Applied Intelligence (2020) 50:2916-2931
https://doi.org/10.1007/510489-020-01657-9

®

Check for
updates

A team of pursuit learning automata for solving deterministic
optimization problems

Anis Yazidi' @ - Nourredine Bouhmala' - Morten Goodwin'

Published online: 14 April 2020
© The Author(s) 2020

Abstract

Learning Automata (LA) is a popular decision-making mechanism to “determine the optimal action out of a set of allowable
actions” [1]. The distinguishing characteristic of automata-based learning is that the search for an optimal parameter (or decision)
is conducted in the space of probability distributions defined over the parameter space, rather than in the parameter space itself
[2]. In this paper, we propose a novel LA paradigm that can solve a large class of deterministic optimization problems. Although
many LA algorithms have been devised in the literature, those LA schemes are not able to solve deterministic optimization
problems as they suppose that the environment is stochastic. In this paper, our proposed scheme can be seen as the counterpart of
the family of pursuit LA developed for stochastic environments [3]. While classical pursuit LAs can pursue the action with the
highest reward estimate, our pursuit LA rather pursues the collection of actions that yield the highest performance by invoking a
team of LA. The theoretical analysis of the pursuit scheme does not follow classical LA proofs, and can pave the way towards
more schemes where LA can be applied to solve deterministic optimization problems. Furthermore, we analyze the scheme under
both a constant learning parameter and a time-decaying learning parameter. We provide some experimental results that show how
our Pursuit-LA scheme can be used to solve the Maximum Satisfiability (Max-SAT) problem. To avoid premature convergence
and better explore the search space, we enhance our scheme with the concept of artificial barriers recently introduced in [4].
Interestingly, although our scheme is simple by design, we observe that it performs well compared to sophisticated state-of-the-art
approaches.

Keywords Distributed learning - Learning automata - Deterministic optimization

1 Introduction

Learning Automata (LA) have been used in systems that have
incomplete knowledge about the Environment in which they
operate [1, 5—11]. The learning mechanism attempts to leamn
from a stochastic Teacher which models the environment. In
his pioneering work, Tsetlin [12] attempted to use LA to mod-
el biological learning. In general, a random action is selected
based on a probability vector, and these action probabilities
are updated based on the observation of the Environment’s
response, after which the procedure is repeated.

The term “Learning Automata” was first publicized and
rendered famous in the survey paper by Narendra and

>4 Anis Yazidi
anis.yazidi @oslomet.no

' Department of Computer Science, Oslo Metropolitan University,

Oslo, Norway

@ Springer

Thathachar. The goal of LA is to “determine the optimal ac-
tion out of a set of allowable actions” [1]. The distinguishing
characteristic of automata-based learning is that the search for
the optimizing parameter vector is conducted in the space of
probability distributions defined over the parameter space,
rather than in the parameter space itself [2].

Concerning applications, the entire field of LA and sto-
chastic learning has had a myriad of applications [5-7, 9,
10], which (apart from the many applications listed in these
books) include solutions for problems in network and com-
munications [13—16], network call admission, traffic control,
quality of service routing, [17-19], distributed scheduling
[20], training hidden Markov models [21], neural network
adaptation [22], intelligent vehicle control [23], and even fair-
ly theoretical problems such as graph partitioning [24]. In
addition to these fairly generic applications, with a little in-
sight, LA can be used to assist in solving (by, indeed, learning
the associated parameters) the stochastic resonance problem
[25], the stochastic sampling problem in computer graphics
[26], the problem of determining roads in aerial images by

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01657-9&domain=pdf
http://orcid.org/0000-0001-7591-1659
mailto:anis.yazidi@oslomet.no

A team of pursuit learning automata for solving deterministic optimization problems 2917

using geometric-stochastic models [27], and various location
problems [28]. Similar learning solutions can also be used to
analyze the stochastic properties of the random waypoint mo-
bility model in wireless communication networks [29],
achieve spatial point pattern analysis codes for GISs [30],
digitally simulate wind field velocities [31], interrogate the
experimental measurements of global dynamics in magneto-
mechanical oscillators [32], and to analyze spatial point pat-
terns [33]. LA-based schemes have already been utilized to
learn the best parameters for neural networks [22], optimizing
QoS routing [19], and bus arbitration [14] — to mention a few
other applications.

Although many LA algorithms have been devised in the
literature, those LA schemes are not able to solve deter-
ministic optimization problems as they suppose that the
environment is stochastic. In other words, classical LA
schemes resort to the assumption that the response of the
environment to the same action or set of actions is stochas-
tic. However, in deterministic optimization problems, this
is not the case as the output, which is the response of the
environment is a deterministic function of the input. There
have been many studies that resort to a team of LA for
solving optimization problems where the objective func-
tion is noisy. Examples of those works include noise-
tolerant learning of half-spaces [34] and nonlinear fraction-
al knapsack problem [35]. The latter stream of works show
that pursuit LA is a viable solution when the objective
function is noisy. However, when the objective function
to optimize is deterministic, .i.e. non-noisy, evidences from
the literature catalogue that using a team of traditional pur-
suit LA yields slow convergence. For instance, Tilak et al.
[36] report thata team of traditional pursuit LA larger than
10 deployed for solving a deterministic combinatorial
problem, namely sensor coverage, yields a very slow con-
vergence speed. In fact, Tilak et al. state: “Even at a modest
number of 10 cameras, the centralized pursuit algorithm
takes a long time for the automata team to converge which
makes it unsuitable for an application like distributed ob-
ject tracking where fast convergence is necessary”.
Furthermore, some of the authors of the current manuscript
[37] have also noticed this slow convergence in solving a
machine learning classification problem mappedinto a
combinatorial problem using a team of LA. Another im-
portant disadvantage of traditional teams of pursuit LA
concerns the size of the required memory for storing the
reward estimate vector. In the case of classical team of
pursuit LA, one needs a shared memory for the reward
estimate vector that increases dramatically with the size
of the team. For instance, for a team of N LA each with
two actions (binary action LA), the memory space required
for storing the reward probability estimate is 2" which is
exhaustive as N increases [36]. This slow convergence of
classical team of pursuit LA for solving deterministic

optimization problems calls for a new LA paradigm which
is the objective of this article.

In this paper, we develop a novel pursuit LA, which can be
seen as the counterpart of the family of pursuit LA designed
for stochastic environments [3]. While classical pursuit LAs
are able to pursue the action with the highest reward estimate,
our pursuit LA rather pursues the collection of actions that
yield the highest performance. The theoretical analysis of the
pursuit scheme does not follow classical LA proofs and can
pave the way towards more schemes where LA can be applied
to solve deterministic optimization problems.

We catalogue the contributions of this article as follows:

* We devise a simple and lightweight optimization frame-
work based on the theory of LA. In contrast to any LA
scheme presented in the literature, our solution is especial-
ly designed for deterministic environments.

* Our current solution extends the family of pursuit LA
algorithms [3, 38, 39] to solve deterministic optimization
problems. A common feature for all legacy pursuit algo-
rithms is to estimate the reward probability of each action
and pursue the action with the highest reward. In our cur-
rent work, the environment is rather deterministic.
Therefore, we opt to pursue the joint action of the team
LA corresponding to the best solution found so far.

* We provide sound theoretical results that demonstrate the
convergence of our scheme under both constant learning
parameter and time-decaying learning parameter. To the
best of our knowledge, this is the first work that proposes
an analysis of LA scheme with time-decaying learning
parameter.

* Asan example of an optimization problem, we show how
our scheme can be applied to solve the Max-SAT problem.

The remainder of this paper is organized as follows. In
Section 2, we give an introduction to the theory of Learning
Automata which is the fundamental tool in this paper. In
Section 3, we survey some related work within the field of
LA and optimization. In Section 4, we present our solution
called Pursuit-LA and provide theoretical proofs demonstrat-
ing its convergence. Furthermore, we provide an experiment
where we apply Pursuit-LA to the Max-SAT problem.
Section 6 concludes the article.

2 Learning automata

In the field of Automata Theory, an automaton [5-7, 9, 10] is
defined as a quintuple composed of a set of states, a set of
outputs or actions, an input, a function that maps the current
state and input to the next state, and a function that maps a
current state (and input) into the current output.

@ Springer

2918

A.Yazidietal.

Definition 1: A LA is defined by a quintuple <A, B, O,
F(,.), G(.)>, where:

1. A={ay, o, ..., o} is the set of outputs or actions that the
LA must choose from, and a(?) is the action chosen by the
automaton at any instant 7.

2. B={p1 B2, ..., B} is the set of inputs to the automaton.
0(2) is the input at any instant ¢. The set B can be finite or
infinite. The most common LA input is B = {0, 1}, where
(=0 represents reward, and 3= 1 represents penalty.

3. O0={q1,92, .--.q} 1s the set of finite states, where Q(?)
denotes the state of the automaton at any instant z.

4. F(,.):Ox B~ Q is a mapping in terms of the state and
input at the instant #, such that, g(r + 1) = Flq(?), 5(¢)]. It is
called a transition function, i.e., a function that determines
the state of the automaton at any subsequent time instant
t+ 1. This mapping can either be deterministic or
stochastic.

5. G(.): is a mapping G: QO+~ A, and is called the output
function. G determines the action taken by the automaton
if it is in a given state as: a(f) = G[q(¢)]. With no loss of
generality, G is deterministic.

If the sets O, B and A are all finite, the automaton is said to
be finite.

The Environment, E, typically, refers to the medium in
which the automaton functions. The Environment possesses
all the external factors that affect the actions of the automaton.
Mathematically, an Environment can be abstracted by a triple
<A, C, B>. A, C, and B are defined as follows:

1. A={ay,y, ..., q,} is the set of actions.

2. B={B1, B2, ..., B} is the is the output set of the
Environment. Again, we consider the case when m =2,
i.e., with 3=0 representing a “Reward”, and G=1
representing a “Penalty”.

3. C={cy,0s,...,0c} is a set of penalty probabilities, where
element ¢; € C corresponds to an input action a.

State Q
Transition Function F

Output Function G | Output «

Input B.

A {

Automaton

Penalty probabilities C

Fig. 1 Feedback Loop of LA

@ Springer

The process of learning is based on a learning loop involv-
ing the two entities: the Random Environment (RE), and the
LA, as described in Fig. 1. In the learning process, the LA
continuously interacts with the Environment to process re-
sponses to its various actions (i.e., its choices). Finally,
through sufficient interactions, the LA attempts to learn the
optimal action offered by the RE. The actual process of learn-
ing is represented as a set of interactions between the RE and
the LA.

The automaton is offered a set of actions, and it is
constrained to choosing one of them. When an action is cho-
sen, the Environment gives out a response () at a time “t”.
The automaton is either penalized or rewarded with an un-
known probability ¢; or 1 —c;, respectively. On the basis of
the response (), the state of the automaton ¢(f) is updated
and a new action is chosen at (t + 1). The penalty probability c;
satisfies:

¢ =Pr[t) = 1a(t) = a)(i=1,2,...,R).
We now provide a few important definitions used in the
field. P(?) is referred to as the action probability vector, where,

Pt =[p1(®), p2(0), ..., p,(t)]T, in which each element of the
vector.

pi(t) = Prla(t) = ail,i=1,....,r,such that ¥ p:(r) =1 ¥e. (1)
i=1

i

Given an action probability vector, P(?) at time ¢, the aver-
age penalty is:

M(t) = Er[ﬂ(fﬂp(t)] = Pr[B(t) = 1|P(1)]
= %] Prif(t) = 1a(t) = o] Pr{a(t) = «] . 2)
= cip;(?)

1

The average penalty for the “pure-chance” automaton is
given by:

M() = Ci. (3)

N | =

R

1

As t— oo, if the average penalty M(f) < M,, at least asymp-
totically, the automaton is generally considered to be better
than the pure-chance automaton. E[M(#)] is given by:

E[M(0)] = E{E[B(0)|P(1)]} = E[5(2)]. (4)

A LA that performs better than by pure-chance is said to be
expedient.
Definition 2: A LA is considered expedient if:

limE[M(t)] < M.
Definition 3: A LA is said to be absolutely expedient if

EM(t+ 1)|P(t)] < M(¢),

A team of pursuit learning automata for solving deterministic optimization problems 2919

implying that E[M(t+ 1)] < E[M(?)].
Definition 4: A LA is considered optimal if

limg.o E[M (2)] = ¢y,

where ¢;=min;{c;}.

It should be noted that no optimal LA exist. Marginally
sub-optimal performance, also termed above as e-optimal per-
formance, is what LA researchers attempt to attain.

Definition 5: A LA is considered e-optimal if:

lim, . E[M ()] < ¢ + €, (5)

where €> 0, and can be arbitrarily small, by a suitable choice
of some parameter of the LA.

2.1 Types of learning automata
2.1.1 Deterministic learning automata

An automaton is termed as a deterministic automaton, if both
the transition function F(., .) and the output function G(.) are
deterministic. Thus, in a deterministic automaton, the subse-
quent state and action can be uniquely specified, provided the
present state and input are given.

2.1.2 Stochastic learning automata

If, however, either the transition function F(., .), or the output
function G(.) are stochastic, the automaton is termed to be a
stochastic automaton. In such an automaton, if the current
state and input are specified, the subsequent states and actions
cannot be specified uniquely. In such a case, F(.,.) only pro-
vides the probabilities of reaching the various states from a
given state.

In the first LA designs, both the transition and output func-
tions where time-invariant, and for this reason, these LA were
considered to be “Fixed Structure Stochastic Automata”
(FSSA). Tsetlin, Krylov, and Krinsky [12] have presented
notable examples of this type of automata.

Subsequently, Vorontsova and Varshavskii introduced a
class of stochastic automata known in the literature as
Variable Structure Stochastic Automata (VSSA). In the defi-
nition of a VSSA, the LA is wholly defined by a set of actions
(one of which is the output of the automaton), a set of inputs
(which is usually the responsibility of the Environment) and a
learning algorithm, 7© The learning algorithm [7] operates on a
vector (called the Action Probability vector).

Note that the algorithm T: [0, 1]% x A x B — [0, 1]%is an
updating scheme where A = {«, an, ..., ag}, 2 <R <, isthe
set of output actions of the automaton, and B is the set of
responses from the Environment. Thus, the updating is such
that.

P(t+ 1) =T(P(t), a(t), B(t)), where P(t) is the action proba-
bility vector, «(t) is the action chosen at time t, and 3(t) is the
response it has obtained.

If the mapping 7 is chosen in such a manner that the
Markov process has absorbing states, the algorithm is referred
to as an absorbing algorithm. Many families of VSSA that
posses absorbing barriers have been reported [7]. Ergodic
VSSA has also been investigated [7, 40]. These VSSAs con-
verge in distribution and thus, the asymptotic distribution of
the action probability vector has a value that is independent of
the corresponding initial vector. While ergodic VSSA are suit-
able for non-stationary environments, absorbing VSSA are
preferred in stationary environments.

3 Related work

In order to put our work in the right perspective, we will
briefly discuss different optimization schemes relevant to this
work mostly from the field of LA.

3.1 LA for optimization

A similar work to ours is due to Thathachar and Sastry [41]
where the authors use a team of LA in order to find the optimal
discriminant function in a feature space. The discriminant
functions are parametrized, and a parameter is attached to each
that is to be learned.

Subsequently, Santharam et al. [42] proposed using contin-
uous LA in order to deal with the disadvantages of
discretization, thus allowing an infinite number of actions.
For an excellent review on the application of LA to the field
of Pattern Recognition, we refer the reader to [43]. In [44],
Zahiri devised an LA based classifier that operates using hy-
percubes in a recursive manner. In [45], the authors have pro-
posed LA optimization methods for multimodal functions.
Through experimental settings, the performance of these al-
gorithms were shown to outperform genetic algorithms. In
[46], the authors propose genetic LA for optimizing functions.
Similarly, the work [47] proposed genetic algorithms for
classifiers.

Misra and Oommen pioneered the concept of LA on a
graph using pursuit LA [13, 48, 49] for solving the stochastic
shortest path problem. Li [50] used a type of S Learning
Automata [51] to find the shortest path in a graph. Beigy
and Meybodi [52] provided the first proof in the literature that
demonstrates the convergence of distributed LA on a graph for
a reward inaction LA.

Concerning applications of distributed LA on a graph in the
field of computer communications, we refer the reader to the
work of Torkestani and collaborators [53—55].

@ Springer

2920

A.Yazidietal.

3.2 Stochastic local search algorithms (SLS)

Due to their combinatorial explosion nature, large and com-
plex SAT problems are hard to solve using systematic algo-
rithms. One way to overcome the combinatorial explosion is
to give up completeness. Local search algorithms are tech-
niques which use this strategy. Local search algorithms are
based on what is perhaps the oldest optimization method trial
and error. Typically, they start with an initial assignment of
values to variables randomly or heuristically generated.
Satisfiability can be formulated as an optimization problem
in which the goal is to minimize the number of unsatisfied
clauses. Thus, the optimum is obtained when the value of
the objective function equals zero, which means that all
clauses are satisfied. Finite Learning Automata has been pro-
posed as a mechanism for enhancing meta-heuristics based
Max-SAT solvers. The work conducted in [56] proposes an
adaptive memory based local search algorithm that exploits
various strategies in order to guide the search to achieve a
suitable trade-off between intensification and diversification.
Multilevel techniques [57, 58] have been applied to Max-SAT
with considerable success. They progressively coarsen the
problem, find an assignment, and then employ a meta-
heuristic to refine the assignment on each of the coarsened
problems in reverse order.

During each iteration, a new solution is selected from the
neighborhood of the current one by performing a move.
Choosing a good neighborhood and a method for searching
it is usually guided by intuition because very little theory is
available as a guide. Most SLS uses a 1-flip neighborhood
relation for which two truth-value assignments are neighbors
if they differ in the truth value of one variable. If the new
solution provides a better value in light of the objective func-
tion, the new solution becomes the current one. The search
terminates if no better neighbor solution can be found.

One of the most popular local search for solving SAT is
GSAT [59]. GSAT begins with a randomly generated assign-
ment of values to variables and then uses the steepest descent
heuristic to find the new variable-value assignment which best
decreases the numbers of unsatisfied clauses. After a fixed
number of moves, the search is restarted from a new random
assignment. The search continues until a solution is found or a
fixed number of restart is performed. An extension of GSAT
referred to as random-walk [60] has been realized with the
purpose of escaping from local optima. In a random walk step,
a randomly unsatisfied clause is selected. Then, one of the
variables appearing in that clause is flipped, thus effectively
forcing the selected clause to become satisfied. The main idea
is to decide at each search step whether to perform a standard
GSAT or a random-walk strategy with a probability called the
walk probability. Another widely used variant of GSAT is the
WalkSAT algorithm originally introduced in [61]. It first picks
randomly an unsatisfied clause ¢ and then in a second step,

@ Springer

one of the variables with the lowest break count appearing in
the selected clause is randomly selected. The break count of a
variable is defined as the number of clauses that would be
unsatisfied by flipping the chosen variable. If there exists a
variable with break count equals to zero, this variable is
flipped, otherwise, the variable with minimal break count is
selected with a certain probability (noise probability). The
choice of unsatisfied clauses combined with the randomness
in the selection of variables enables WalkSAT to avoid local
minima and to explore the search space better. New algo-
rithms [62] [63—65] have emerged using history-based vari-
able selection strategy in order to avoid flipping the same
variable. Apart from GSAT and its variants, several clause
weighting based SLS algorithms [66, 67] have been proposed
to solve SAT problems. The key idea is to associate the clauses
of the given CNF formula with weights. Although these
clause weighting SLS algorithms differ in the manner clause
weights should be updated (probabilistic or deterministic) they
all choose to increase the weights of all the unsatisfied clauses
as soon as a local minimum is encountered. Clause weighting
acts as a diversification mechanism rather than a way of es-
caping local minima. Finally, many other SLS algorithms
have been applied to the SAT. These include techniques such
as Simulated Annealing [68, 69], Evolutionary Algorithms
[70], and Greedy Randomized Adaptive Search Procedures
[71]. The nature-inspired GASAT algorithm [72] is a hybrid
algorithm that combines a specific crossover and a tabu search
procedure. The work in [73] proposes a hybrid approach
called Iterated Robust Tabu Search (IRoTS) which combines
an iterated local search and tabu search.

4 Our solution: Pursuit-LA

In this Section, we shall present our solution reckoned as
Pursuit-LA for solving deterministic optimization problems.
In many combinatorial problems, a candidate solution can be
represented using a binary vector [74]. Adopting Pursuit-LA
implies to attach an LA to each element of the binary vector
whose respective decision is the action 0 or 1. The collective
decision of the different LA will result into a solution. The
solution with highest “fitness” will be pursued by the LA
using the LRI scheme [7, 10]. Furthermore, we will give an
example of application of the Pursuit-LA to the Max-SAT
problem.

4.1 Convergence results of the pursuit-LA

In this Section, we will consider two convergence cases of the
Pursuit-LA, namely convergence under time decaying learn-
ing parameter and convergence under constant learning
parameter.

A team of pursuit learning automata for solving deterministic optimization problems 2921

4.1.1 Pursuit-LA with time-dependent parameter

At each epoch, each LA in the team of LA chooses an action,
therefore the choices of the team are synchronous. The joint
action of the team of LA results in a candidate solution. The
observed performance is fed back to the team of LA and used
to reinforce the choice of the candidate solution yielding
highest performance. More precisely for each LA in the team,
we attach a component of the binary vector forming the can-
didate solution, the corresponding action coinciding with the
candidate solution yielding highest performance sees its prob-
ability increasing at each time instant. In this sense, the joint
action probability vector of the team of LA gets biased to-
wards the best solution found so far, and thus the concept of
pursuit. The choices of the team of LA are synchronous and
the feedback is common for the team, which can be though as
shared memory if one considers that the last feedback is stored
in a common memory. Each LA also has a local memory to
remember the best action so far (up to the current time instant)
that has resulted in the highest performance for the team.

Let C() = {C1(?), ..., C,,(¢)} be a candidate solution at time
t where C; takes a binary value and m the number of bits
needed to code a candidate solution. We attach an LA to each
component of the candidate solution.

The automaton’s state probability vector at the component
C;attime tis P(¥) = [pg. 0)(1), pi. 1)(®)], which denotes the prob-
ability to yield 0 or 1 for the i component.

The normalized feedback function (or reward strength) is
given by f(C(t)), where C(?) is the candidate solution tested at
instant 7. The function f{.) measures the fitness of the solution
taking values from [0, 1] where 0 is the lowest possible re-
ward, while 1 is the highest reward. In other words, the fitness
function is normalized.

Let C*(2), be the solution with highest fitness found so far,
i.e., the solution with highest fitness obtained up to time in-
stant .

The idea of pursuit here is to reward the LA whose actions
correspond to the component of the solutions in C*(?).

We consider the LA update equations at component C;. For
all components C;, and for, j € {0, 1}, the update is given by:

p(i,j)(t +1) = (1-A)6; + Atp(i.,j)(t) (6)
Where §; is defined by
G =y
% = {0 else @

A; is the update parameter and depends on time. In
Theorem 13, we will consider the conditions by which the
algorithm can converge when the update parameter depends
on time. Further, we will give convergence results for the case
of fixed A, i.e., independent of time 7.

Please note that, initially:

P (0) =3, forje {0, 1}.

The informed reader would observe that the above update
scheme corresponds to the linear Reward-Inaction LA update
[1].

In factif j¢C; (¢) then p (¢ + 1) is reduced by multiplying
by A, which is less than 1 as per the following equation:

Pyt +1) = Apg (1) (8)

However if jeC; (¢) then p; ;(t+ 1) is increased. This can
be proven as follows:

Plp e+ D pp(0) = [(120) + Ay (0] 20)
= (170) + P (D) (10)

= (120) (170 (1)) 20 (1)

The update scheme is called pursuit LA and has rules that
obey LRI. The idea is to always reward the transitions proba-
bilities along the best solution obtained so far.

With the updating formula (Equation 6), we can show that the
probability distribution converges to the distribution that satisfies
the following property if the optimal solution C; is unique.

(1
7710 else

(12)

Intuition behind pursuit-LA Thathachar and Sastry [75]
pioneered the idea of pursuit LA. The action with the highest
reward estimate is “pursued”. The latter work has fueled a
great deal of interest in pursuit LA involving different variants
[3, 38, 39]. A common feature for all these pursuit algorithms
is to estimate the reward probability of each action and pursue
the action with the highest reward. In our current work, the
environment is ratherdeterministic. Therefore, we opt to pur-
sue the joint action of the team LA, corresponding to the best
solution found so far. We will now state some theoretical re-
sults that catalog the properties of the Pursuit-LA for both the
time-varying update parameter and the fixed update
parameter.

We will now state some theoretical results that catalogue
the properties of the Pursuit-LA for both the time varying
update parameter and the fixed update parameter. The optimal
solution is generated with probability 1 only if the update
parameter 6, obeys the following condition:

t
/\kZOO
1

(13)

s

k

~

Proof.

@ Springer

2922

A.Yazidietal.

The proof follows similar arguments as in [76]. Using re-
currence, we can obtain a lower bound on p(; (?):

1
P (t)= k]:ll /\kp(i,j) (0) (14)

Let puin(0) >0 a lower bound on p; ;(0).

Let A,= {C(t) # C*} the event that at iteration ¢, the candi-
date solution does not contain the optimal solution C*.

Let By the event that optimal solution is not found up to
instant 7.

T
P(Br) = 1_[1P(At) (15)
=
T -1 ”
P(er)< 11 (1 T (upn(0)) (16
= =
By resorting to (1 —u) < exp (—u) we obtain
0 -1
P(8.)= 1 (111 a0)
= =
0 t—1
< frew(~ [T (00" (18)
= =
o -1
= exp(Z:]kl_[)‘kpmzn()) (19)
Pl
However, from our assumption
o t—1
2 Il M=o
=1 k=1
Since we have
P(B)<0 (20)
then
P(B.,) = P(C never obtained) = (21)

Examples of smoothing sequences which eventually gen-
erate the optimal solution with probability 1 (that is, which
satisfy the sufficient condition of Theorem 1) includes.

A=1-1/t+1)" for B> 1.

and

AN = I_W for #>1.

Let ¢ the first time instant when the optimal solution is
found, the optimal components are always reinforced. For
t*+r, for (i*,j) such that i* € C* and j ¢ C*, we have using
recurrence:

@ Springer

41

kH*)\kp(i*,j*) (t) (22)
=t

Py +r) =

Easy to see from the assumption that [];”_ A\ = 0, by con-
sidering the log of the expression described in assumption on
A

lim p ;.)(t +r) =0

F—00

(23)

By considering summation to 1 of probability of going
from node i*, and for j* belonging to the optimal path.

lim p ;- ;

F—00

o +r) =1 (24)

4.2 Constant update parameter

In Theorem 13, we give the convergence result of the Pursuit-
LA for the case of fixed parameter A that is independent of
time.

The optimal solution is generated with probability 1 only if
the update parameter A — 1.

Proof.

Using recurrence, we know that:

p(i,j)(t) > X_lp(i,j)(o) (25)
Thus,

P(A)<1=(X7" P, (0))" (26)
Therefore,

P [T (1-(N"pn(0)") 27)

~
Il

Thus, by resorting again to (1 —u) < exp (—u) we obtain

P(C"never obtained)

= Prob(B.)= [T exp(-X""pys(0)") (28)

<en(punl0" £ A7) (29)
=1

— e (P01 £ 3" 30

Let us define A(a) = Y72 (A™.

A team of pursuit learning automata for solving deterministic optimization problems 2923

o0

h(a) = EO A (31)
— /(1) (32)
TlgralO P(Br) = P(C" never obtained) (33)
<exp(~Pin(0)"1(N)) (34)

Since we know that /l\m% h(\) = oo, then Thm P(Br) canbe

made arbitrarily close to zero, if A approaches 1.

Hence the theorem is proven. Now, let us characterize the
LA probabilities at convergence.

Let * the first time instant when the optimal solution is
found, the optimal so far components are always reinforced.
For " +r, for (i*,j*) € C*, we have:

Using recurrence, we can obtain verify

r—1

P47 = Xy () + (120) T X (35)
We remark

lim % N Z /(1)) (36)
Therefore,

rhj?op("*xf*)(H_ r)=(1-X) x 1/(1-)) =1 (37)

4.3 Pursuit-LA with artificial barriers

In this section, we extend our Pursuit-LA with the con-
cept of artificial barriers introduced recently by Yazidi
and Hammer [4] to avoid the lock-in probability effect.
The presented Pursuit-LA in the previous section is an
absorbing scheme where the team of LA will converge
after a large number of iterations to an absorbing state
composed of a vector with components either 0 or 1.
This creates a challenge when it comes to tuning the
learning parameter as choosing high values of the learn-
ing parameter close to 1 renders the schemes extremely
slow, while choosing high values might lead to prema-
ture convergence. To allow the scheme to avoid still
getting locked in an absorbing state where premature
convergence can take place, we introduce an upper and
lower band for the probability of each LA in the team.
Therefore, instead of allowing the LA probabilities to
admit values within the interval [0, 1], we force the prob-
abilities to be located in [p,ins Pimax] Where p,,... 1S a user-

defined upper bound for all the p; ;(f) and p,,;,, =1 —p-
max the counter part lower bound. p,,,. needs to be cho-
sen in the neighborhood of 1 in order to bias the explo-
ration to the neighborhood of the best solution found so
far. We shall give now the update equations for Pursuit-
LA with artificial barriers. For all components C;, and
for, j€ {0, 1}, the update is given by:

p(i,j)(t+ 1) = (1_)‘) (5J max T (1_5j)pmin) +)‘p(i,j)(t) (38)
Where d; is defined by

LG =
6’_{0 else (39)

Please note that, if we initially impose that p,,,.. <p;, »(0) <
Pmin» then it is easy to prove by recurrence that the update
form will guarantee that at any subsequent time 7> 0 that
Pmax Sp(i,j)(l‘) Spmin'

Let us suppose that p,,.c < pi () < Pin and Prove pia <
P, pt+ 1) < pui In fact, p; (¢ + 1) can be written in the form
Pajp(t+1)=(1=Np+ A\pg, () where p = p,,q. OF p = p iy de-
pending on whether ;=1 or §;= 0. Therefore, p; ,(t+1)isa
convex combination of two quantities that bother are in the
interval [P, Pmax]- Hence, the result is proven by recurrence.

It is easy to see that the update equation (Eq. (38)) can be
written differently. In fact, if j&C; (¢) then p(; (¢ + 1) reduces
to:

p(i,j)<t +1) = (1_>\)Pmin + /\P(i,_;)(t) (40)

However, if jeC; (t) then p (¢ + 1) reduces to:

Pyt +1) = (12A)Pa + Apg) (1) (41)

We can show that if jeC; () then p; ;(t+ 1) increases
while its decreases in the opposite case (i.¢, jeC; (¢)). In fact,

p(iﬁj)(t + 1)_P(i,j)(t) = (1-)) (6/pmw + (1_6«/)pmin)

+ /\P(i,j) (t)_p(i,j) (1) (42)
= (1_)‘1) (5(/pmax + (1_5j)pmin)_p(i.j)(t) (43)
Then if jeC; ()
Pap(t+ D Pp(0) = 150) (PP ()20 (44)
Whereas if je¢C; (1)
Pyt + 1Py (0) = 1) (P2 () <0 (49)

@ Springer

2924

A.Yazidietal.

It is easy to observe that whenever p,,,.= 1, and conse-
quently p,,;, =0, the Pursuit-LA with absorbing barriers re-
duces to the Pursuit-LA with fixed learning parameter intro-
duced in the previous section.

Before closing this section, it is not of place to observe that
our algorithm enjoys low computational complexity. In fact,
the proposed Pursuit-LA requires only an order of m opera-
tions per time step. This low computational complexity is an
inherent property of Reinforcement Learning algorithms in
general and LA in particular.

5 Application of pursuit-LA to max-SAT
problem

In this section, we will test the performance of our algorithm
for solving the Max-SAT problem, which is a well-known
class of deterministic optimization problems. We will examine
two main aspects of the algorithm. The first aspect is investi-
gated in Section 1 and concerns the sensitivity of the algorithm
to changes in the learning parameter. The second aspect we
tackle is how well the current algorithm compares to other
well-established state-of-the-art MAX-SAT solvers. The latter
aspect is treated in Section 2.

5.1 Effect of varying the learning parameter

We will use a benchmark from https://www.cs.ubc.ca/hoos/
SATLIB/benchm.html related to the SAT-encoded Flat
Graph Colouring Problems. As a criterion of convergence,
we reckon that the algorithm has converged whenever each
of'the LA has converged, meaning that each LA has an action
whose probability exceeds 1 — € where € denotes a small sca-
lar. In all the experiments,we choose € =0.01. In more formal
terms, we deem that the scheme has converged if for all 7,
Pao®>1—€or p;1)(H)>1—€. As an objective function,
we resort to the percentage of satisfied clauses which also
characterizes the performance of the algorithm. In the Max-
SAT problem, we would like to maximize the number of sat-
isfied clauses.

Table 1 gives the performance of the Pursuit-LA and con-
vergence time for three values of the learning parameters \ =
0.9, A=0.99 and A=0.999. PC denotes the percentage of
satisfied clauses while CT denotes the convergencetime. In
Table 1, we consider different files representing the SAT-
encoded Flat Graph Colouring Problems. The first category
of files with prefix flat30 denotes a problem with 100 in-
stances, 30 vertices, 60 edges, 3 colours, 90 variables and
300 clauses. The second category of files with prefix flat200
denotes a problem with 100 instances, 200 vertices, 479
edges, 3 colours, 600 variables and 223 clauses.

@ Springer

Table 1 Performance of the Pursuit-LA and convergence time for dif-
ferent values of the learning parameter

A=09 A=0.99 A=0.999

PC CT PC CT PC CT
flat200-1 0.8341 169 0.8971 1710 09535 18,899
flat200-2 0.8341 116 0.8922 1483 09544 19,958
flat200-3 0.8399 147 0.8909 1626 09530 17,946
flat2004 0.8332 146 09105 1739 09427 21,997
flat200-5 0.8377 145 09016 1776 09552 20,102
flat30-1 0.9 88 0.9666 1170 0.9833 11,100
flat30-2 0.9 108 09633 1123 09833 10,656
flat30-3 0.9133 98 09566 1306 0.98 9815
flat30-4 091 116 09666 1061 0.98 10,961
flat30-5 0.9233 107 09633 1016 0.99 11,223
flat30-6 0.8933 90 0.9633 1113 098 10,475

From Table 1, the general remark is that the Pursuit-LA
algorithm is generally fast and yields acceptable performance
even for low values of A. The performance seems to increase
as A increases; however, at the cost of longer convergence
time. For example, let us consider the file flat30-5. We ob-
serve that Pursuit-LA converges quite fast for a small learning
parameter A = 0.99, namely with 107 iterations. Whenever we
increase the parameter to A =0.999, the convergence time
increases considerably to 11,223; however, the performance
increases too substantially from 0.9233 to 0.99. In Fig. 2, we
also give the evolution of the performance of the algorithm
using the same file flat30-5 for A =0.999. Initially, i.e., at time
zero, the performance was 0, 7533. As time proceeds, we
observe from Fig. 2 that the performance steadily increases
until converging to 0.99 after around 11,223 iterations. Please
note that the first time we reach this performance is after about
8000 iterations. Nevertheless, it takes more iterations for the
Pursuit-LA to converge as the probabilities of the actions that
yield this performance (0.99) will keep on increasing as long
no other better solution. This increase in the probability takes
place with a learning parameter as big as A =0.999. The re-
maining time to converge after finding the best solution so far
is depending on the time it takes for the smallest action prob-
ability to have its probability increasing above 1 — €.

5.2 Comparison against reference solvers

The benchmark instances which are used to evaluate the per-
formance of the Pursuit-LA algorithm belong to Random
Unweighted-MAX2SAT/MAX3SAT.!

The performance of the algorithm is compared to various
popular solvers in the literature:

! Those instances can be found in http://infohost.nmt.edu/borchers/maxsat.
html.

https://www.cs.ubc.ca/hoos/SATLIB/benchm.html
https://www.cs.ubc.ca/hoos/SATLIB/benchm.html
http://infohost.nmt.edu/borchers/maxsat.html
http://infohost.nmt.edu/borchers/maxsat.html

A team of pursuit learning automata for solving deterministic optimization problems

2925

1

0,95

09

0,85

o
o

0,75

Performance

o
~

0,65

0,6

0,55

05
0 2000

4000

6000
time

8000 10000 12000

Fig. 2 Example of performance over time of the Pursuit-LA for flat30-5, with A =0.999

» AdaptNovelty+: stochastic local search algorithm with an
adaptive noise mechanism [77].

* IROTS: Iterated Robust Tabu Search algorithm [73].

* RoTS: Robust Tabu Search algorithm [78].

* AdaptG2WSATp: adaptive gradient-based greedy
WalkSAT algorithm with promising decreasing variable
heuristic [79]

* Adaptive memory-based local search heuristic (denoted
by AMLS1,AMSL2) [56].

For the reference algorithms (IRoTS, RoTS, AdaptNovelty+)
we carry out the experiments using UBCSAT (version 1.1) an
implementation and experimentation environment for stochastic
local search algorithms for SAT and MAX-SAT solvers. As
shown by Tompkins and Hoos [80], the implementation of these
reference algorithms in UBCSAT is more efficient than (or just
as efficient as) the original implementations. In all tables, the
first and second column identify the problem instance and the
best known objective value f& (number of unsatisfied clauses).
The remaining columns give the results of the the algorithms
using three performance quality criteria which have been widely
used for the performance evaluation of stochastic local search
[56]:

» The average objective function f,, over 20 independent
runs.

* The success rate sr defined as the number of time the
algorithm reaches the best known objective value over
20 runs.

» The average search step for reaching the average value.

To avoid premature convergence, we Use p,,.. = 0.9.
Furthermore, we fix A = 0.95. We run the algorithms in epochs

each consisting of 1000 iterations. We only update the proba-
bilities at the end of each epoch. In simple terms, we test the
current probability vector during the whole epoch before
updating it best on the best solution found so far in the entire
epoch.

Tables 2, 3 and 4 give the comparisons results.

To summarize the results of this section, we have incorpo-
rated comparisons against some of the most established state-
of-the-art schemes including AMSL1, AMSL2,
AdaptiveNovelty+, AdaptG2WSATp, RoTS IroTS using dif-
ferent benchmarks. The results are really conclusive and quite
surprising too. Although our scheme is straightforward and
we aimed to show that this a proof of concept of the possibility
to use LA for solving deterministic problems, we have found
that it performs well. It is even superior to the AdaptNovelty+
which is a sophisticated state-of-art Max-SAT algorithm. For
example, in Table 4, our Pursuit-LA consistently outperforms
the AdaptiveNovelty+ in terms of £, and convergence steps.
Observe, for example, the results for the file s2v120c¢1700-2.
Our Pursuit-LA achieves several unsatisfied clauses 250 in
306 epochs while the AdaptiveNovelty+ achieves 261 in
25,229 iterations. The optimal number for this case is 248,
and therefore our Pursuit-LA has just two unsatisfied clauses
compared to the AdaptiveNovelty+ that has eleven unsatisfied
clauses.

5.3 Discussion

We believe that the Pursuit-LA algorithm owes it's perfor-
mance to two main design principles:

* By adding some artificial barriers, p,,;, and p,,.. for the
LA probability, we are able to achieve better results by

@ Springer

2926

A.Yazidietal.

Table2 Performance Comparisons: Unweighted MAX2SAT/MAX3SAT

f* Pursuit-LA AMSL2 AdaptiveNovelty+ AdaptG2WSATp

Inst fov st steps v st steps v sr steps fov sr steps
p2200/100 5 5 20 168 5 20 417 5 20 478 5 20 150
p2300/100 15 15 19 416 15 20 152 15 20 817 15 20 175
p2400/100 29 31 8 135 29 20 2006 29.5 10 354,426 29 16 43,585
p2500/100 44 44 20 168 44 20 292 45 5 358,968 44 20 8885
p2600/100 65 66 17 166 65 20 299 67 1 387,088 65 20 21,354
p3500/100 4 10 1 316 4 20 14,771 4 20 2646 4 20 1952
p3550/100 5 9 1 164 5 20 7784 5 20 3795 5 20 1561
p3600/100 8 11 1 776 8 20 4829 8 20 8299 8 20 3861
p2300/150 4 4 20 250 4 20 210 4 20 237 4 20 216
p2450/150 22 23 18 224 22 20 398 22 20 35,985 22 20 3917
p2600/150 38 39 17 478 38 20 15,283 39 0 - 38 2 42,976
p3675/150 7 3 949 2 20 5674 2 20 22,831 2 20 6705
p3750/150 10 322 5 20 11,906 5 20 8137 5 20 5237

avoiding premature convergence of the algorithm. In fact,
during the first experiments we had without artificial bar-
riers, we observed some low performance due to the so-
called stagnation effect. Stagnation means that the best so
far solution does not change for a certain number of iter-
ations that is relatively long. In face of stagnation and in
the absence of artificial barriers, the LA team will get
trapped into a probability vector which corresponds to an
exclusive choice of the best so far solution. This happens
within finite number of iterations that depends onthe learn-
ing parameter.

Furthermore, the second appealing idea that makes the
algorithm performant is pursuing the best solution found

so far in the probability space. In this perspective, pursu-
ing means, at each iteration, biasing gradually the proba-
bilistic search towards the optimal solution found so far in
a probabilistic manner. In fact, the role of the learning
parameter is to adjust the quantity by which the change
in probability takes place in the direction of the best solu-
tion found so far.

Despite that the performance of Pursuit-LA is promising, it
does not outperform the other algorithms in all scenarios,
namely RoTS and IRoTS are superior to Pursuit-LA in terms
of the quality of the solution as seen in Table 4. In fact,
althoughthe Pursuit-LA gives a satisfactory solutions it

Table 3 Performance Comparisons: Unweighted MAX2SAT/MAX3SAT

f* Pursuit-LA AMSLI IRoTS erline RoTS
Inst v st steps Sav st steps Sav st steps v sr steps
p2200/100 5 5 20 168 5 20 222 5 20 672 5 20 920
p2300/100 15 15 19 416 15 20 220 15 20 127 15 20 200
p2400/100 29 31 8 135 29 20 3083 29 20 505 29 20 513
p2500/100 44 44 20 168 44 20 359 44 20 125 44 20 141
p2600/100 65 66 17 166 65 20 369 65 20 158 65 20 151
p3500/100 4 10 1 316 20 43,051 4 20 1939 4 20 2314
p3550/100 5 9 1 164 20 6272 5 20 2230 5 20 3775
p3600/100 11 1 776 20 4368 20 1817 8 20 2053
p2300/150 4 20 250 20 208 20 226 4 20 263
p2450/150 22 23 18 224 22 20 354 22 20 374 22 20 580
p2600/150 38 39 17 478 38 20 5188 38 20 1807 38 20 3564
p3675/150 2 7 3 949 20 42,153 2 20 5674 20 22,831
p3750/150 5 10 1 322 20 41,177 5 20 4737 20 9262

@ Springer

A team of pursuit learning automata for solving deterministic optimization problems 2927

Table 4 Performance Comparison: Unweighted MAX2SAT/MAX3SAT

f* RoTS IRoTS AdaptNovelty+ erline Pursuit-LA

Inst v st steps v st steps fov sr steps i st steps
s2v120c1700-1 257 257 20 458 257 20 540 280 0 39,770 273 0 236
$2v120c1700-2 248 248 20 1460 248 20 1097 261 0 25,229 250 12 306
$2v120c1700-3 239 239 20 538 239 20 1729 253 0 39,321 240 17 336
$2v120c1800-1 291 291 20 559 291 20 630 306 0 42,222 299 2 326
$2v120c1800-3 279 279 20 330 279 20 160 293 0 34,378 279 19 368
$2v120c2600-2 458 458 20 246 458 20 695 486 0 38,513 466 12 252
$2v120c2600-3 440 440 20 325 440 20 359 463 0 50,431 443 17 224
s2v140c1600-2 221 221 20 785 221 20 1190 237 0 66,145 229 2 290
$2v140c2000-2 308 308 20 396 308 20 357 330 0 46,133 309 19 267
$2v140c2600-1 422 422 20 556 422 20 1047 448 0 79,668 432 2 293
$2v140c2600-3 406 406 20 811 406 20 693 433 0 75,895 413 4 313
$2v200c1200-2 127 127 20 775 127 20 540 136 0 26,332 137 6 647
$2v200c1600—4 195 195 20 1285 195 20 1172 216 0 41,019 220 0 275

$3v70c700-5 22 22 20 125 22 20 111 22 20 1841 22 20 106

$3v70c900-9 35 35 20 497 35 20 601 35 20 5650 38 11 80
s3v70c1500-1 90 90 20 575 90 20 928 90 2 12,527 92 15 421

s3v80c600-3 1 11 20 499 11 20 1012 11 20 3366 13 10 165
s3v80c1000-1 44 44 20 1021 44 20 865 45 8 25,481 44 19 454
s3v90c1000-1 34 34 20 259 34 20 266 34 20 22,117 37 12 463
s3v90c1100-2 44 44 20 868 44 20 1233 44 3 16,705 44 20 269
s3v90c1200-5 59 59 20 1111 59 20 1134 60 0 18,959 62 7 169
s3v110c800-7 16 16 20 1063 16 20 1332 16 20 11,018 19 3 286
s3v110c900-2 22 22 20 1446 22 20 1697 22 20 16,325 27 0 174
$3v250c1000-1 5 5 14 13,236 6 4 27,552 6 13 68,690 26 0 479

converges prematurely according to the results of Table 4. For
instance, for s2v200c¢1200-2, /=127 is achieved for RoTS
and IRoTS, while the Pursuit-LA achieves 137 unsatisfied
clauses but within less time, namely, 647 epochs compared
to 775 and 540 steps for RoTS and IRoTS respectively.
Therefore, we believe that adaptively adjusting the learning
parameter as well as the barriers over time borrowing ideas
from IRoTS will boost the performance. Under artificial bar-
riers, our stopping criterion used in the simulations in
Section 2 is the stagnation of the search for two consecutive
epochs. One can deal with stagnation using different ideas in
the literature. For instance, IROTS forces any variable whose
value has not been changed over the last 10 search steps to be
flipped. Such enhancement to Pursuit-LA can be the object of
future research.

The idea behind Pursuit-LA is to bias the search probability
vector towards the optimal solution found so far. However,
adequately tuning the the learning parameter is a challenge
and can be the objective of further future research. As shown
in the experiments in Table 2, a small value of the tuning part
will fasten the convergence speed at the cost of low quality
solution. However, a large value of the tuning parameter

induces a slow convergence speed, which usually results in a
good quality solution. We have also improved the algorithm
by imposing some artificial barriers. By virtue of the artificial
barriers, we avoid the lock in probability which is a phenom-
enon known in the field of LA as each individual i LA will
have its probability vector Pi(¥) = [p(. 0)(1), p. 1)(8)] converging
to [0, 1] or [1, 0] which stops the search. Artificial barriers can
help to solve local optimum problem. However, our algorithm
can be adjusted to allow more diversification of the solution
by using similar procedures to genetic algorithms to diversify
the solution for example through mutation and crossover
operations.

The Pursuit-LA algorithm is a stochastic algorithm. It has
been compared in Table 2 with 3 stochastic algorithms RoTS,
IR0TS and AdaptNovelty+ using the software UBCSAT [80].
ROTS is an algorithm based on a tabu search that repeatedly
chooses the value of the tabu tuning parameter at random from
a given interval during the search. The variant IRoTS whose
subsidiary local search phase and perturbation phase are both
based on RoTS uses a randomized acceptance criterion that is
biased towards better-quality candidate solutions. The noise
parameter, p, which controls the degree of randomness of the

@ Springer

2928

A.Yazidietal.

search process, has a major impact on the performance and
run-time behaviour of the original algorithm Novelty+.
Unfortunately,the optimal value of p varies significantly be-
tween problem instances, and even small deviations from the
optimal value can lead to substantially decreased perfor-
mance. AdaptNovelty+ dynamically adjusts the noise setting
p based on search progress. It gave similar results in 4 cases
when compared to both RoTS, IRoTS and was beaten in the
remaining cases by at most 6%. However, our algorithm con-
verges faster. The authors believe that they could improve the
quality of solutionsgiven by algorithm by finding a suitable
balance between diversification and intensification. By
adopting a similar technique to AdaptNovelty+, we can in-
crease the noise, by lowering down p,,,, and thus allowing
more non-greedy moves, i.e., moves not in the neighborhood
of the best solution so far. The strength of the algorithm is the
fact that it could be parallelized and used in a multilevel con-
text so that diversification and intensification could be
exploited at different levels of the multilevel strategy. When
Pursuit-LA algorithm is compared to these three algorithms,
one needs to compare the strategy of adopting diversification
and intensification between the different algorithms and which
of these strategies is more efficient. The comparison may lead
toa hybrid approach as the one described in [81].

Possible applications of pursuit-LA Within the class of deter-
ministic optimization problems, there is a large family of com-
binatorial problems which are by definition NP-hard. Those
problems are solved usually using algorithms such as genetic
algorithms, tabu-search, simulated annealing, Ant-Colony
Optimization (ACO) to mention a few. Examples of combina-
tional problems that can solved by our proposed solution in-
clude traveling salesman problems, knapsack problems, job
scheduling, graph coloring, quadratic assignment [82] etc...
In the current paper, we have dealt with an optimization prob-
lem where the candidate solutions can be represented in a
binary format. Nevertheless, it is straightforward to extend
our solution to code non-binary solutions by using the concept
of multi-action LA. In this sense, a candidate solution is coded
as a vector of discrete variables and therefore a multi-action
LA can be attached to each component of the vector
representing the candidate solution. A promising research di-
rection is also to solve deterministic continuous optimization
problems using the concept of pursuit. In fact, the components
ofthe m dimensional vectors can be drawn randomly by using
a team of m individual CALA [83].

6 Conclusion
In this paper, we have provided a novel LA that can solve

deterministic optimization problems based on the idea of pur-
suit. The search for an optimal solution is conducted using a

@ Springer

team of cooperative LA. The scheme can be seen as a game-
theoretical solution to a deterministic optimization problem.
Apart from being a contribution to the field of LA in itself, the
scheme is lightweight and extremely simple to implement
with very little memory. Despite being appealingly simple,
extensive experimental results demonstrate that it performs
well compared to sophisticated state-of-the-art approaches.
As future work, we aim to investigate further improving the
performance of the pursuit scheme in terms of convergence
speed and exploration of the search space using Multilevel
techniques introduced by Bouhmala [57, 58].

Funding Information Open Access funding provided by OsloMet - Oslo
Metropolitan University.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Agache M, Oommen BJ (2002) Generalized pursuit learning
schemes: new families of continuous and discretized learning au-
tomata. IEEE Transactions on Systems, Man, and Cybernetics-Part
B: Cybermnetics 32(6):738-749

2. Thathachar MAL, Sastry PS (2002) Varieties of learning automata:
an overview. IEEE Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics 32(6):711-722

3. Agache M, Oommen BJ (2002) Generalized pursuit learning
schemes: new families of continuous and discretized learning au-
tomata, IEEE transactions on systems, man, and cybernetics. Part B
(Cybernetics) 32(6):738-749

4. Yazidi A, Hammer HL (2018) Solving stochastic nonlinear re-
source allocation problems using continuous learning automata.
Appl Intell 48(11):4392-4411

5. Lakshmivarahan S (1981) Learning Algorithms Theory and
Applications, Springer-Verlag

6. Najim K, Poznyak AS (1994) Learning automata: theory and ap-
plications. Pergamon Press, Oxford

7. Narendra KS, Thathachar MAL (1989) Learning automata: an in-
troduction. Prentice-Hall, Inc.

8. Obaidat MS, Papadimitriou GI, Pomportsis AS (2002) Learning
automata: theory, paradigms, and applications. IEEE Transactions
on Systems, Man, and Cybernetics-Part B: Cybernetics 32(6):706—
709

9. Poznyak AS, Najim K (1997) Learning automata and stochastic
optimization. Springer-Verlag, Berlin

10. Thathachar MAL, Sastry PS (2003) Networks of learning automata:
techniques for online stochastic optimization. Kluwer Academic,
Boston

http://creativecommons.org/licenses/by/4.0/

A team of pursuit learning automata for solving deterministic optimization problems

2929

11.

12.

14.

15.

16.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Zhang J, Wang C, Zang D, Zhou M (2016) Incorporation of optimal
computing budget allocation for ordinal optimization into learning
automata. IEEE Trans Autom Sci Eng 13(2):1008-1017

Tsetlin ML (1973) Automaton theory and the modeling of biolog-
ical systems. Academic Press, New York

Misra S, Oommen BJ (2004) GPSPA: a new adaptive algorithm for
maintaining shortest path routing trees in stochastic networks. Int J
Commun Syst 17:963-984

Obaidat MS, Papadimitriou GI, Pomportsis AS, Laskaridis HS
(2002) Learning automata-based bus arbitration for shared-edium
ATM switches. IEEE Trans Syst Man Cybern B 32:815-820
Oommen BJ, Roberts TD (2000) Continuous learning automata
solutions to the capacity assignment problem. IEEE Trans
Comput C-49:608-620

Papadimitriou GI, Pomportsis AS (2000) Learning-automata-based
TDMA protocols for broadcast communication systems with bursty
traffic. [EEE Communication Letters:107-109

Atlassis AF, Loukas NH, Vasilakos AV (2000) The use of learning
algorithms in ATM networks call admission control problem: a
methodology. Comput Netw 34:341-353

Atlassis AF, Vasilakos AV (2002) The use of reinforcement learning
algorithms in traffic control of high speed networks, Advances in
Computational Intelligence and Learning 353-369

Vasilakos AV, Saltouros MP, Atlassis AF, Pedrycz W (2003)
Optimizing QoS routing in hierarchical ATM networks using com-
putational intelligence techniques, IEEE transactions on systems.
Man and Cybernetics: Part C 33:297-312

Seredynski F (1998) Distributed scheduling using simple learning
machines. Eur J Oper Res 107:401-413

Kabudian J, Meybodi MR, Homayounpour MM (2004) Applying
continuous action reinforcement learning automata (CARLA) to
global training of hidden markov models, in: Proceedings of the
International Conference on Information Technology: Coding and
Computing , ITCC’04, Las Vegas, Nevada, pp. 638—642

Meybodi MR, Beigy H (2002) New learning automata based algo-
rithms for adaptation of backpropagation algorithm pararmeters. Int
J Neural Syst 12:45-67

Unsal C, Kachroo P, Bay JS (1997) Simulation study of multiple
intelligent vehicle control using stochastic learning automata.
Transactions of the Society for Computer Simulation International
14:193-210

Oommen BJ, Croix E d S (1995) Graph partitioning using learning
automata. IEEE Trans Comput C-45:195-208

Collins JJ, Chow CC, Imhoff TT (1995) Aperiodic stochastic reso-
nance in excitable systems. Phys Rev E 52:R3321-R3324

Cook RL (1986) Stochastic sampling in computer graphics. ACM
Trans Graph 5:51-72

Barzohar M, Cooper DB (1996) Automatic finding of main roads in
aerial images by using geometric-stochastic models and estimation.
IEEE Trans Pattern Anal Mach Intell 7:707-722

Brandeau ML, Chiu SS (1989) An overview of representative prob-
lems in location research. Manag Sci 35:645-674

C. Bettstetter, H. Hartenstein, Xavier Pérez-Costa, Stochastic prop-
erties of the random waypoint mobility model, Journal Wireless
Networks 10 (2004) 555-567

B. S. Rowlingson, P. J. Diggle, SPLANCS: Spatial Point Pattern
Analysis Code in S-Plus, University of Lancaster, North West
Regional Research Laboratory, 1991

Paola M (1998) Digital simulation of wind field velocity. J] Wind
Eng Ind Aerodyn 74-76:91-109

Cusumano JP, Kimble BW (1995) A stochastic interrogation meth-
od for experimental measurements of global dynamics and basin
evolution: application to a two-well oscillator. Nonlinear Dynamics
8:213-235

Baddeley A, Turner R (2005) Spatstat: an R package for analyzing
spatial point patterns. J Stat Softw 12:1-42

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

Sastry P, Nagendra G, Manwani N (2010) A team of continuous-
action learning automata for noise-tolerant learning of half-spaces.
IEEE Transactions on Systems, Man, and Cybernetics 40(1):19-28
Granmo O, Oommen B, Myrer S, Olsen M (2007) Learning
automata-based solutions to the nonlinear fractional knapsack prob-
lem with applications to optimal resource allocation. IEEE
Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 37(1):166—-175

Tilak O, Mukhopadhyay S, Tuceryan M, Raje R (2010) A novel
reinforcement learning framework for sensor subset selection, in:
2010 International Conference on Networking, Sensing and
Control (ICNSC), IEEE, pp. 95-100

M. Goodwin, A. Yazidi, T. M. Jonassen, Distributed learning
automata-based s-learning scheme for classification, Pattern
Analysis and Applications (2019) 1-16

Zhang X, Granmo O-C, Oommen BJ (2013) On incorporating the
paradigms of discretization and bayesian estimation to create a new
family of pursuit learning automata. Appl Intell 39(4):782—792
Oommen BJ, Lanctot JK (1990) Discretized pursuit learning au-
tomata. IEEE Transactions on Systems, Man, and Cybernetics
SMC-20(4):931-938

Oommen BJ, Agache M (2001) Continuous and discretized pursuit
learning schemes: various algorithms and their comparison. IEEE
Transactions on Systems, Man, and Cybernetics-Part B:
Cybernetics 31:277-287

Thathachar MA, Sastry PS (1987) Learning optimal discriminant
functions through a cooperative game of automata. IEEE
Transactions on Systems, Man and Cybernetics 17(1):73-85
Santharam G, Sastry P, Thathachar M (1994) Continuous action set
learning automata for stochastic optimization. Journal of the
Franklin Institute 331(5):607-628

Sastry P, Thathachar M (1999) Learning automata algorithms for
pattern classification. Sadhana 24(4):261-292

Zahiri S (2008) Learning automata based classifier. Pattern Recogn
Lett 29(1):40-48

Zeng X, Liu Z (2005) A learning automata based algorithm for
optimization of continuous complex functions. Inf Sci 174(3):
165-175

Howell M, Gordon T, Brandao F (2002) Genetic learning automata
for function optimization. IEEE Transactions on Systems, Man, and
Cybernetics 32(6):804-815

Bandyopadhyay S, Murthy CA, Pal SK (1995) Pattern classifica-
tion with genetic algorithms. Pattern Recogn Lett 16(8):801-808
Misra S, Oommen BJ (2005) Dynamic algorithms for the shortest
path routing problem: learning automata-based solutions. IEEE
Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 35(6):1179-1192

Misra S, Oommen BJ (2006) An efficient dynamic algorithm for
maintaining all-pairs shortest paths in stochastic networks. [IEEE
Trans Comput 55(6):686—702

Li H, Mason L, Rabbat M (2009) Distributed adaptive diverse
routing for voice-over-ip in service overlay networks. IEEE Trans
Netw Serv Manag 6(3):175-189

Mason L (1973) An optimal learning algorithm for s-model envi-
ronments. IEEE Trans Autom Control 18(5):493-496

Beigy H, Meybodi MR (2006) Utilizing distributed learning autom-
ata to solve stochastic shortest path problems. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 14(05):
591-615

Torkestani JA, Meybodi MR (2010) An intelligent backbone for-
mation algorithm for wireless ad hoc networks based on distributed
learning automata. Comput Netw 54(5):826—843

Torkestani JA, Meybodi MR (2012) Finding minimum weight con-
nected dominating set in stochastic graph based on learning autom-
ata. Inf Sci 200:57-77

@ Springer

2930

A.Yazidietal.

55.

56.

57.

8.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

Torkestani JA, Meybodi MR (2012) A learning automata-based
heuristic algorithm for solving the minimum spanning tree problem
in stochastic graphs. J Supercomput 59(2):1035-1054

Lt Z, Hao J-K (2012) Adaptive memory-based local search for
max-sat. Appl Soft Comput 12(8):2063-2071

Bouhmala N, Groesland MS, Volden-Freberg V (2016) Enhanced
metaheuristics with the multilevel paradigm for max-csps, in:
International Conference on Computational Science and Its
Applications, Springer, pp. 543-553

Bouhmala N (2012) A multilevel memetic algorithm for large sat-
encoded problems. Evol Comput 20(4):641-664

Selman B, Levesque HJ, Mitchell DG et al. (1992) A new method
for solving hard satisfiability problems., in: AAAI, Vol. 92, pp.
440-446

Selman B, Kautz HA, Cohen B (1994) Noise strategies for improv-
ing local search, in: AAAI Vol. 94, pp. 337-343

McAllester D, Selman B, Kautz H (1997) Evidence for invariants in
local search, in: AAAI/IAAI Rhode Island, USA, pp. 321-326
Glover F (1989) Tabu search“part i”. ORSA J Comput 1(3):190—
206

Hansen P, Jaumard B (1990) Algorithms for the maximum
satisfiability problem. Computing 44(4):279-303

Gent IP, Walsh T (1995) Unsatisfied variables in local search,
Hybrid problems, hybrid solutions 73-85

Gent IP, Walsh T (1993) Towards an understanding of hill-climbing
procedures for sat, in: AAAI, Vol. 93, pp. 28-33

Cha B, Iwama K (1995) Performance test of local search algorithms
using new types of random cnf formulas, in: IJCAI, Vol. 95, pp.
304-310

Frank J (1997) Learning short-term weights for gsat, in: [JICAI (1),
pp. 384-391

Spears WM (1993) Simulated annealing for hard satisfiability prob-
lems., in: Cliques, Coloring, and Satisfiability, Citeseer, pp. 533-558
Bouhmala N (2019) Combining simulated annealing with local
search heuristic for max-sat. J Heuristics 25(1):47-69

Eiben A, Van der Hauw J (1997) Solving 3-sat with adaptive ge-
netic algorithms, in: Proceedings of the 4th IEEE Conference on
Evolutionary Computation, Vol. 81, IEEE Press, p. 86

Johnson DS, Trick MA (1996) Cliques, coloring, and satisfiability:
second DIMACS implementation challenge, October 11-13, 1993,
Vol. 26, American Mathematical Soc

Hao J-K, Lardeux F, Saubion F (2003) Evolutionary computing for
the satisfiability problem, in: Workshops on Applications of
Evolutionary Computation, Springer, pp. 258-267

Smyth K, Hoos HH, Stiitzle T (2003) Iterated robust tabu search for
max-sat, in: Conference of the Canadian Society for Computational
Studies of Intelligence, Springer, pp. 129-144

Kar AK (2016) Bio inspired computing—a review of algorithms and
scope of applications. Expert Syst Appl 59:20-32

Thathachar MAL, Sastry PS, A new approach to designing rein-
forcement schemes for learning automata, IEEE Transactions on
Systems, Man, and Cybernetics SMC-15

Gutjahr WJ (2002) Aco algorithms with guaranteed convergence to
the optimal solution. Inf Process Lett 82(3):145-153

Hoos HH (2002) An adaptive noise mechanism for walksat, in:
Eighteenth national conference on Artificial intelligence,
American Association for Artificial Intelligence, pp. 655-660
Taillard E (1991) Robust taboo search for the quadratic assignment
problem. Parallel Comput 17(4-5):443-455

Li CM, Wei W, Zhang H (2007) Combining adaptive noise and
look-ahead in local search for sat, in: International Conference on
Theory and Applications of Satisfiability Testing, Springer, pp.
121-133

Tompkins DA, Hoos HH (2004) Ubcsat: An implementation and
experimentation environment for sls algorithms for sat and max-sat,

@ Springer

81.

82.

83.

in: International conference on theory and applications of
satisfiability testing, Springer, pp. 306-320

Wauters T, Verbeeck K, De Causmaecker P, Berghe GV (2013)
Boosting metaheuristic search using reinforcement learning, in:
Hybrid Metaheuristics, Springer, pp. 433-452

Martello S (ed) (1985) Survey in combinatorial optimization.
Elsevier North-Holland, Inc., New York

Santharam G, Sastry PS, Thathachar MAL (1994) Continuous ac-
tion set learning automata for stochastic optimization. Journal of the
Franklin Institute 331B5:607-628

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Anis Yazidi received the M.Sc.
and Ph.D. degrees from the
University of Agder, Grimstad,
Norway, in 2008 and 2012, respec-
tively. He was a Researcher with
Teknova AS, Grimstad, Norway.
He is currently a Full Professor
with the Department of Computer
Science, Oslo Metropolitan
University, Oslo, Norway, where
he is leading the research group in
Applied Artificial Intelligence. His
current research interests include
machine learning, learning autom-
ata, stochastic optimization, and

autonomous computing.

Noureddine Bouhmala received
his PhD from the University of
Neuchatel, department of computer
science, Switzerland. In 2001, he
joined the department of computer
science at the University of
SouthEast Norway. Since 2007 he
has been affiliated with the
University of Agde in 20% position
at the department of information
and communication. His research
includes combinatorial optimiza-
tion, data mining, algorithms, artifi-
cial intelligence. Much of his work
has been on improving the under-

standing, design, performance of large scale optimization problems.

A team of pursuit learning automata for solving deterministic optimization problems 2931

Morten Goodwin is an Associate
Professor at the University of
Agder. His field of expertise is arti-
ficial intelligence, particularly
swarm intelligence and neural net-
works. Morten Goodwin received
the B.Sc. and M.Sc. degrees from
the University of Agder, Norway,
in 2003 and 2005, respectively,
and the Ph.D. degree from
Aalborg University Department of
Computer Science, Denmark, in
2011, with on applying machine
learning algorithms on
eGovernment indicators which are
difficult to measure automatically. He is an Associate Professor with the
Department of ICT, the University of Agder, deputy director for Centre for
Artificial Intelligence Research, coordinator for the International Master's
Programme in ICT, a public speaker, and an active researcher. His main
research interests include machine learning, swarm intelligence, deep learn-
ing, and adaptive learning in the fields of accounting, medicine, games, and
chatbots. He has more than 90 peer-reviewed scientific publications in the
area.

@ Springer

	A team of pursuit learning automata for solving deterministic optimization problems
	Abstract
	Introduction
	Learning automata
	Types of learning automata
	Deterministic learning automata
	Stochastic learning automata

	Related work
	LA for optimization
	Stochastic local search algorithms (SLS)

	Our solution: Pursuit-LA
	Convergence results of the pursuit-LA
	Pursuit-LA with time-dependent parameter

	Constant update parameter
	Pursuit-LA with artificial barriers

	Application of pursuit-LA to max-SAT problem
	Effect of varying the learning parameter
	Comparison against reference solvers
	Discussion

	Conclusion
	References

