Skip to main content
Log in

Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

When the elevation of targets is smaller than beamwidth, the coherent multi-path signals will significantly degrade the direction of arrival (DOA) estimation accuracy of existing methods for a very-high-frequency (VHF) radar system. Through detailed theoretical analysis, we demonstrate that the phase distortion is the key factor of degrading the accuracy of DOA estimation. Hence, a novel phase enhancement model based on supervised convolutional neural network (CNN) for coherent DOA estimation is proposed to mitigate the phase distortion and improve estimation accuracy. The results of simulation experiments and real data have demonstrated the superiority of proposed method in DOA estimation accuracy and resolution compared to classic physics-driven methods. Moreover, the proposed scheme is suitable for the coherent DOA estimation compared with existing data-driven methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Xu Z, Xiong Z, Wu J, Xiao S (2016) Symmetrical difference pattern monopulse for low-angle tracking with array radar. IEEE Trans Aerosp Electron Syst 52(6):2676–2684. https://doi.org/10.1109/TAES.2016.140436

    Article  Google Scholar 

  2. Sebt MA, Sheikhi A, Nayebi MM (2010) Robust low-angle estimation by an array radar. IET Radar, Sonar Navigation 4(6):780–790. https://doi.org/10.1049/iet-rsn.2009.0067

    Article  Google Scholar 

  3. Chen B, Zhao G, Zhang S (2010) Altitude measurement based on beam split and frequency diversity in VHF radar. IEEE Trans Aerosp Electron Syst 46(1):3–13. https://doi.org/10.1109/TAES.2010.5417144

    Article  Google Scholar 

  4. Zhu W, Chen B (2013) Altitude measurement based on terrain matching in VHF array radar. Circuits Systems and Signal Processing 32(2):647–662

    Article  MathSciNet  Google Scholar 

  5. Schmidt R (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34(3):276–280. https://doi.org/10.1109/TAP.1986.1143830

    Article  Google Scholar 

  6. Haykin S, Greenlay T, Litva J (1985) Performance evaluation of the modified fblp method for angle of arrival estimation using real radar multipath data. IEE Proceedings F - Communications, Radar and Signal Processing 132(3):159–174. https://doi.org/10.1049/ipf-1.1985.0038

    Article  Google Scholar 

  7. Shan TJ, Wax M, Kailath T (1985) On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans Acoust Speech Signal Process 33(4):806–811. https://doi.org/10.1109/TASSP.1985.1164649

    Article  Google Scholar 

  8. Pettersson L, Grahn P (2003) Experiences using doa methods with a small digital beamforming antenna. In: IEEE International Symposium on Phased Array Systems and Technology 2003:164–169. https://doi.org/10.1109/PAST.2003.1256975

    Article  Google Scholar 

  9. Ziskind I, Wax M (1988) Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans Acoust Speech Signal Process 36(10):1553–1560. https://doi.org/10.1109/29.7543

    Article  MATH  Google Scholar 

  10. Liu Y, Zhou B, Han C, Guo T, Qin J (2020) A novel method based on deep learning for aligned fingerprints matching. Appl Intell 50:397–416. https://doi.org/10.1007/s10489-019-01530-4

    Article  Google Scholar 

  11. Kuang P, Ma T, Chen Z, Li F (2019) Image super-resolution with densely connected convolutional networks. Appl Intell 49:125–136. https://doi.org/10.1007/s10489-018-1234-y

    Article  Google Scholar 

  12. Noda K, Yamaguchi Y, Nakadai K et al (2015) Audio-visual speech recognition using deep learning. Appl Intell 42:722–737. https://doi.org/10.1007/s10489-014-0629-7

    Article  Google Scholar 

  13. Brkljač B, Janev M, Obradović R et al (2014) Sparse representation of precision matrices used in GMMs. Appl Intell 41:956–973. https://doi.org/10.1007/s10489-014-0581-6

    Article  Google Scholar 

  14. Zooghby AHE, Christodoulou CG, Georgiopoulos M (2000) A neural network-based smart antenna for multiple source tracking. IEEE Trans Antennas Propag 48(5):768–776. https://doi.org/10.1109/8.855496

    Article  Google Scholar 

  15. Zooghby AHE, Christodoulou CG, Georgiopoulos M (1997) Performance of radial-basis function networks for direction of arrival estimation with antenna arrays. IEEE Trans Antennas Propag 45(11):1611–1617. https://doi.org/10.1109/8.650072

    Article  Google Scholar 

  16. Shieh CS, Lin CT (2000) Direction of arrival estimation based on phase differences using neural fuzzy network. IEEE Trans Antennas Propag 48(7):1115–1124. https://doi.org/10.1109/8.876331

    Article  Google Scholar 

  17. Xu Z, Rao B, Xiong Z, Zhang L, Xiao S (2013) Elevation finding algorithm in beam domain under multi-path environments for VHF radar. IET Radar, Sonar Navigation 7(9):978–984. https://doi.org/10.1049/iet-rsn.2012.0221

    Article  Google Scholar 

  18. Xiang H, Chen B, Yang M, Yang T, Liu D (2019) A novel phase enhancement method for low-angle estimation based on supervised DNN learning. IEEE Access 7:82329–82336. https://doi.org/10.1109/ACCESS.2019.2924156

    Article  Google Scholar 

  19. Zheng Y, Chen B, Yang M (2016) Cramer-rao bound of the estimation of direction of arrival for low angle targets. In: 2016 CIE International Conference on Radar (RADAR), pp. 1–4. DOI:https://doi.org/10.1109/RADAR.2016.8059311

  20. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  21. Alizadehashraf, B., Roohi, S. (2017) Persian handwritten character recognition using convolutional neural network. In: 2017 10th Iranian Conference on Machine Vision and Image Processing (MVIP), pp. 247–251. DOI:https://doi.org/10.1109/IranianMVIP.2017.8342359

  22. Wu C, Fan W, He Y, Sun J, Naoi S (2012) Cascaded heterogeneous convolutional neural networks for handwritten digit recognition. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 657–660

  23. Ahranjany SS, Razzazi F, Ghassemian MH (2010) A very high accuracy handwritten character recognition system for Farsi/Arabic digits using convolutional neural networks. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), pp. 1585–1592. DOI:https://doi.org/10.1109/BICTA.2010.5645265

  24. Ranzato M, Huang FJ, Boureau Y, LeCun Y (2007) Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. DOI:https://doi.org/10.1109/CVPR.2007.383157

  25. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 315–323

  26. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  27. Werbos PJ (1990) Backpropagation through time: what it does and how to do it. Proc IEEE 78(10):1550–1560. https://doi.org/10.1109/5.58337

    Article  Google Scholar 

  28. H.-N. R. (1989) Theory of the backpropagation neural network, vol. 1. Harcourt Brace & Co.

  29. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551. https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  30. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. Computer Science

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61571344, No. 61971323), Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University. The authors sincerely express their gratitude to anonymous reviewers and editors for their helpful and constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baixiao Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, H., Chen, B., Yang, T. et al. Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation. Appl Intell 50, 2411–2422 (2020). https://doi.org/10.1007/s10489-020-01678-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01678-4

Keywords

Navigation