse the entire sample space [35],
or even a sufficient part of it. This would be even more
problematic in the case presented in this work where the
sample space is not even of a fixed size or data type. In
all experiments carried out for this work, this theoretic
limitation has not arisen. Figure 15 shows an exploration of
the sample space and it is evident that the EDO method was
able to explore a large proportion of it. In the early stages, it
is also clear here how the EA got stuck in small parts of the
search space before later moving toward a subregion of the
unit square.

Although this does provide evidence to say that the
EA’s current design can sufficiently explore its given search
space, it does not provide any guarantee that this will
happen, even in expectation. Proving this theoretically is an
area for further investigation.

Something that does stand against EAs is their tendancy
to find the ‘easy’ way out. That is, reducing down to the

Fig. 15 A scatter of all the individuals found at 50 epoch intervals in
the first example of Section 3.2, i.e. those summarised in Fig. 12

simplest solution which solves the given problem. In most
cases, that is not a problem and is often, in fact, favourable.
Throughout the case study provided, this is seen to happen.
Figure 15 shows this behaviour again by the strong diagonal
region in later generations. In that particular example, the
easiest solution for the EA (i.e. for k-means to outperform
DBSCAN) was to collapse one dimension of the search
space to make the problem one-dimensional. This kind of
behaviour is not necessarily a bad thing as trivial, basic and
simple cases are of great importance when understanding an
algorithm’s quality.

However, should that be a problem, then the objective
function could be adjusted accordingly. In the case study,
several iterations of fitness functions were examined but
each was adjusted by hand according to what was apparent
at the time. Due to the architecture of the implementa-
tion of this method, this could be done in practicality. For
instance, a similar strategy could be employed automati-
cally by a more sophisticated fitness function that retains
some information about the datasets generated from pre-
vious runs of EDO on a particular (or at least similar)
parameter set. In this way, the currently completely unsu-
pervised learning conducted by the EA could be ushered
away from less helpful solutions (via some penalty, say)
and toward previously unexplored behaviours. This auto-
matic, iterative application of the proposed method would
likely reveal more sophisticated insights into a particular
algorithm.

H. Wilde et al.1188

In essence, the proposed method is merely a tool that
demonstrates the benefit of the flipped paradigm set out
in this work. The concept of where ‘good’ datasets exist
is not something that is well-documented in literature
and the hope of this work is that Evolutionary Dataset
Optimisation acts as a starting point for further works to
come.

Acknowledgements The authors wish to thank the Cwm Taf
Morgannwg University Health Board for their funding and support of
the Ph.D. of which this work has formed a part.

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Appendix

A.1 Lloyd’s algorithm

A.2 Implementation example

Below is an example of how the Python implementation was
used to complete the first example, including the definition
of the fitness function.

References

1. Abualigah LM, Khader AT, Hanandeh ES (2018) A com-
bination of objective functions and hybrid krill herd algo-
rithm for text document clustering analysis. Eng Appl Artif
Intel 73(Int J Comput Sci Eng Appl 5 1 2015):111–125.
https://doi.org/10.1016/j.engappai.2018.05.003

2. Abualigah LM, Khader AT, Hanandeh ES (2018) Hybrid clus-
tering analysis using improved krill herd algorithm. Appl Intell
48(11):4047–4071. https://doi.org/10.1007/s10489-018-1190-6

3. Amirjanov A (2016) Modeling the dynamics of a changing
range genetic algorithm. Procedia Comput Sci 102:570–577.
https://doi.org/10.1016/j.procs.2016.09.444

4. Bäck T (1994) Selective pressure in evolutionary algorithms:
a characterization of selection mechanisms. In: Proceedings
of the first IEEE conference on evolutionary computation.
IEEE World congress on computational intelligence, pp 57–62,
https://doi.org/10.1109/ICEC.1994.350042

5. Campos G, Zimek A, Sander J, Campello R, Micenková B,
Schubert E, Assent I, Houle M (2016) On the evaluation
of unsupervised outlier detection: measures, datasets, and an
empirical study. Data Min Knowl Disc 30(4):891–927. https://doi.
org/10.1007/s10618-015-0444-8

6. Chen Y, Elliot M, Sakshaug J (2016) A genetic algorithm
approach to synthetic data production. In: PrAISe@ECAI

7. Chen Y, Elliot M, Smith D (2018) The application of genetic algo-
rithms to data synthesis: a comparison of three crossover methods.
In: Privacy in statistical databases. Springer International Publish-
ing, pp 160–171, https://doi.org/10.1007/978-3-319-99771-1 11

8. Dau HA, Keogh E, Kamgar K, Yeh CCM, Zhu Y, Gharghabi
S, Ratanamahatana CA, Yanping HB, Begum N, Bagnall A,
Mueen A, Batista G (2018) Hexagon-ML: the UCR time
series classification archive. https://www.cs.ucr.edu/eamonn/time
series data 2018/

Evolutionary dataset optimisation: learning algorithm quality through evolution 1189

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.engappai.2018.05.003
https://doi.org/10.1007/s10489-018-1190-6
https://doi.org/10.1016/j.procs.2016.09.444
https://doi.org/10.1109/ICEC.1994.350042
https://doi.org/10.1007/s10618-015-0444-8
https://doi.org/10.1007/s10618-015-0444-8
https://doi.org/10.1007/978-3-319-99771-1_11
https://www.cs.ucr.edu/eamonn/time_series_data_2018/
https://www.cs.ucr.edu/eamonn/time_series_data_2018/

9. Du Q, Emelianenko M, Ju L (2006) Convergence of the lloyd
algorithm for computing centroidal voronoi tessellations. SIAM J
Numer Anal 44(1):102–119. https://doi.org/10.1137/040617364

10. Edelsbrunner H, Kirkpatrick D, Seidel R (1983) On the shape of a
set of points in the plane. IEEE Trans Inf Theory 29(4):551–559.
https://doi.org/10.1109/TIT.1983.1056714

11. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based
algorithm for discovering clusters in large spatial databases with
noise. In: KDD

12. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial
nets. In: Advances in neural information processing systems,
vol 27. Curran Associates, Inc., pp 2672–2680. http://papers.nips.
cc/paper/5423-generative-adversarial-nets.pdf

13. Huang Z (1998) Extensions to the k-means algorithm for cluster-
ing large data sets with categorical values. Data Mining Knowl
Discov 2(3):283–304. https://doi.org/10.1023/A:1009769707641

14. Jebari K (2013) Selection methods for genetic algorithms. Int J
Emerg Sci 3:333–344

15. Jiménez RC, Kuzak M, Alhamdoosh M, Barker M, Batut B,
Borg M, Capella-Gutierrez S, Chue Hong N, Cook M, Corpas
M, Flannery M, Garcia L, Gelpı́ JL, Gladman S, Goble C,
González Ferreiro M, Gonzalez-Beltran A, Griffin PC, Grüning
B, Hagberg J, Holub P, Hooft R, Ison J, Katz DS, Leskošek
B, López Gómez F, Oliveira LJ, Mellor D, Mosbergen R,
Mulder N, Perez-Riverol Y, Pergl R, Pichler H, Pope B, Sanz
F, Schneider MV, Stodden V, Suchecki R, SvobodováVařeková
R, Talvik HA, Todorov I, Treloar A, Tyagi S, van Gompel
M, Vaughan D, Via A, Wang X, Watson-Haigh NS, Crouch
S (2017) Four simple recommendations to encourage best
practices in research software. F1000Research 6 ELIXIR–876.
https://doi.org/10.12688/f1000research.11407.1

16. Koleejan C, Xue B, Zhang M (2015) Code coverage optimisation
in genetic algorithms and particle swarm optimisation for
automatic software test data generation. 2015 IEEE Congress on
Evolutionary Computation (CEC), pp 1204–1211

17. Kuehn M, Severin T, Salzwedel H (2013) Variable mutation
rate at genetic algorithms: introduction of chromosome fitness in
connection with multi-chromosome representation. Int J Comput
Appl 72:31–38. https://doi.org/10.5120/12636-9343

18. Leung YW, Wang Y (2001) An orthogonal genetic algorithm with
quantization for global numerical optimization. IEEE Trans Evol
Comput 5(1):41–53. https://doi.org/10.1109/4235.910464

19. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum D (2016) Recognizing
complex activities by a probabilistic interval-based model

20. Martı́ L, Garcı́a J, Berlanga A, Molina JM (2016) A stopping
criterion for multi-objective optimization evolutionary algorithms.
Inform Sci 367-368:700–718. https://doi.org/10.1016/j.ins.2016.
07.025

21. Matejka J, Fitzmaurice G (2017) Same stats, different graphs:
generating datasets with varied appearance and identical statistics
through simulated annealing. In: Proceedings of the 2017 CHI
conference on human factors in computing systems, CHI ’17.
ACM, pp 1290–1294, https://doi.org/10.1145/3025453.3025912

22. McKinney W Data structures for statistical computing in python.
In: Proceedings of the 9th Python in science conference (2010–).
https://pandas.pydata.org/. [Online; accessed 2019-03-01]

23. Michael CC, McGraw G, Schatz M (2001) Generating software
test data by evolution. IEEE Trans Softw Eng 27:1085–1110

24. Motoki T (2002) Calculating the expected loss of diver-
sity of selection schemes. Evol Comput 10(4):397–422.
https://doi.org/10.1162/106365602760972776

25. Oliphant T NumPy: a guide to NumPy. USA: Trelgol Publishing
(2006–). http://www.numpy.org/. [Online; accessed 2019-03-01]

26. Olson RS, La Cava W, Orzechowski P, Urbanowicz RJ,
Moore JH (2017) PMLB: a large benchmark suite for machine
learning evaluation and comparison. BioData Mining 10(1):36.
https://doi.org/10.1186/s13040-017-0154-4

27. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,
Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,
Duchesnay E (2011) Scikit-learn: machine learning in Python. J
Mach Learn Res 12:2825–2830

28. Semenkin E, Semenkina M (2012) Self-configuring genetic
algorithm with modified uniform crossover operator. In: Advances
in swarm intelligence, pp 414–421

29. Sharifipour H, Shakeri M, Haghighi H (2018) Structural test
data generation using a memetic ant colony optimization
based on evolution strategies. Swarm Evol Comput 40:76–91.
https://doi.org/10.1016/j.swevo.2017.12.009

30. Sonka M, Hlavac V, Boyle R (1993) Image processing, analysis
and machine vision. Springer, US. https://doi.org/10.1007/978-1-
4899-3216-7

31. Suganuma M, Shirakawa S, Nagao T (2017) A genetic pro-
gramming approach to designing convolutional neural network
architectures. In: GECCO

32. Sun Y, Xue B, Zhang M, Yen GG (2018) Automatically
designing CNN architectures using genetic algorithm for image
classification CoRR abs/1808.03818

33. The EDO library developers (2019) EDO: v0.2.1. https://doi.org/
10.5281/zenodo.2651075

34. Torralba A, Efros AA (2011) Unbiased look at dataset bias. In:
Proceedings of the 2011 IEEE conference on computer vision and
pattern recognition. https://doi.org/10.1109/CVPR.2011.5995347

35. Vikhar PA (2016) Evolutionary algorithms: a critical review and
its future prospects. In: 2016 International conference on global
trends in signal processing, information computing and com-
munication (ICGTSPICC), pp 261–265, https://doi.org/10.1109/
ICGTSPICC.2016.7955308

36. Wang N, Shi J, Yeung DY, Jia J (2015) Understanding and
diagnosing visual tracking systems. https://doi.org/10.1109/ICCV.
2015.355

37. Wu X, Wu X, Kumar V (2009) The top ten algorithms in data
mining CRC

38. Zhao W, Ma H, He Q (2009) Parallel k-means clustering based on
MapReduce. In: Cloud computing. Springer, Berlin, pp 674–679,
https://doi.org/10.1007/978-3-642-10665-1 71

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

H. Wilde et al.1190

https://doi.org/10.1137/040617364
https://doi.org/10.1109/TIT.1983.1056714
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1023/A:1009769707641
https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.5120/12636-9343
https://doi.org/10.1109/4235.910464
https://doi.org/10.1016/j.ins.2016.07.025
https://doi.org/10.1016/j.ins.2016.07.025
https://doi.org/10.1145/3025453.3025912
https://pandas.pydata.org/
https://doi.org/10.1162/106365602760972776
http://www.numpy.org/
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1016/j.swevo.2017.12.009
https://doi.org/10.1007/978-1-4899-3216-7
https://doi.org/10.1007/978-1-4899-3216-7
https://doi.org/10.5281/zenodo.2651075
https://doi.org/10.5281/zenodo.2651075
https://doi.org/10.1109/CVPR.2011.5995347
https://doi.org/10.1109/ICGTSPICC.2016.7955308
https://doi.org/10.1109/ICGTSPICC.2016.7955308
https://doi.org/10.1109/ICCV.2015.355
https://doi.org/10.1109/ICCV.2015.355
https://doi.org/10.1007/978-3-642-10665-1_71

Henry Wilde is a PhD student
in Mathematics at Cardiff Uni-
versity. His primary area of
research is the modelling of
variability in hospital systems.
More widely, he has interests
in the principles of research
software development, unsu-
pervised learning and game
theory.

Vince Knight is a senior
lecturer in Mathematics
at Cardiff University. His
research interests are in game
theory, stochastic modelling
and healthcare. He is a fellow
of the Software Sustainability
Institute and is particularly
interested in reproducibility of
research.

Dr Jonathan Gillard is a
Reader in Statistics at Cardiff
University. His research inter-
ests involve working at the
interface of optimization, lin-
ear algebra and operational
research to address substan-
tive challenges in data sci-
ence. Recent publications have
included novel methods for
forecasting time series and for
performing regression in high
dimensions.

Evolutionary dataset optimisation: learning algorithm quality through evolution 1191

	Evolutionary dataset optimisation: learning algorithm quality through evolution
	Abstract
	Introduction
	The evolutionary algorithm
	Individuals
	Selection
	Crossover
	Mutation

	A case study in clustering
	k-means clustering
	Comparison with DBSCAN

	Conclusion
	Acknowledgements
	Compliance with Ethical Standards
	Conflict of interests
	Open Access
	Appendix
	A.1 Lloyd's algorithm
	A.2 Implementation example
	References
	Publisher's note

