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Abstract
When training base classifier by ternary Error Correcting Output Codes (ECOC), it is well know that some classes are ignored.
On this account, a non-competent classifier emerges when it classify an instance whose real label does not belong to the meta-
subclasses. Meanwhile, the classic ECOC dichotomizers can only produce binary outputs and have no capability of rejection for
classification. To overcome the non-competence problem and better model the multi-class problem for reducing the classification
cost, we embed reject option to ECOC and present a new variant of ECOC algorithm called as Reject-Option-based Re-encoding
ECOC (ROECOC). The cost-sensitive classification model and cost-loss function based on Receiver Operating Characteristic
(ROC) curve are built respectively. The optimal reject threshold values are obtained by combing the condition to be met for
minimizing the loss function and the ROC convex hull. In so doing, reject option (t1, t2) provides a three-symbol output to make
dichotomizers more competent and ROECOC more universal and practical for cost-sensitive classification issue. Experimental
results on two kinds of datasets show that our scheme with low-degree freedom of initialized ECOC can effectively enhance
accuracy and reduce cost.
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1 Introduction

Uncertainty caused by incomplete data has become a great
challenge to the problem of pattern classification [1–5].
Multi-class classification using Error Correcting Output
Codes (ECOC), first proposed by Dietterich and Bakiri
[6] in 1995, attracts attention due to its excellent perfor-
mance. As a decomposition framework, ECOC method
effectively reduces a complex multi-class problem into a
set of binary problems. ECOC Classification simplifies the
complexity of pattern recognition and uses the state-of-
the-art binary classifiers for multi-class classification. So
far, ECOC has been widely applied to spectrum sensing
[7], image recognition [8, 9] and disease and fault diagno-
sis [10, 11]with fairly good classification performance.

There are two steps when using ECOC methods to
solve the multi-class issues: the encoding process and the
decoding process. The goal of encoding is to construct a
matrix M = (mij)c × l, mij ∈ {1, 0, −1}where rows hold the
code words of the class and columns represent bipartitions
for the dichotomizers. The classes denoted by zero are
ignored in training. The decoding strategy is chosen to
merge the outputs of base classifiers. The framework of
ECOC is described in Fig. 1:

Encoding as the first step is especially crucial. Three
main encoding methods are mainly predefined code, data-
dependent code and dichotomies-based code [12].
Independent of the specific application and the classes
used to train dichotomizers, the predefined code ignores
the potential information of original classes and confines
the improvement of classification accuracy, including one-
versus-one matrix, one-versus-all matrix, dense and sparse
random matrices. The dichotomies-based code involves
finding an optimal code matrix given a set of binary clas-
sifiers, proven to be NP-complete by Crammer and Singer
[12].

However, the data-dependent code can make the most
of class separability among samples to enhance classifica-
tion performance as a whole, which has drawn special
attention. The classic data-driven ECOC variants are
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addressed such as Discriminant ECOC [13], Subclass
ECOC [14], Linear Discriminant ECOC [15], and
Hierarchical ECOC[16]. As Wang et al. [17] notes:
“ECOC brings a simple and common implementation of
multi-class classification, but simultaneously, results in the
under-exploitation of already-provided structure knowl-
edge in individual original classes”. In Wang’s work, they
show that the utilization of such prior structure knowledge
improves the performance of ECOC. Escalera [18] pro-
posed re-coding ECOC without re-training. Zhou et al.
[19] used the Fisher formulation to construct an ECOC
coding matrix by using confusion matrix. Experiments
with the UCI dataset proved that the approach could offset
the base classifiers’ error. To overcome the small samples
size and overlaps among classes, Zhong [20] has proposed
a new Self-Adjusting ECOC technique to generate diverse
code matrices based on different feature subset in terms of
the data complexity measure. Rocha et al. [21] took the
correlation and joint probability of base binary learner into
consideration when using ECOC-based approaches. Sun
et al. [22] put a new ECOC algorithm to Enhance Class
Separability named as ECOC-ECS by obtaining the opti-
mal class split based on Data Complexity during encoding
process. Zhao et al. [9] used deep neural networks as base
classifiers to exhibits superior performance in spite of long
computation time. Marie et al. [23] proposed an efficient
modeling from the coding and decoding process to best
gain the data information to enhance performance.

In order to form data-dependent codes to promote classifi-
cation performance, two problems of ECOC classification are
addressed in this paper. The first one is the non-competence
[24] problem that the dichotomizers in ternary ECOCs ex-
clude the prior information of the classes denoted by zero.
On this account, a non-competent classifier emerges when it
classify an instance whose real class does not belong to the
meta-subclasses. Our aim is how to use the knowledge of the
problem domain to design better codes and reduce

classification error. The other is the cost-sensitive classifica-
tion problem. It is well known that the common criterion for
evaluating the performance of a base classifier is classification
error. The smaller the error, the better the performance.
However, when considering the classification risk and dealing
with class imbalance problem [25], the classification error
become infeasible. At this point, it is better and costs less to
reject an unlabeled sample than to misclassify. The classic
ECOC dichotomizers can only produce binary outputs and
have no capability of rejection for classification. So it is a need
to modify dichotomizers to give a third output and be adapted
to cost-sensitive classification in terms of cost loss.

Taking the analysis above into consideration, a new variant
of ECOC algorithm called as Reject-Option-based Re-
encoding ECOC (ROECOC) is presented in this paper.
ROECOC embeds a reject option to ECOC and find the best
threshold values for constructing data-driven codes by using
the arbitrary ECOC as initialized matrix based on ROC curve.
Then, the optimal base classifier with reject option which can
produce three-symbol output and classify selectively is obtain-
ed and used to classify the corresponding classes denoted by
zeros. Finally, the initial coding matrix is recoded according to
the optimal classifier output and thresholds without retraining.
The decoding strategy suitable for three-symbol-output clas-
sifiers is discussed at the same time. The ROECOC not only
uses the prior class information to construct data-drivenmatrix
and also is applicable to the cost-sensitive classification.

The paper is organized as follows: Section 2 discusses
the idea of presented ROECOC. Section 3 focuses on the
proposed re-encoding ECOC and addresses the potential
problems. Section 4 presents the experiments and results,
and section 5 concludes the paper.

2 Re-encoding idea

As a more universal algorithm, ternary ECOC [26] method
nearly unify all decomposing frameworks for multi-class
classification. The introduction of a third output value of
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zero makes the construction of the encoding matrix more
flexible and diverse, which greatly promotes the develop-
ment of ECOC classification. However, there still exist
some problems.

On the one hand, the dichotomizers may provide some use-
ful decision information for the classes ignored. Suppose a five-
class dataset with a mixed Gaussian distribution as shown in
Fig. 2. The decision boundary of classifier h15 trained with C1

and C5 can classifyC2 ,C3, andC4 correctly for the most of
samples. On the other hand, the dichotomizers are non-
competent for class ignored. We consider a matrix M4 × 7

shown in Fig. 3. The testing instance x might be classified as
C1 according to Hamming and Euclidean distance decoding.
However, from another perspective, x belongs to classC2 be-
cause the predicted class label of x is in accordance with C2 as
long as C2 was not ignored during base classifier training. If C2

is ignored, the classifier’s decision boundary cannot make the
correct classification. This is explained by the disturbance in-
troduced by zero, which introduces the classification error into
the decoding process. When there are zeros in the coding ma-
trix, the dichotomizers do not have the distribution information
of the corresponding classes and fail to make the right decision.

The non-competence problem has been discussed by
Escalera [18] who proposed a re-encoding approach without
retraining and used the classification accuracy as the threshold
to recode the zeros. However, how to determine the thresholds
is still an open issue.

On account of the above situation, it is easy to handle
when dichotomizers classify the classes ignored correctly.
If not, it is better that the outputs of dichotomizers remain
zeros. Therefore, the output of dichotomizers must expand
from {1, −1} to {1, 0, −1} and zero means rejection. It is
well known that the binary output have no capability of
rejection for classification. The most commonly used
method is to construct a reject option (t1, t2), t2 > t1 to
produce a third output to classify selectively. The question
is how to form the reject option.

As an efficient means of classifier performance assessment,
the concept of ROC is clear, intuitive, and independent of prior
distribution information, base classifiers, and cost matrices,
which provides a powerful tool for the construction of reject
option. Tortorella [27] presented a 2D ROC-based rejection

mechanism, but the experiments show that the decision thresh-
olds are the same and irrelevant when the datasets are small.
Bernard et al. [28] find that it is more efficient to exploit the
ROC space for learning a pool of classifiers than a single clas-
sifier. Zhao [29] models the loss functions of cost-sensitive
issue with rejection option and obtains the thresholds via the
tangent of ROC curve. In binary classification, the ROC curve
has shown to be very powerful for designing cost-sensitive
classifiers, but has been poorly exploited for multi-class classi-
fication. It is well known that the ECOC base classifier cannot
produce the precise posteriori probability, so t1 + t2 ≠ 1 and the
reject option for each dichotomizer is different. How to formu-
late the decision of the three-symbol output and model the
minimal cost-loss objective function and constraints is the pre-
mise of obtaining reject option based on ROC for multi-class
classification. To solve the questions, we construct the reject
cost matrix at first and find a formula which can formulate the
three-symbol output and use the cost loss as objective function
at the same time. Finally, the thresholds values are calculated
with the help of ROC convex hull.

In conclusion, ROECOC applies ROC to design the reject
option, extending two-symbol output into three-symbol out-
put. Then, the ignored classes are classified by the correspond-
ing optimal classifiers as 1,-1 or 0 respectively. Figure 4 shows
the framework of the re-encoding ROECOC based on ROC,
where Strain and SV represent the training and validation sub-
sets respectively. By doing so, a new data-driven matrix in-
cluding more class information is obtained. It is worth noting
that the re-encoding process remains in the training phase,
avoiding a second training step and reducing complexity.
The three-symbol output classifiers can apply to the cost-
sensitive classification.

3 Reject option-based ECOC by using ROC

This section focuses on ROECOC and explains the deter-
mination of the reject option (t1, t2) based on the cost-
sensitive model and ROC curve [30].
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A confusion matrix in Fig. 5 can be acquired after the
bipartition training. The true positive rate and false positive
rate can be calculated by tp ¼ TP

TPþFN ¼ TP
P ; fp ¼ FP

FPþTN ¼ FP
N .

In order to realize rejection classification:

wi x; t1i; t2i
� � ¼ 1 if f i xð Þ > t2i

−1 if f i xð Þ < t1i

δ otherwise

8<
: ð1Þ

we define a new cost matrix Cr ¼
1 −1 δ

1 0 c12 c13
−1 c21 0 c23

, in

which c11 = c22 = 0, c12 > c13 > 0 and c21 > c23 > 0.
It is hard to acquire the reject option thresholds directly in

practice. The classic binary output of classifiers can be de-
scribed as

wi x; rð Þ ¼ 1 if f i xð Þ > r
−1 if f i xð Þ < r

�
ð2Þ

, and r is the cutoff value. The eq. (1) can be seen as the voting
rules under some constraints of eq. (2):

wi x; r1; r2ð Þ ¼ f
1 if f t1 xð Þ > r1∧ f t2 xð Þ > r2

−1 if f t1 xð Þ < r1∧ f t2 xð Þ < r2

δ if f t1 xð Þ < r1∧ f t2 xð Þ > r2‖ f t1 xð Þ > r1∧ f t2 xð Þ < r2

s:t: ∀xwi x; rið Þ ¼ 1⇒wj x; r j
� � ¼ 1∧wj x; r j

� � ¼ −1⇒wi x; rið Þ ¼ −1

ð3Þ

Therefore the reject option can be constructed by find-
ing a formula which can meet the constraints of eq. (3)
and use the cost loss as objective function at the same

time. On this account, we use the eq. (2) as the decision
rules to obtain ROC curve. The ROC convex hull can be
acquired by fitting the ROC curve described in Fig. 6 in
heavy line. According to the characteristics of ROCCH,
any two points are satisfied with the constraints of eq. (3),
so the question is transferred to how to find the two points
p1, p2 to meet our need. Suppose the corresponding con-
fusion matrices of the two points (base classifiers)
are(TP1, FN1, FP1, TN1) and (TP2, FN2, FP2, TN2)
respectively.

The classification cost loss function can be defined as:

EC ¼ FP2−FP1ð Þc23 þ FN1−FN2ð Þc13 þ FP1⋅c21 þ FN2⋅c12
TP þ FN þ FP þ TN

¼ FN 1⋅c13 þ FP1⋅ c21−c23ð Þ þ FN 2⋅ c12−c13ð Þ þ FP2⋅c23ð Þ
TP þ FN þ FP þ TN

ð4Þ

Note that

P ¼ FN þ TP⇒

FN ¼ P−TP ¼ P 1−
TP
P

� �
¼ P 1−tpð Þ ¼ P 1− f ROC fpð Þð Þ

Then the eq. (4) can be rewritten as:

EC ¼ P 1− f ROC
FP1

N

� �� �
c13 þ FP1 c21−c23ð Þ

þ P 1− f ROC
FP2

N

� �� �
c12−c13ð Þ þ FP2⋅c23

ð5Þ

Take the partial derivatives of eq. (5) forFP1andFP2, then
we can get the final results:
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f
0
ROC f p1

*� � ¼ c21−c23
c13

N
P

f
0
ROC f p2

*� � ¼ c23
c12−c13

N
P

ð6Þ

fp1
∗ and fp2

∗ are the two points we find and used as the thresh-
olds values of reject option (t1, t2).

After embedding reject options for each classifier, the
outputs become three-symbol. In order to decode the out-
put of reject option, the state-of-the-art Hamming
decoding strategy is extended as follows according to
the decoding process of the ternary ECOC [31]:

Step 1: Replace all the rejected code words denoted as zero
with “-1”, and use the classic Hamming distance to
find the nearest class code c−1;

Step 2: Replace all the rejected code words denoted as zero
with “1”, and use the classic Hamming distance to
find the nearest class codec1;

Step 3: Compare the distance of the non-rejected code words
betweenc−1andc1, and the nearer class code is the
final decision.

After solving the construction of reject option and
decoding strategy, the ROECOC process is presented
particularly in Table 1.

The reject option is trained by the original binary
splits, which can ensure the independence and diversity
of dichotomizers. Meanwhile, the outputs of ROECOC

base classifiers provide the prior knowledge of classes
ignored. It is worth noting that zeros denoted as rejec-
tion may still appear in the new matrix, which make the
output flexible. However, when a classifier is non-

Table 1 The algorithm of the re-encoding ROECOC using the reject option

Table 2 Characteristics of the UCI datasets (Features: C-continuous, B-
binary, and N-nominal)

Dataset Cases Classes Features

C B N

(a) Balance 625 3 4 – –

(b) Ecoli 336 8 7 – 1

(c) Glass 214 6 9 – –

(d) Iris 150 3 4 –

(e) Satimag 6435 6 36 – –

(f) Segment 2310 7 19 – –

(g) vehicle 846 4 18 – –

(h) Vowel 990 11 10 – –

(i) Wine 178 3 13 – –

(j) Yeast 1484 10 8 – –

(k) Zoo 101 7 1 15 –

(l) letter 1214 26 16

(m) Page-blocks 5473 5 10

(n) shuttle 14,500 7 9

(o) soybean 306 18 35

(p) thyroid 215 3 5
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competent for an instance to be classified, the output
should be zero, which exactly matches the correspond-
ing code in the original matrix.

4 Experiments

4.1 Experimental data and design

To validate the performance of our proposal, we use two
kinds of dataset: 16 different multi-class datasets from
the University of California at Irvine (UCI) repository
[32, 33] and high resolution range profile (HRRP) dataset
of three airplanes:B-52, Farmer and Fishbed. Table 2 pro-
vides the characteristics of the UCI datasets [19].
Meanwhile, the principal component analysis (PCA) is
used to reduce the dimensionality to promote classifica-
tion speed. The HRRP dataset was acquired with zoom
models in a microwave anechoic chamber and it was com-
posed of data in the range of 0°-155°. There are 322
location data for B-52, 311for Farmer and 451 for
Fishbed. Each data sample is described by 64 attributes,
namely range cell.

4.2 Experimental design

The experiments chose six different coding matrices with
different freedom degree (the distribution density of zero):
one-versus-all coding, dense random, Discriminant

ECOC, sparse random, SA-ECOC [20] and one-versus-
one coding. As for ternary ECOC, we add ReECOC
[18] to compare the results with ROECOC. The random
matrices were selected from a set of 2000 randomly gen-
erated matrices with P(−1) = P(+1) = 0.5 for the dense
random matrix and P(−1) = P(+1) = P(0) = 1/3 for the
sparse random matrix [19]. In all algorithms, the parame-
ters are predefined or default values given by the authors.
The LOGLC and SVM with polynomial kernel K(x, xi) =
[x, xi + 1]q are considered as base classifiers. The regu-
larization parameter C and the kernel parameter q are se-
lected by K-fold cross-validation (K = 5). The range of
values allowed for q is1–10, the initial value of C is 2.

The cost matrix is set as Cr ¼ 0 6 1
3 0 1

� �
by manual,

which is the same for each base classifier and will not
affect the feasibility of the experiment.

Furthermore, the ROECOC is used for target recog-
nition with HRRP dataset of three different planes. We
pick four different angle ranges to evaluate the perfor-
mance in practice (0°-20°, 20°-40°, 130°-150°, 0°-150°).
To simplify the experiments, the SVM was used for the
based classifiers with the same parameters as the men-
tioned before. The decoding strategy is the modified
Hamming distance strategy. At last, we discuss the in-
fluence of freedom degree on cost-loss classification.

To evaluate the performance of the different results, the
experiments perform stratified ten-fold cross validation and
test for a confidence interval of 95% with a two-tailed t-test

Table 3 Accuracy rates and confidence interval at 95% for ECOC matrices using SVM(%)

(a) (b) (c) (d) (e) (f) (g) (h)

OVA classic 85.87 ± 1.46 68.75 ± 6.15 59.82 ± 2.27 74.67 ± 2.77 62.00 ± 8.19 63.72 ± 5.63 67.61 ± 1.73 87.68 ± 8.24

ROECOC 95.96 ± 6.23 72.80 ± 3.10 63.87 ± 1.58 80.71 ± 2.99 68.24 ± 0.82 73.94 ± 14.30 73.52 ± 3.80 89.49 ± 3.70

dense classic 90.24 ± 2.88 42.56 ± 0.56 76.02 ± 4.07 74.00 ± 4.11 67.80 ± 6.54 64.29 ± 8.17 53.52 ± 0.80 82.12 ± 7.97

ROECOC 92.47 ± 3.61 59.64 ± 1.38 80.80 ± 4.62 80.80 ± 2.46 76.46 ± 1.27 77.36 ± 2.44 68.35 ± 2.38 85.47 ± 1.25

DECOC classic 92.16 ± 3.12 69.49 ± 2.80 71.45 ± 3.08 94.07 ± 3.85 80.71 ± 4.15 77.57 ± 1.27 74.26 ± 2.45 96.03 ± 1.03

ReECOC 93.16 ± 2.26 70.89 ± 3.04 80.80 ± 4.60 97.33 ± 2.14 82.03 ± 2.13 80.42 ± 3.55 76.96 ± 2.37 96.70 ± 3.66

ROECOC 94.18 ± 2.05 71.14 ± 1.78 79.04 ± 3.87 97.42 ± 1.12 83.36 ± 1.09 80.95 ± 1.56 76.85 ± 3.32 97.87 ± 1.93

sparse classic 96.28 ± 6.04 69.64 ± 9.67 80.83 ± 10.49 65.67 ± 5.41 72.80 ± 3.10 82.34 ± 2.86 62.88 ± 5.28 79.80 ± 2.48

ReECOC 95.36 ± 7.14 70.79 ± 8.54 87.95 ± 8.39 74.67 ± 8.47 71.09 ± 13.59 83.85 ± 14.85 69.57 ± 10.23 80.03 ± 1.03

ROECOC 96.32 ± 6.02 70.67 ± 11.81 88.30 ± 8.72 79.33 ± 3.85 71.63 ± 1.98 87.14 ± 11.55 70.73 ± 3.54 79.09 ± 0.00

SAECOC classic 95.81 ± 3.10 66.20 ± 3.11 86.42 ± 1.32 95.06 ± 3.81 79.96 ± 2.58 83.64 ± 3.46 74.94 ± 9.76 87.57 ± 4.16

ReECOC 94.36 ± 4.14 68.72 ± 2.34 85.07 ± 3.85 96.00 ± 3.70 81.89 ± 1.87 86.96 ± 1.40 75.53 ± 12.78 88.74 ± 3.60

ROECOC 94.19 ± 7.38 70.21 ± 4.02 88.74 ± 6.30 97.23 ± 1.24 81.03 ± 2.08 92.16 ± 1.78 78.09 ± 6.06 92.17 ± 3.50

OVO classic 95.52 ± 8.22 74.93 ± 14.60 86.70 ± 18.60 96.68 ± 5.38 81.54 ± 3.03 93.76 ± 3.85 76.92 ± 1.12 96.26 ± 6.42

ReECOC 95.68 ± 6.01 75.34 ± 2.68 88.23 ± 24.65 96.67 ± 8.47 80.40 ± 4.59 93.50 ± 9.90 75.65 ± 17.29 98.58 ± 1.36

ROECOC 96.00 ± 2.11 75.88 ± 5.86 89.69 ± 17.26 97.33 ± 1.94 82.59 ± 12.39 93.68 ± 9.35 76.85 ± 2.38 98.71 ± 2.89
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Table 4 Accuracy rates and confidence interval at 95% for ECOC matrices using LOGLC(%)

(a) (b) (c) (d) (e) (f) (g) (h)

OVA classic 86.80 ± 4.20 65.77 ± 6.77 63.33 ± 2.76 64.00 ± 2.63 77.73 ± 0.60 69.12 ± 8.66 75.65 ± 12.75 69.08 ± 2.95

ROECOC 96.96 ± 10.23 69.36 ± 4.01 76.91 ± 3.11 74.00 ± 2.63 79.39 ± 3.43 73.12 ± 8.66 78.40 ± 3.59 78.08 ± 2.95

dense classic 86.89 ± 1.98 73.21 ± 5.12 59.72 ± 7.77 74.00 ± 2.53 63.82 ± 0.06 68.96 ± 3.72 48.41 ± 2.45 79.89 ± 1.50

ROECOC 90.56 ± 4.89 74.50 ± 1.56 66.79 ± 4.07 81.29 ± 4.57 65.78 ± 2.78 74.29 ± 14.29 70.56 ± 3.23 7.89 ± 1.60

DECOC classic 85.87 ± 2.47 64.48 ± 6.34 75.38 ± 2.37 92.50 ± 2.18 77.05 ± 1.32 76.34 ± 1.14 68.90 ± 5.83 74.94 ± 4.53

ReECOC 89.43 ± 2.15 66.53 ± 2.34 78.49 ± 4.32 95.12 ± 8.12 82.01 ± 2.69 78.00 ± 1.49 77.01 ± 2.43 77.84 ± 1.49

ROECOC 90.43 ± 6.18 67.45 ± 4.23 82.19 ± 2.19 95.14 ± 7.49 85.45 ± 4.78 79.13 ± 2.78 79.45 ± 4.31 82.68 ± 3.23

sparse classic 86.08 ± 0.94 73.21 ± 5.12 68.27 ± 2.89 74.66 ± 5.08 79.78 ± 0.71 71.77 ± 3.30 71.76 ± 4.27 75.56 ± 5.05

ReECOC 87.04 ± 13.15 84.23 ± 2.13 69.62 ± 1.28 75.67 ± 4.23 80.20 ± 2.07 74.16 ± 2.80 68.56 ± 17.08 78.28 ± 2.84

ROECOC 89.76 ± 17.29 87.69 ± 4.10 70.90 ± 3.70 76.33 ± 16.94 80.26 ± 2.25 74.50 ± 3.52 69.86 ± 3.60 78.84 ± 3.85

SAECOC classic 88.28 ± 3.11 68.33 ± 3.25 79.78 ± 2.52 92.50 ± 2.18 59.61 ± 3.28 76.83 ± 2.78 79.61 ± 3.34 80.10 ± 2.65

ReECOC 90.13 ± 4.12 69.04 ± 2.85 78.06 ± 1.31 94.04 ± 5.95 59.52 ± 1.62 78.83 ± 4.31 80.91 ± 2.15 84.04 ± 1.50

ROECOC 91.02 ± 1.23 71.64 ± 5.12 82.96 ± 5.01 96.67 ± 2.81 68.05 ± 1.74 79.97 ± 3.25 82.68 ± 3.09 86.68 ± 4.32

OVO classic 88.48 ± 4.30 88.41 ± 2.27 88.90 ± 8.04 94.00 ± 8.47 86.53 ± 4.07 89.07 ± 3.05 76.31 ± 3.21 83.17 ± 5.13

ReECOC 90.04 ± 3.88 87.03 ± 2.13 87.79 ± 3.85 96.00 ± 16.94 86.15 ± 0.51 88.03 ± 11.00 77.42 ± 3.83 83.93 ± 17.97

ROECOC 91.72 ± 12.01 89.23 ± 2.31 89.70 ± 14.32 97.33 ± 16.94 86.76 ± 6.79 92.03 ± 13.35 78.01 ± 3.66 89.33 ± 7.70
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Fig. 7 Normalized classification cost of four different angle ranges of HRRP datasets
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if the number of samples was larger than 500 [24, 34]. The
calculating formula is given as follows:

jx−μj
σ=

ffiffiffi
n

p ≥ t0:025 n−1ð Þ ð7Þ

where μ and σ indicate mean and variance respectively and
t0.025(9) = 2.2622.

4.3 Experimental results and analysis

4.3.1 UCI dataset

Tables 3 and 4 show the classification accuracy for dif-
ferent encoding matrices based on different classifiers
and the modified Hamming decoding. The best perfor-
mance per dataset is highlighted in boldface. The re-
sults of the rest datasets are listed in Table 5 and
Table 6 as shown in the Appendix.. From the results
in tables, we can see that the classification accuracy
got by ROECOC outperform the corresponding state-
of-the-art matrices and Re-coding methods most of the
time. This illustrates that the classification performance
of ROECOC based on reject option is much better than
that of classic ECOCs without reject option. It is worth
noting that the classification results have no distinct
difference when using one-versus-one code as the ini-
tial matrix. The most likely reason is that there is only
one class in each binary split in one-versus-one matrix
and the class imbalance problem has little impact on
classification. One of the advantages of ROECOC is
to overcome the class imbalance problem according to
the introduction section, which can be detected easily
with the one-versus-all as the initial matrix. In general,
the ROECOC based on reject option has better perfor-
mance and can avoid making the direct decision for
samples to be easily misclassified or with high misclas-
sification risk, which can be seen from other ECOC
matrices.

4.3.2 HRRP dataset

Figure 7 show the classification cost of four different
angle ranges of HRRP dataset based on classic ECOCs
and ROECOC. The freedom degree of matrices along
the x-axes increases form left to right. According to the
results, the classification cost of ROECOC is much less
than that of classic ECOCs in general. We can also find
that with the increasing of the freedom degree, the

classification performance of classic ECOCs and
ROECOC are approaching gradually. When the free-
dom degree increases to a certain extent, the advantage
diminishes. Especially when using one-versus-one code
as the initial matrix, the classification performance has
no big difference, which is in accordance with the re-
sults of UCI datasets. The most likely reason is that
with the increasing of the freedom degree, the degree
of class imbalance decreases. The more balanced the
data distribution, the less samples rejected. However,
it is worthy of considering the freedom degree when
using ROECOC to classify (Tables 5 and 6).

It is also worth noting that the classification cost is
less when the angle range is smaller such as 0°-20°, 20°-
40°and 130°-150°. Because the recognition based on
HRRP has orientation sensitivity. Taking the results and
analysis above into considerat ion, the proposed
ROECOC can promote the classification performance
aiming at reducing the classification risk in practice.

5 Conclusions

The multi-class classification aiming at reducing classi-
f icat ion cost has been widely used in pract ice.
However, the classic ECOC classification still takes
the error as the evaluation criteria, which is not suitable
for the cost- loss class i f icat ion. Meanwhile , the
dichotomizers can only produce binary outputs and
have no capability for rejection. To reduce classifica-
tion cost and construct data-driven matrix, a new reject
option-based ECOC is proposed. ROECOC does not
change the framework of ECOC classification and in-
troduces reject option for each base classifier. The re-
ject option based on ROC curve is constructed by min-
imizing the cost-loss function model with the help of
cost matrix and ROCCH. The dichotomizers with reject
option can produce three-symbol output and classify
selectively, which can provide more information of
class distribution. Given any initial matrix, ROECOC
can produce a data-driven and competent matrix for
the cost-sensitive classification. The experimental re-
sults illustrate that ROECOC can reduce the classifica-
tion cost and enhance the performance especially when
the freedom degree of the initial matrix is low.
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Appendix

Table 6 Accuracy rates and confidence interval at 95% for ECOC matrices using LOGLC(%)

(i) (j) (k) (l) (m) (n) (o) (p)

OVA classic 68.56 ± 7.71 31.33 ± 2.00 57.82 ± 3.23 52.14 ± 0.27 87.70 ± 10.35 80.60 ± 1.52 67.27 ± 2.76 94.40 ± 4.35

ROECOC 75.12 ± 5.31 43.10 ± 5.19 79.19 ± 1.78 67.24 ± 1.39 95.24 ± 13.64 89.64 ± 1.25 80.20 ± 2.63 95.83 ± 4.12

dense classic 62.22 ± 5.69 45.35 ± 1.17 48.44 ± 0.84 65.55 ± 0.38 89.38 ± 1.13 83.93 ± 2.38 65.94 ± 2.96 93.97 ± 4.01

ROECOC 69.54 ± 4.11 53.82 ± 5.68 66.10 ± 2.31 69.63 ± 0.87 93.80 ± 1.34 90.82 ± 1.24 79.92 ± 4.03 94.93 ± 3.86

DECOC classic 68.23 ± 2.82 48.92 ± 2.42 68.90 ± 5.83 61.29 ± 1.24 91.37 ± 7.18 83.58 ± 1.16 65.62 ± 3.34 85.79 ± 1.44

ReECOC 73.16 ± 4.26 51.15 ± 4.53 73.45 ± 2.60 67.33 ± 1.03 93.92 ± 5.72 87.31 ± 3.04 78.76 ± 3.06 93.00 ± 1.57

ROECOC 74.90 ± 3.14 53.40 ± 8.26 75.12 ± 1.20 67.04 ± 1.05 95.25 ± 6.10 89.54 ± 3.18 80.24 ± 3.12 94.50 ± 1.22

sparse classic 69.91 ± 1.07 51.30 ± 3.08 52.49 ± 6.28 65.82 ± 0.95 94.39 ± 13.48 86.69 ± 1.38 68.23 ± 3.34 94.41 ± 12.15

ReECOC 72.95 ± 1.31 55.53 ± 2.34 64.43 ± 2.11 69.23 ± 0.40 92.16 ± 14.45 89.22 ± 1.13 78.95 ± 2.19 93.96 ± 5.55

ROECOC 73.12 ± 1.23 57.40 ± 3.85 64.55 ± 13.86 70.33 ± 1.06 95.48 ± 29.20 91.91 ± 1.40 82.17 ± 3.18 92.10 ± 17.26

SAECOC classic 70.22 ± 1.78 55.54.2.71 63.03 ± 7.64 68.49 ± 3.02 94.31 ± 3.64 88.47 ± 0.95 70.81 ± 3.55 93.50 ± 3.05

ReECOC 73.34 ± 1.57 57.19 ± 2.15 66.10 ± 2.31 73.63 ± 0.40 96.22 ± 2.78 92.53 ± 0.84 80.89 ± 3.34 93.46 ± 4.18

ROECOC 75.20 ± 1.23 58.23 ± 5.68 67.36 ± 2.09 73.84 ± 1.25 97.27 ± 3.81 92.32 ± 0.76 81.21 ± 2.60 94.52 ± 4.03

OVO classic 72.07 ± 3.85 56.71 ± 3.85 72.48 ± 2.08 75.40 ± 1.87 94.12 ± 13.16 93.86 ± 0.91 75.31 ± 4.64 95.82 ± 5.65

ReECOC 73.19 ± 1.94 57.02 ± 3.69 74.17 ± 3.58 75.39 ± 2.39 95.05 ± 12.98 94.27 ± 0.79 80.22 ± 4.63 95.81 ± 17.98

ROECOC 74.00 ± 1.86 59.01 ± 1.49. 75.89 ± 3.33 78.96 ± 0.33 96.06 ± 7.70 95.90 ± 0.78 81.01 ± 3.45 96.27 ± 12.04

Table 5 Accuracy rates and confidence interval at 95% for ECOC matrices using SVM(%)

(i) (j) (k) (l) (m) (n) (o) (p)

OVA classic 68.54 ± 0.90 23.86 ± 3.25 67.06 ± 2.56 67.17 ± 0.71 94.58 ± 9.02 81.70 ± 0.69 72.52 ± 3.71 91.62 ± 12.31

ROECOC 74.71 ± 10.75 44.68 ± 3.46 75.33 ± 2.71 74.93 ± 0.87 96.80 ± 9.40 89.19 ± 2.22 77.98 ± 3.54 92.59 ± 8.87

dense classic 71.13 ± 2.34 29.84 ± 5.10 46.44 ± 2.84 69.30 ± 0.48 95.07 ± 0.52 79.96 ± 0.65 73.59 ± 3.44 83.72 ± 6.87-

ROECOC 84.75 ± 1.90 56.40 ± 2.05 50.66 ± 3.49 79.12 ± 0.53 99.36 ± 9.92 88.04 ± 0.89 78.32 ± 2.85 92.57 ± 7.41

DECOC classic 83.70 ± 3.68 32.02 ± 4.43 58.38 ± 7.54 59.61 ± 1.39 92.16 ± 8.95 83.61 ± 3.16 72.56 ± 1.62 92.07 ± 1.22

ReECOC 84.38 ± 3.51 45.96 ± 2.46 69.36 ± 10.4 65.58 ± 1.36 95.89 ± 8.28 87.42 ± 1.64 78.32 ± 2.87 93.50 ± 3.06

ROECOC 83.72 ± 3.68 57.40 ± 3.85 76.96 ± 7.34 65.54 ± 1.51 96.81 ± 8.87 89.12 ± 2.15 79.78 ± 1.59 93.75 ± 2.61

sparse classic 71.95 ± 4.01 47.04 ± 2.93 49.94 ± 6.17 64.18 ± 2.28 90.24 ± 7.25 87.16 ± 0.87 72.90 ± 4.54 87.44 ± 6.65

ReECOC 78.89 ± 14.12 55.05 ± 3.20 52.97 ± 8.41 65.03 ± 2.30 94.83 ± 0.84 90.17 ± 1.29 77.35 ± 4.88 88.75 ± 4.78

ROECOC 79.18 ± 3.86 56.55 ± 5.91 53.16 ± 22.10 66.78 ± 2.37 94.84 ± 7.86 91.14 ± 0.57 79.51 ± 3.82 89.10 ± 17.26

SAECOC classic 79.46 ± 5.45 52.09 ± 3.12 68.27 ± 3.10 69.61 ± 0.99 94.32 ± 3.42 91.18 ± 0.78 55.59 ± 4.03 86.03 ± 3.05

ReECOC 83.89 ± 3.06 58.53 ± 5.73 76.25 ± 7.25 72.72 ± 0.47 95.75 ± 4.88 92.55 ± 1.29 72.56 ± 3.72 92.07 ± 2.22

ROECOC 85.58 ± 2.84 59.43 ± 3.61 78.09 ± 6.06 76.74 ± 0.36 96.66 ± 4.80 93.52 ± 1.77 76.31 ± 2.83 93.50 ± 1.22

OVO classic 85.83 ± 6.19 58.43 ± 3.61 56.33 ± 5.67 76.69 ± 0.81 97.10 ± 2.98 91.86 ± 0.95 73.87 ± 4.94 87.93 ± 5.89

ReECOC 86.81 ± 3.95 60.68 ± 3.46 65.73 ± 2.01 78.94 ± 0.97 97.30 ± 2.06 93.46 ± 1.06 77.67 ± 4.21 92.09 ± 6.38

ROECOC 87.35 ± 2.19 61.33 ± 2.00 66.61 ± 14.90 80.12 ± 0.52 98.09 ± 2.80 94.66 ± 1.69 79.32 ± 4.68 92.50 ± 5.32
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