Skip to main content
Log in

Structured block diagonal representation for subspace clustering

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The aim of the subspace clustering is to segment the high-dimensional data into the corresponding subspace. The structured sparse subspace clustering and the block diagonal representation clustering are quite advanced spectral-type subspace clustering algorithms when handling to the linear subspaces. In this paper, the respective advantages of these two algorithms are fully exploited, and the structured block diagonal representation (SBDR) subspace clustering is proposed. In many classical spectral-type subspace clustering algorithms, the affinity matrix which obeys the block diagonal property can not necessarily bring satisfying clustering results. However, the k-block diagonal regularizer of the SBDR algorithm directly pursues the block diagonal matrix, and this regularizer is obviously more effective. On the other hand, the general procedure of the spectral-type subspace clustering algorithm is to get the affinity matrix firstly and next perform the spectral clustering. The SBDR algorithm considers the intrinsic relationship of the two seemingly separate steps, the subspace structure matrix obtained by the spectral clustering is used iteratively to facilitate a better initialization for the representation matrix. The experimental results on the synthetic dataset and the real dataset have demonstrated the superior performance of the proposed algorithm over other prevalent subspace clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tian Z, Gao X, Su S, et al. (2019) Evaluating reputation management schemes of internet of vehicles based on evolutionary game theory. IEEE Transactions on Vehicular Technology

  2. Tian Z, Shi W, Wang Y, et al. (2019) Real time lateral movement detection based on evidence reasoning network for edge computing environment. IEEE Transactions on Industrial Informatics

  3. Du M, Ding S, Jia H (2016) Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl-Based Syst 99:135–145

    Article  Google Scholar 

  4. Du M, Ding S, Xue Y (2017) A novel density peaks clustering algorithm for mixed data. Pattern Recogn Lett 97:46–53

    Article  Google Scholar 

  5. Ding S, Zhang J, Jia H, et al. (2016) An adaptive density data stream clustering algorithm. Cogn Comput 8(1):30–38

    Article  Google Scholar 

  6. Du M, Ding S, Xu X, et al. (2018) Density peaks clustering using geodesic distances. Int J Mach Learn Cybern 9(8):1335–1349

    Article  Google Scholar 

  7. Hong W, Wright J, Huang K, Ma Y (2006) Multi-scale hybrid linear models for lossy image representation. IEEE Trans Image Process 15(12):3655–3671

    Article  MathSciNet  Google Scholar 

  8. Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: IEEE Conference on computer vision and pattern recognition, pp 2790–2797

  9. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  10. Qian C, Brechon TP, Xu ZZ (2018) Clustering in pursuit of temporal correlation for human motion segmentation. Multimed Tools Appl 77(15):19615–19631

    Article  Google Scholar 

  11. Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell 2:218–233

    Article  Google Scholar 

  12. Deng T, Ye D, Ma R, et al. (2020) Low-rank local tangent space embedding for subspace clustering. Inform Sci 508:1–21

    Article  MathSciNet  Google Scholar 

  13. Wang H, Yang Y, Liu B, et al. (2019) A study of graph-based system for multi-view clustering. Knowl-Based Syst 163:1009–1019

    Article  Google Scholar 

  14. Zhang Y, Yang Y, Li T, et al. (2019) A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE. Knowl-Based Syst 163:776–786

    Article  Google Scholar 

  15. Elhamifar E, Vidal R (2010) Clustering disjoint subspaces via sparse representation. In: IEEE International conference on acoustics, speech, and signal processing, pp 1926–1929

  16. You C, Robinson D, Vidal R (2016) Scalable sparse subspace clustering by orthogonal matching pursuit. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3918–3927

  17. Dyer EL, Studer C, Baraniuk RG (2013) Subspace clustering with dense representations. In: IEEE International conference on acoustics speech and signal processing, pp 3258–3262

  18. Ji P, Salzmann M, Li H (2014) Efficient dense subspace clustering. In: IEEE Winter conference on applications of computer vision, pp 461–468

  19. Favar P, Vidal R, Ravichandran A (2011) A closed form solution to robust subspace estimation and clustering. In: IEEE Conference on computer vision and pattern recognition, pp 1801–1807

  20. Vidal R, Favaro P (2014) Low rank subspace clustering (LRSC). Pattern Recogn Lett, 47–61

  21. Lu CY, Min H, Zhao ZQ, Zhu L, Huang DS, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. In: European conference on computer vision. Springer, Berlin, pp 347–360

  22. Bin C, Jianchao Y, Shuicheng Y, Yun F, Huang TS (2010) Learning with 1-graph for image analysis. IEEE Trans Image Process 19(4):858–866

    Article  MathSciNet  Google Scholar 

  23. Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th international conference on machine learning, pp 663–670

  24. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  25. Xu J, Xu K, Chen K, Ruan JS (2015) Reweighted sparse subspace clustering. Comput Vis Image Underst 138:25–37

    Article  Google Scholar 

  26. Dong W, Wu XJ, Kittler J (2019) Sparse subspace clustering via smoothed p minimization. Pattern Recognit Lett 125:206– 211

    Article  Google Scholar 

  27. Dong W, Wu XJ (2018) Robust affine subspace clustering via smoothed 0-norm. Neural Process Lett

  28. Lu C, Feng J, Lin Z, Yan S (2013) Correlation adaptive subspace segmentation by trace lasso. In: Proceedings of the IEEE international conference on computer vision, pp 1345–1352

  29. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inform Process Syst, 849–856

  30. Shi J, Malik J (2000) Normalized cuts and image segmentation. Departmental Papers (CIS), 107

  31. Li CG, You C, Vidal R (2017) Structured sparse subspace clustering: a joint affinity learning and subspace clustering framework. IEEE Trans Image Process 26(6):2988–3001

    Article  MathSciNet  Google Scholar 

  32. Li CG, Vidal R (2015) Structured sparse subspace clustering: a unified optimization framework. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 277–286

  33. Li CG, Vidal R (2016) A structured sparse plus structured low-Rank framework for subspace clustering and completion. IEEE Trans Signal Processing 64(24):6557–6570

    Article  MathSciNet  Google Scholar 

  34. Li Z, Liu J, Yang Y, Zhou X, Lu H (2014) Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Trans Knowl Data Eng 26(9):2138–2150

    Article  Google Scholar 

  35. Chen H, Wang W, Feng X (2018) Structured sparse subspace clustering with within-cluster grouping. Pattern Recognit 83:107–118

    Article  Google Scholar 

  36. Chen H, Wang W, Feng X, He R (2018) Discriminative and coherent subspace clustering. Neurocomputing 284:177–186

    Article  Google Scholar 

  37. Lu C, Feng J, Lin Z, Mei T, Yan S (2019) Subspace clustering by block diagonal representation. IEEE Trans Pattern Anal Mach Intell 41(2):487–501

    Article  Google Scholar 

  38. Zhang Z, Xu Y, Shao L, Yang J (2018) Discriminative block-diagonal representation learning for image recognition. IEEE Trans Neural Netw Learn Syst 29(7):3111–3125

    Article  MathSciNet  Google Scholar 

  39. Xie X, Guo X, Liu G, Wang J (2018) Implicit block diagonal low-rank representation. IEEE Trans Image Process 27(1):477–489

    Article  MathSciNet  Google Scholar 

  40. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 6:643–660

    Article  Google Scholar 

  41. Tron R, Vidal R (2007) A benchmark for the comparison of 3-D motion segmentation algorithms. In: IEEE conference on computer vision and pattern recognition, pp 1–8

  42. Ji P, Zhang T, Li H, Salzmann M (2017) Deep subspace clustering networks. Adv Neural Inform Process Syst, 24–33

  43. Lin Z, Chen M, Wu L, Ma Y (2011) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, arXiv:https://arxiv.org/abs/1009.5055v2

  44. Costeira JP, Kanade T (1998) A multibody factorization method for independently moving objects. Int J Comput Vis 29(3):159–179

    Article  Google Scholar 

  45. Dattorro J (2016) Convex optimization & Euclidean distance geometry, 515, [Online], Available: http://meboo.convexoptimization.com/Meboo.html

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Project Number: 2018YFB1701903) and the National Natural Science Foundation of China (Project Numbers: 61973138, 61672263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, Y., Sun, J. et al. Structured block diagonal representation for subspace clustering. Appl Intell 50, 2523–2536 (2020). https://doi.org/10.1007/s10489-020-01629-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01629-z

Keywords

Navigation