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Abstract
Cooperation and coordination are major issues in studies on multi-agent systems because the entire performance of such
systems is greatly affected by these activities. The issues are challenging however, because appropriate coordinated behaviors
depend on not only environmental characteristics but also other agents’ strategies. On the other hand, advances in multi-
agent deep reinforcement learning (MADRL) have recently attracted attention, because MADRL can considerably improve
the entire performance of multi-agent systems in certain domains. The characteristics of learned coordination structures and
agent’s resulting behaviors, however, have not been clarified sufficiently. Therefore, we focus here on MADRL in which
agents have their own deep Q-networks (DQNs), and we analyze their coordinated behaviors and structures for the pickup
and floor laying problem, which is an abstraction of our target application. In particular, we analyze the behaviors around
scarce resources and long narrow passages in which conflicts such as collisions are likely to occur. We then indicated
that different types of inputs to the networks exhibit similar performance but generate various coordination structures with
associated behaviors, such as division of labor and a shared social norm, with no direct communication.

Keywords Multi-agent deep reinforcement learning · Cooperation · Coordination · Norm · Divisional cooperation

1 Introduction

Cooperation and coordination are important issues in the
study of multi-agent systems, because they are essential
to achieve the desired autonomous control to improve
the overall efficiency in sophisticated cooperative tasks.
It is difficult and complicated however, to identify
appropriate coordination structures and behavioral rules or
strategies, such as social norms and division of work areas.
This is because appropriate cooperation and coordination
depend highly on the environmental structure, the task
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characteristics, and the abilities and strategies of individual
agents. Furthermore, these factors may vary. Therefore, it
is almost impossible to design cooperative behaviors of
autonomous agents for real-world applications in advance;
rather, the agents themselves are expected to decide
appropriate cooperative and coordinated actions based
on their experience of joint tasks, thus establishing a
cooperation regime.

On the other hand, recent technologies in computer and
communication systems have enabled new applications and
services that use collaboration among multiple robots, intel-
ligent programs on distributed computers and smartphones,
and intelligent sensors and devices. Cooperation and coor-
dination in these applications are often necessary to cover
wide environments, execute complex tasks requiring het-
erogeneous skills, and meet hard deadlines. These types of
applications include pickup and delivery services [10, 12],
large-area monitoring [6], and patrol and security surveil-
lance [1, 23]. We are also involved in developing applica-
tions in which multiple robots operate at construction sites
in a cooperative manner to help or work on behalf of human
workers and builders. We are attempting to address labor
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shortages,1 and we expect that robots will be able to help
solve such problems. Examples of such tasks are assembling
walls, laying floors, and moving heavy building materials at
night for the work of human builders the next day.

Meanwhile, deep reinforcement learning (DRL) has pro-
duced many successful results for a number of applications,
such as robotics [7, 17] and games [8, 14]. Some studies
have extended the learning process of multi-agent systems
by incorporating single-agent DRL, resulting in multi-agent
deep reinforcement learning (MADRL) [5, 16]. The learn-
ing process in multi-agent systems requires all agents to
explore a high-dimensional state-action space that include
other agents in observable states. In particular, the behav-
iors of agents in a multi-agent system are affected by the
other agents’ behaviors, which may also vary with the learn-
ing progress of individual agents. As a result, currently
positive training data may be treated as negative train-
ing data or noise in the future. Although various studies
have indicated that MADRL enables successful learning of
some coordinated behaviors, they have not clarified what
types of coordination structures and behaviors emerge with
MADRL, or how these structures and behaviors are affected
by the information observed by agents and the associated
inputs fed to their deep Q-networks (DQNs). In general,
the detailed behavioral structures of multiple cooperative
agents learned with deep neural networks are usually unpre-
dictable; therefore, by analyzing a generated coordination
structure, we can understand how robust the coordinated
behaviors are and the conditions under which these behav-
iors may collapse. Such analysis would also help in design-
ing coordination structures in MADRL with desired input
information, if we clarify the emergence of coordination
structures with various types of input information.

Therefore, we analyzed the coordination structures
generated with MADRL for a problem called the multi-
agent pickup and floor laying problem, which is an
abstraction of our target problem in which multiple robots
work at a construction site on behalf of human builders.
Our challenge is to investigate how agents with distributed
concurrent learning using their own DQNs can establish
spatial coordination regimes and whether they can generate
shared social norms and coordinated behaviors to avoid
conflicts. We also attempt to see what types of information
in the inputs to the DQNs result in certain coordination
and cooperative behaviors. Therefore, we prepare a few
types of input structures by combining locally possible
views with various local beliefs such as the (estimated)
absolute location and the history of an agent’s locations
(trajectory). We have already reported this issue in the

1A shortage of workers due to a decreased birthrate is a serious
problem in some countries, and robots are expected to be used at
construction sites to compensate for such labor shortages.

study of Miyashita and Sugawara [29], but that report was
based on limited experimental results. Hence, we conducted
additional experiments by feeding other types of input
structures to the DQNs, enabling deeper analysis of the
coordinated behaviors learned by all agents.

Our experimental results indicate that the agents in dis-
tributed MADRL could generate a number of coordinated
structures for cooperative work, but the structures were quite
different depending on the input information fed to the
agents’ own DQNs. For example, when the agents had abso-
lute locations in the environment, they formed divisional
cooperation by spatial segmentation. When their inputs
included the trajectories of their movements, all the agents
could find a social norm by which each agent incorporated
a one-way rule into its behavior to avoid collisions, with-
out explicit, direct communication. Moreover, agents with
only a local view could not generate explicit cooperation
structures, but they could still learn opportunistic but flexi-
ble synchronized coordinated behaviors to avoid collisions.
We also discuss the relationships between the agents’ coor-
dination structures and performance in the pickup and floor
laying problem.

2 Related work

Multi-agent reinforcement learning (MARL) has been
extensively studied [2, 3, 21, 28]. Xie et al. [28] acquired
agents’ cooperative behavior by using extended Q-learning
in which agents share the Q-table. Real-world applications
of those methods, however, are limited, because real-world
problems are dynamic and complicated; thus, the state
spaces are too large to learn Q-functions accurately. DRL,
which is a kind of reinforcement learning (RL) method in
which an agent learns Q-functions by using deep neural
networks, has enabled an agent to learn policies for its
problem solving behavior in many sophisticated application
domains [8, 9, 14, 15, 17]. For example, Lample et al. [8]
proposed a learning method using DRL in a 3D first-person
shooter (FPS) game by exploiting game features such as
knowing where and when enemies are likely to appear.
Hasselt et al. [26] proposed an effective method to learn
policies by using a dueling network architecture for DRL.
It has also been demonstrated that experience replay and
prioritized experience replay [19] can enable high-quality
learning results by replaying important transactions for
training.

Research on MADRL has received much attention
in recent years [11, 18, 24] For example, Diallo
et al. [4] showed that a large number of agents can
behave cooperatively and generate strategic team forma-
tions of more than 100 agents by sharing a centralized DQN
with teammates in adversarial multi-agent games. Shao
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et al. [20] proposed a curriculum transfer learning method
for MADRL to solve problems with difficult scenarios in
StarCraft, a real-time strategy game, and this method accel-
erates the training process, thereby improving the learning
performance. Palmer et al. [16] proposed an extension of
MADRL, called lenient learning, in which agents pos-
sess temperature values for individual state-action pairs and
decay the values to avoid the use of outdated pairs. Sartoretti
et al. [18] proposed an asynchronous advantage actor-
critic (A3C) algorithm to enable multiple agents to learn
a homogeneous, distributed policy in a multi-robot con-
struction problem. By using that method, agents could learn
to work together toward a common goal without explicit
communication. To achieve proper cooperation through pol-
icy sharing between teammates, Mao et al. [13] presented
the attention multi-agent deep deterministic policy gra-
dient (ATT-MADDPG) method, which extends the deep
deterministic policy gradient (DDPG) [22] and actor-critic
methods and then showed better scalability and robust-
ness for learning. Unfortunately, those studies have still
not clarified how agents’ observations with associated local
beliefs fed to DQNs affect the coordination behaviors and
structures learned in MADRL. Therefore, we address this
issue here to clarify what types of strategic cooperative and
coordinated behaviors are autonomously established in a
distributed manner with the concurrent learning of multiple
agents when we vary the types of information input to the
agent’s DQNs.

3 Problem formulation

We focus on a multiple-robot system to help human work-
ers by, for example, transporting heavy building materials,
welding steel columns, attaching ceiling panels, and lay-
ing flooring materials at construction sites. Because these
work spaces are usually large, a multi-agent system requires
cooperation and coordination techniques to operate many
robots autonomously and concurrently in complicated envi-
ronments. In addition, the structures of these environments
may change day by day, because some building materials
may be placed near a new work space; as a result, build-
ing materials may be present in what used to be an empty
working space when a task, such as wall installation, is to
be performed. In particular, this paper focuses on the control
problem of cooperation and coordination among multiple
robots for floor-laying work.

To address this control problem, we introduce the pickup
and floor laying problem, which is an abstraction of
a multi-agent problem for multiple robots laying floors
material. In this problem, a team of agents is scattered
in an environment. Each agent begins by moving to
the pickup location for some flooring material. Upon

reaching its destination, an agent picks up, carries, and
installs the flooring material in a cell where no material
has been laid yet. Once the installation is complete, the
agent returns to the pickup location. The agents continue
this come-and-go process until the flooring materials are
spread throughout the installation area. Figure 1a shows an
example environment, in which the field of the environment
is expressed byN×N cells. Here, the black circles represent
the agents, the black cells represent the obstacles that agents
cannot move into, the green cells represent the storage
area for picking up flooring material, and the yellow cells
represent the installation area, where one piece of flooring
material must be installed at each cell. For simplified
description, we call a piece of material a task and the action
of laying it a task execution. We also call a cell where no
material has been laid yet an empty cell.

Next, we introduce discrete time t ≥ 0, whose unit is
called a tick. We denote the set of n homogeneous agents
as I = {1, · · · , n} and the discrete action space of agents
as A = {up, right, down, left}. An agent i ∈ I can pick
up at most one task (i.e., a piece of material) and carry
it to an empty cell by taking one of the actions in A =
{up, right, down, left}. If two or more agents attempt to
move into the same cell, one agent selected randomly can
successfully move, and the other agent or agents stay at
the same location. This is based on the assumption that
robots have primary functions to avoid unsafe behaviors and
damage, as in a collision. In Fig. 1a, We represent an agent
with a task as a circle with a green interior. We assume that
there are sufficient tasks in the storage area so that the tasks
at any green cell will not run out. Immediately after i picks
up a task, i carries it to the installation area and executes it at
an empty cell. When i executes a task successfully, i earns a
reward r > 0. Then, the empty cell at which i executed the
task becomes an executed cell (i.e., an installed cell).

The formal expression of our problem can be expressed
by a tuple 〈I, N, m, E, {Si}, {Ai}〉. Here, m is the number
of empty cells. E(� e) is the set of all possible states of the
environment, including the states of the cells and all agents.
We assume that ∀i ∈ I , an agent can observe the current
state si,t consisting of a limited local area whose center is i

itself at time t . Thus, si,t is a subset of the entire state et at
t (si,t ⊂ et ∈ E). Let Si be the set of possible local states
of i. We assume that agents can observe their local areas
accurately, so that the local state si,t at t is correct. We also
define A = A1 × · · · × An � at = (a1,t , . . . , an,t ) as the
agents’ joint action space, where Ai is the set of all possible
actions of i ∈ I , and we assume that all agents have the
same set of actions, i.e., Ai = A for ∀i ∈ I .

The agents may receive a reward ri(et , at ) right after
their joint actions at in et , and then the environment state
changes to et+1. The reward that each agent receives is
based only on the current state et ∈ E and the joint action

1071Analysis of coordinated behavior structures...



Fig. 1 Example of an
environment and relative and
local views

(a) Environment and agent view

(b) Relative view (c) Local view

at ∈ A. Then, i individually chooses actions according to
only the observed local state at t and the learning results so
far. Because we focus on MADRL for a multi-agent pickup
and floor laying problem, the agents individually learn the
Q-values and associated policies by using their own DQNs
to identify cooperative and coordinated behaviors without
direct communication. Note that a policy πi of i is a function
from the set of local states Si to the set of actions, A = Ai .

The pickup and floor laying problem goes through the
following process. The installation area (consisting of 108
cells) and the storage area (consisting of 3 cells) are set as
shown in Fig. 1a. Before the process starts (at t = 0), all
agents in I are placed at random locations in the region of
3 × 15 cells on the left side of the installation area, not
including obstacles (see Fig. 1a). All agents perform the
following steps concurrently.

(a) Agent ∀i ∈ I chooses an action ai,t in et according to
its policy πi at t , so ai,t = πi(si,t ) ∈ A.

(b) If i arrives at the storage area (green cells in Fig. 1a),
i picks up a task ψi and carries it until i arrives at
any empty cell in the installation area (yellow cells in
Fig. 1a). Then, after i carrying ψi arrives at the empty
cell, i executes ψi ( i.e., i lays the piece of flooring
material at the cell). Finally, i receives a reward ri,t =
r , and the empty cell becomes an executed cell.

(c) After all agents take one action at t , the environment
et changes to its next state, et+1.

(d) When all empty cells in the installation area have
become executed cells at t , or when t exceeds an
epoch length H (i.e., t ≥ H , where H is a positive
integer called the maximal rounds per epoch), the
epoch ends; otherwise, t ← t + 1 and the process
returns to step (a) for the next round.

(e) Another epoch begins from step (a) after the
environment is initialized, until Fe epochs are
complete, where Fe > 0 is an integer.

The goal of the agents is to increase the rewards that they
receive, and thus, they attempt to lay as many pieces of
flooring material as possible in the installation area.

Two particular aspects require certain coordinated
activities in the environment (see Fig. 1a). First, the agents
must coordinate their behavior to avoid colliding with
each other in the long passages connecting the storage
and installation areas. Even if agents do not collide, it is
costly for an agent to move back into a passage to pass
another agent. The second aspect is the behavior in a small,
insufficient space. Because the storage area is small, if some
agents with tasks try to move right, but other agents try to
move left to pick up a task, their movements in opposite
directions may also result in collisions. In addition, if many
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agents gather in this small area, their movements may cause
a deadlock. We thus investigate how learning agents with
DQNs can generate certain coordinated behaviors to avoid
such conflicted and deadlocked states.

4 Learningmethods

4.1 Deep reinforcement learning with local
observation

A DQN is an RL method using deep neural networks that
estimates a Q-function and an associated policy π . We adopt
the distributed concurrent learning approach, in which all
agents have their own neural networks to learn Q-values.

In conventional Q-learning, an agent learns the action-
value function Q to maximize the sum of the cumulative
discounted rewards. If the discounted future reward at t is
denoted by Rt = ∑T

t ′=t γ t ′−t rt ′ , then the Q-function with
the associated policy π is defined as

Qπ(s, a) = E[Rt |s = st , a = π(st ) = at ],
where 0 ≤ γ < 1 is the discount factor, and positive
integer T is the horizon step. Then, the optimal action value
Q∗(s, a) can be defined as

Q∗(s, a) = max
π

E[Rt |s = st , a = π∗(st ) = at ],
where π∗ is the optimal policy according to Q∗(s, a). Q-
learning [27] is thus a method to approximate the optimal
Q-value Q∗(s, a), where

Q∗(s, a) = E[r + γ max
a′ Q∗(s′, a′)|s, a],

and Q∗(s′, a′) is the estimated optimal Q-value for the next
state s′. Unfortunately, it is often hard for Q-learning to
converge when the problem space is complex and large.

In a DQN, the Q-values are estimated by a deep neural
network with associated parameters θ whose values are
updated through the agent’s experience. At time t , to obtain
approximations of the optimal Q-values from the network,
the θi,t of the network of agent i at t are updated to reduce
the mean squared loss function Li,t (θi,t ), which is defined
as
Li,t (θi,t )

= E(si ,ai ,ri ,s
′
i )
[(ri +γ max

a′
i

Qi(s
′
i , arg max

a′
i

Qi(s
′
i , a

′
i; θi,t ); θ−

i,t )

− Qi(si , ai; θi,t ))
2].

Note that we use a double DQN [26], meaning that the
target network parameters θ−

i,t are periodically copied from
the main Q-network parameters θi,t every H time steps (i.e.,
every epoch). Then, actions are selected using the main Q-
network, but the θi,t in this Q-network are updated using
the Q-value based on the target network’s θ−

i,t . Although

it may lead to suboptimal policies, we adapt the double
DQN to avoid overestimating Q-values. We think that
this is particularly important for multiple agents learning
coordinated behavior to prevent confusion due to outdated,
noisy training data.

Next, we propose feeding the aggregated inputs, which
combine the observation si,t of i at time t and part of the
local belief of i as additional information, to the agents’
DQNs. This aggregated input is called a view and denoted
by vi,t . The agents decide their next actions by using the
policy functions derived from the Q-functions, and the
individual Q-values are the outputs from the local DQNs.
Therefore, we extend the domain of Qi and πi as follows:

Qi : Vi × Ai −→ R, and πi : Vi −→ Ai,

where Vi is the set of views of i, i.e., observed states with
the local belief of i. This also means that the input to a
DQN is vi,t instead of si,t . Note that, if no local information
is aggregated into vi,t , then vi,t = si,t , and the policy in
this paper is identical to the conventional policy. Section 4.3
gives examples of these views. Later we explain what kinds
of local belief are added to si,t .

4.2 Experience replay

To avoid overfitting and stabilize the parameters, we adopt
experience replay; thus, the parameters of a DQN are
updated through sampling of the agent’s past experiences
from its local memory at t , Di,t . Hence, agent i adds new
experience data ci,t = (vi,t , ai,t , ri,t , vi,t+1) at time t into
its own previous memory Di,t−1 = {ci,t−dm, · · · , ci,t−1},
where dm (> 0) is the memory capacity. After i stores a
sufficient number of experiences into its own memory, i

updates the parameters θi,t every η steps to minimize the
value of the loss function Li,t (θi,t ), which is defined by

Li,t (θi,t )

= E(vi ,ai ,ri ,v
′
i )∼U(Di,t )

[(ri +
γ max

a′
i

Qi(s
′
i , arg max

a′
i

Qi(s
′
i , a

′
i; θi,t ); θ−

i,t )

−Qi(vi, ai; θi,t ))
2],

where U(Di,t ) is randomly sampled experience data stored
within experience memory Di,t .

We update the parameters of the DQNs by using
gradient descent to decrease the value of the loss function
Li,t (θi,t ). In our experiments, We applied RMSprop [25]
whose learning rate for parameter updates did not change
throughout the experiments. We think that RMSprop
is suitable for MADRL because the environment of
decentralized learning by a multi-agent system is usually
unstable.
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4.3 Types of views

Agent i observes the current state si,t in accordance with
a limited local view specified by an observable range size
Vi , which is a nonnegative integer. We show an example of
this observable range, with size Vi = V , in Fig. 1a. In the
figure, the observable range is represented as a blue square,
and i itself is at the center of the observable range. Within
this range, an agents can correctly locate all cells, storage
and installation areas, other agents, and tasks held by other
agents. As shown in Fig. 1a, the observable range may cover
areas outside the environment (in this example, the size is
(2V + 1) × V ′ and V ′ is 1), but of course, i cannot obtain
any information from the outside area. Next, we introduce
three kinds of agent views, vi,t , that are the input to the
DQNs.

4.3.1 Relative view

A relative view (RV) vi,t for input to a local DQN is
generated by composing its observed state si,t and the entire
map, as shown in Fig. 1b. Because i cannot observe outside
its range, the unobservable regions are assumed blank (and
thus filled with zeros). The RV of i includes the abstract
map of the environment and its current position. The input
to the individual DQN consists of five channels of N ×
N lattices, as shown in Fig. 2. The first lattice contains
the agent’s current location (Fig. 2a). The second lattice
contains the locations of other agents (Fig. 2b), the third
includes obstacles (Fig. 2c), and the fourth represents empty

cells in the installation area (Fig. 2d). Finally, the fifth lattice
includes tasks carried by agents (including itself) and tasks
in the storage area (Fig. 2e). Therefore, the DQN of agent
i can know whether i has a task from the fifth lattice. Any
characteristic cell is represented as 1, except for obstacle
cells, which are represented as −1 in these lattice inputs.

4.3.2 Historic relative view

A historic relative view (HRV) is a modified RV generated
by combining an RV and part of an agent’s own trajectory
in the history memorized by individual agents. The HRV
of agent i is generated by adding the stored trajectory data
to two lattices of the RV input shown in Fig. 2. First, the
trajectory data is added into the lattice representing the
location of i (Fig. 2a). That is, the current location of i is
expressed as 1 and its location k ticks ago is expressed as
βk if βk is larger than δ, where δ is a parameter cutoff to
decide whether to include trajectory data in an HRV, and
β ∈ [0, 1] is a decay rate. This means that the trajectory data
before a certain tick is not reflected in an HRV. Note that,
if an agent was in a certain cell more than twice within the
last k ticks, only the larger value (i.e., the more recent one)
is represented in the HRV.

Second, when agent i carries a task, its trajectory data is
also included in the input of the lattice that expresses the
locations of obstacles (Fig. 2c); the values of the cells on
a trajectory are also represented by βk , so they are equal
to the values in the lattice expressing the current location
and part of the trajectory. Note that agents have to store

Fig. 2 Input structure for a
relative view

(a) Agent itself (b) Other agents (c) Obstacles

(d) Empty cells (e) Tasks
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(a) Other agents (b) Obstacles

(c) Empty cells (d) Tasks

Fig. 3 Input structure for a local view

locations at a time more recent than a predetermined time in
the environment to generate an HRV.

4.3.3 Local view

ALocal view (LV) is the observed state of agent i (vi,t = si,t
) with no additional information, as shown in Fig. 1c, where
the area outside the environment within the observable
range is shown as blue cells. We assume that i has the ability
to see the wall and fill the cells outside the wall with values
of −1. Agent i is always located at the center of the its own
observation. The input fed to the local DQN consists of four
(2Vi+1)×(2Vi+1) sublattices, as shown in Fig. 3. The first
sublattice includes only other agents (Fig. 3a), the second
sublattice includes only obstacles (Fig. 3b), and the third
sublattice includes empty (i.e., uninstalled) cells (Fig. 3c).
The fourth sublattice expresses the locations of tasks that

are in the storage area and tasks that some agents (including
agent i itself) currently carry (Fig. 3d). Therefore, if i holds
a task, it appears at the center of the fourth sublattice.

4.4 Neural network architecture

In MADRL, agents independently decide their next actions
by using their own policies derived from local DQNs.
Table 1 lists the specifications of the neural network
architecture for deep Q-learning. The DQN consists of
two convolutional network layers, one max pooling layer,
and three fully connected network (FCN) layers. The data
structures of the input and output layers are determined in
accordance with the channel and type of the agent’s view;
thus, in Table 1, the size of the input lattice/sublattice and
the number of lattices/sublattices channels are denoted by
parameters M and Fc, respectively. The DQN’s outputs are
a list of pairs of actions and Q-values, so that each agent can
identify the best action with the highest Q-value according
to the learning results so far (if there is a tie between several
actions, one action is selected at random).

We adopt the ε-greedy strategy with decay, meaning that
an agent chooses the best action according to the learning
results so far with probability 1 − εi,t , or a random action
with probability εi,t . In this paper, agent i decays its greedy
parameter εi,t by εi,t = max(εi,t−1 ∗ γε, εl), where γε is
the decay rate and εl is a lower limit. We set εi,0 (< 1) to
a number near 1 as the initial value, so that the ε-greedy
strategy with decay enables agents to take various actions in
the earlier learning stages. Gradually, overtime, the agents
will make learned choices more often.

5 Experiments and discussion

5.1 Experimental setting

We examined the difference in task execution performance
when various types of data were input to agents’ DQNs.
First, we evaluated the performance on the pickup and
floor laying problem by agents with the proposed input
information (RVs, HRVs, and LVs) and various observable

Table 1 Network architecture

Layer Input Filter size Stride Activation Output

Convolutional M × M × Fc 2 × 2 1 M × M × 32

Convolutional M × M × 32 2 × 2 1 M × M × 32

Max pooling M × M × 32 2 × 2 2 M/2 × M/2 × 32

FCN M/2 × M/2 × 32 ReLU 512

FCN 512 ReLU 256

FCN 256 Linear 4
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Table 2 Learning parameters

Parameter Value

Discount factor γq 0.95

Initial value εi = εi,0 0.99999

Decay rate γε 0.9999995

Lower limit εl 0.02

Momentum for RMSprop, α 0.90

Learning rate for RMSprop, lr 0.00001

ε for RMSprop, εrms 1e-07

Parameter update interval in steps η 4

range sizes. To evaluate the performance, we counted the
number of tasks executed by all agents and recorded the time
required to complete the installation of flooring material.
Then, we analyzed what coordination structures emerged
depending on the different inputs to individual DQNs.
We listed the parameter values used in our experiments
in Tables 2 and 3; we set these values to maximize
the performance obtained by the learned agents. In these
experiments, eight agents moved around to install materials
in the environment shown in Fig. 1a; thus, the number of
cells to install, m, was 108. The trajectory decay rate β

used by agents with HRVs and the lower threshold for the
memorized trajectory, δ, are listed in Table 3. From those
values, an agent could store its locational data for the past
30 ticks in its memory as the trajectory. Furthermore, in
Section 5.5, we discuss whether agents could or could not
avoid collisions by constructing coordination structures.

5.2 Performance comparison

First, we investigated whether agents perform effectively by
using their own DQNs with RV inputs, what characteristics
of cooperative behavior emerge among agents, and how
the observable range size V affects their performance and

Table 3 Parameters and their values

Parameter Value

Number of agents, n 8

Size of environment, N 15

Number of executed cells, m 108

Reward r per task 1

Observable range size V 4, 7, 10, 15

Mini batch size |U(Di,t )| 32

Memory capacity dm 2000

Sum of epochs, Fe 25,000

Epoch length H 800

Lower threshold for trajectory, δ 0.05

Trajectory decay rate β 0.9

Fig. 4 Executed tasks per epoch (RVs)

coordinated behavior. Figure 4 shows moving average lines
of the total executed tasks by using the values from 100
recent epochs until 25000 epochs, whith the agents having
RVs with different size of observation range size of V =
4, 7, 10, and 15. Note that, because N = 15, V = 15
meant that the agents could correctly observe the entire
environment regardless of the view representation.

This figure indicates that the performance could increase
quickly for any of the observable range sizes, and that the
agents could execute tasks (install flooring materials) in the
installation area (which had 108 cells). A closer look at the
figure shows that when V = 4, the agents often could not
complete all the tasks (a few tasks sometimes remained).
Figure 4 also indicates that when V = 7, the performance
improved slightly faster, but when V = 15, it improved
more slowly. Therefore, there were appropriate values to
speed up convergence.

Next, to analyze the performance in detail, the required
time to complete the installation was plotted, as shown in
Fig. 5, for V = 4, 7, 10, and 15, where each plot is a
100-epoch moving average. When V = 4, a few tasks
remained incomplete. In this case, for simplicity, we assume
that it took 800 ticks to complete the remaining tasks. When
V ≥ 7, the agents could decrease the required time along
with the number of epochs in all cases. The performance

Fig. 5 Required time to completion (RVs)
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Fig. 6 Executed tasks per epoch (HRVs)

looks slightly worse when V = 15, but generally, the
performances was almost identical except for V = 4.

In our second experiment, we verified the performance
on collaborative work when all agents used HRVs as inputs
to their DQNs. We show the performance results in terms
of the number of executed tasks and the time required
to completion of all tasks in Figs. 6 and 7, respectively.
As seen in the figures, the agents with HRVs improved
their performance over epochs like those with RVs did,
but their convergence was slightly faster than that of the
agents with RVs (Figs. 4 and 5). By comparing Fig. 6 with
Fig. 4, however, we can confirm that there was no obvious
difference in the time required for the agents to complete the
installation, except when V = 4, but in that case, the agents
could still complete all tasks.

Next, we examined the effect of LVs in a third experiment
whose setup was identical to that of the first experiment.
Figure 8 plots the total number of executed tasks, indicating
that the agents with the LVs could also improve their
performance and complete all the installation tasks with any
value of V . Comparing these results to those with RVs and
HRVs, we find that convergence with LVs was the fastest
among all view representations. We also plotted the time
required to complete the installation, as shown in Fig. 9.
We find that the agents with LVs always exhibited better
performance for any observable range size V as compared

Fig. 7 Required time to completion (HRVs)

Fig. 8 Executed tasks per epoch (LVs)

with the performance by agents with RVs and HRVs. In
addition, a close comparison of Figs. 5, 7, and 9 shows
that the learning of agents with the LVs was faster than the
learning of the others agents, and their convergence time
for completing the installation was smaller (i.e., better) than
that of the other agents.

5.3 Emergent coordination structures

Our previous three experiments showed that the perfor-
mance difference among the different views was not so
large, but each type of view generated quite different coor-
dination structures. To show these differences, we created
the heatmaps, in Figs. 10, 11, and 12, to indicate the num-
bers of executed tasks by individual agents at various cells
when the range size V was 15. Note that these heatmaps
were generated from the average numbers of tasks executed
for every 50 epochs in the last 5000 epochs (thus, 20,000
to 25,000 epochs). Note also that we only show heatmaps
for V = 15 here, but in the other cases (except for when
V = 4), a similar tendency was observed.

Figure 10 shows that agents with RVs as input to their
DQNs established divisional cooperation, meaning that each
agent found its own locations at which to execute tasks.
In the experiment using agents with HRVs, the structure
of divisional cooperation appeared but was weaker. On

Fig. 9 Required time to completion (LVs)
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Fig. 10 Executed locations
(RVs)

the other hand, the agents with LVs did not have such
cooperation structures, and instead, they flexibly executed
tasks at any place in the installation area. Division of labor
may, in general, be an effective strategy for cooperation,
because it prevents duplication of work, unnecessary
competition, and collisions. Our experimental results were
different, however, and the agents with the LVs achieved the
most efficient strategy.

We also found a crucial result that the routes that the
agents took turned out to be characteristic for each view.
For ∀i ∈ I , we counted the number of visits by i to each
cell, and we show the results in Figs. 13, 14, and 15 via heat
maps in which a darker blue indicates more visits. Because
the routes connecting the storage and installation areas were
limited, the figures emphasize those routes.

The agents with RVs almost uniquely fixed their routes
for the round trip (Fig. 13). These fixed routes were
convenient for going back and forth between the work

place and the storage area (see Fig. 10). Because there
were only three passages, however, between the storage
and installation areas, each agent had to share one of
the passages with a few other agents; thus, they often
collided, returned, or synchronized with other agents to
pass. In contrast, Fig. 14 indicates that the agents with
HRVs behaved quite differently. All agents shared the center
passages, but they were also divided in half in terms of
taking the upper or lower passage.

To understand the route selection behavior by the agents
with HRVs, we generated the heatmaps shown in Figs. 16
and 17, which indicate the counts of visits when the agents
had tasks and did not have tasks, respectively. Here, the
darker cells indicate that the corresponding agent visited
those cells more frequently. These figures clearly indicate
that the agents generated a shared behavior or social norm
by incorporating a one-way rule to avoid collisions: when
they had tasks, they took the center passage, but after

Fig. 11 Executed locations
(HRVs)
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Fig. 12 Executed locations
(LVs)

executing tasks, they returned to the storage area by using
the other passages. This is more reasonable and easier for
coordinated behaviors than the behaviors of the agents with
RVs to reduce the inefficiency due to collisions. The routes
that they took, however, were often not the shortest to reach
the work place or the storage area.

On the other hand, we can confirm that the agents
with the LVs took any of the three passages when they
moved to the installation area or returned to the storage
area as shown in Fig. 15. According to that figure and
Fig. 12, they dynamically chose the cells where they should
execute tasks without creating their own work places.
In addition, when they moved to the work places and
returned to the storage areas, they flexibly selected shorter
routes. Although not shown here, it could be observed
that all the agents moved synchronously along the shortest
routes between the storage and installation areas, and
such synchronized behavior seemed to reduce collisions.
Therefore, the agents whose input to the DQNs were

LVs could exhibit better performance than other agents
could. Because an LV are simpler and smaller than the
other views, we believe that these agents’ convergence was
faster. A similar phenomenon occurred for all observable
range sizes of the LVs. This indicates that the agents
constructed flexible coordination to avoid collisions without
any specific norm like that identified by the agents with
HRVs; furthermore, such flexible coordination resulted in
effective work in our experiments, rather than coordination
based on a specific norm. Note that similar coordination
structures were established by agents with HRVs whose
observable range size V was 4. The performance of agents
with LVs (V ≥ 7), however, was much better than that of
the agents with the small-sized HRVs.

5.4 Behavior in small spaces

Figures 13, 14, 15, 16, and 17 reflect the agents’ behaviors
in the small space near the storage area. The agents with

Fig. 13 Locations of each
agent’s visits (RVs)
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Fig. 14 Locations of each
agent’s visits (HRVs)

RVs had fixed routes, and thus, they also approached the
nearest cell in the storage area. Figure 18 illustrates their
movement in detail. Of course, when two agents were likely
to collide in this space, one of them detoured; these detours
are shown by the light-colored cells next to the dark-colored
main routes in Fig. 13. On the other hand, Figs. 14 and 16
show that the agents with HRVs took better routes in this
small area: they entered the small space from the upper or
lower passages and left along the center passage as shown in
Fig. 19. Therefore, they rarely collided, and did not need to
detour; indeed, there are few light-colored cells in Fig. 14.
Finally, because the agents with LVs choose routes flexibly
(see Fig. 15), they might have collided in the small space
but could also detour flexibly; thus, they could avoid serious
deadlocks.

5.5 Discussion

Our experimental results showed that the agents generated
various types of coordination structures by using the
different kinds of input information in distributed MADRL.
Because of the nature of the multi-agent pickup and floor
laying problem, actions for collision avoidance in the
narrow passages and the insufficiently small space near the
storage area reduced the overall performance. Therefore, the
agents identified coordinated behaviors that did not cause
such actions for collision avoidance. The agents with RVs,
which include the absolute locations in the environment,
could generate spatial divisional cooperation on the basis
of locational segmentation in which agents took specific
routes to their work places. The agents with HRVs generated

Fig. 15 Locations of each agent’s visits (LVs)
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Fig. 16 Locations of each
agent’s visits with a task (HRVs)

a different coordination structure in which all agents
identified shared one-way routes through the environment
and used these routes to circulate between the installation
and storage areas, but their routes could be slightly longer
than the optimal routes. Finally, the agents with LVs did not
generate divisional cooperation nor a norm, but they went
back and forth between the installation and storage areas
in synchronization and always took the (almost) shortest
routes. As a result, they achieved better performance in our
particular pickup and floor laying problem.

We also conducted some experiments with a smaller
number of agents to investigate how the number of agents
influences the final coordinated behavior. The performances
with LVs, RVs and HRVs were all almost identical to
those in the experiments described above. The agents with
HRVs, however, did not generate a social norm because the

incentive to generate it was weakened in the depopulated
environment in which agents rarely collided with other
agents. Instead, the agents with HRVs generated behaviors
similar to those generated by the agents with the RVs. In
addition, the agents with RVs and LVs tended to generate
similar coordination structures. We also examined the case
in which a large number of agents moved around, but
some of them did not sufficiently learned their behaviors
probably because of redundancy. Although we think that
more detailed experiments and discussions are necessary for
this issue, we omit it here because it is beyond the scope of
this paper.

To see how behaviors for collision avoidance negatively
affect performance, we examined the near collision count
(NCC), which is the number of states immediately before
collisions, meaning states in which two agents could not

Fig. 17 Locations of each
agent’s visits without a task
(HRVs)
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Fig. 18 Agents’ movement around storage area (RVs)

move to a neighboring cell at the next tick because
they would collide with another agent there. Table 4
lists percentiles of the NCC per epoch for each view
representation over 23,000 to 25,000 epochs with V = 15.
The results indicate that the agents with the HRVs had
the lowest NCC, suggesting that movements along circular
routes were effective to avoid collisions. Their performance
was not as good, however, as that of the LVs because the
circular routes forced the agents to take longer paths.

Fig. 19 Agents’ movements around storage area (HRVs)

Table 4 Comparison of the near collision count (NCC) per epoch

NCC percentile RVs HRVs LVs

25 303 184 294

50 393 245 342

75 612 408 416

Furthermore, to analyze the NCC in detail, we plotted
heatmaps indicating the NCC for each agent at individual
cells when V = 15, as shown in Figs. 20, 21, and
22. Here, darker orange indicates that the corresponding
agent collided with other agents more often. From Fig. 20,
we can confirm that the agents with RVs collided with
other agents around the storage area and specific narrow
passages in which the agents fixed the way for a round
trip. Because the agents with RVs always took their own
routes, they had fewer collisions, but as eight agents had
to share the three passages, the number of collisions often
increased there. We thus conclude that the agents with
RVs could establish distributed work places to reduce
redundant movement in the installation area but could not
achieve collision avoidance on the shared passages. Next,
as seen from Fig. 21, the agents with HRVs achieved
fewer collisions by generating a social norm in which
they incorporated a one-way rule. Some agents, however,
occasionally broke the social norm (i.e., by going against
the one-way rule), thus colliding with other agents around
narrow passages. Finally, as shown in Fig. 22, the agents
with LVs collided with other agents around the storage
area and at the end of the narrow passages. This was
because these agents went back and forth between the
storage and installation areas in synchronization by using
the shortest paths, and they executed the tasks almost
concurrently. Thus, agent congestion occurred around the
storage area and at the end of the narrow passages in
which agents going back to the storage area passed other
agents going to the installation area. In our experiments,
the coordinated behavior by the agents with HRVs seemed
more sophisticated, but the behaviors by the agents with the
LVs were the most effective. This was because these agents’
routes were usually the shortest, whereas the agents with
HRVs were forced to take slightly longer routes because of
their regulated behaviors.

We thus clarified the emergence of coordination structure
with various type of input information. One contribution
to studies of multi-agent systems is to understand possible
coordination structures in realistic applications. Designing
appropriate coordination structures is a complex task,
because we must pursue and analyze the potentials of
multiple possible collaborative structures. Our results and
methods in this paper can help such a design process.
We also think that the results of coordination must
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Fig. 20 NCC for each agent’s
locations (RVs)

Fig. 21 NCC for each agent’s
locations (HRVs)

Fig. 22 NCC for each agent’s
locations (LVs)
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be explainable. The behaviors generated by deep neural
networks often exhibit good performance, but the reasons
are not clear. This kind of obscurity of the results makes it
difficult to verify a system’s robustness and reliability and
to estimate the impact of system changes. Therefore, we
have to design and build suitable, explainable coordinated
behaviors for real-world applications.

6 Conclusion

pickup and floor laying problem with MADRL, we have
presented the emergence of three type of cooperative
structures by using different types of inputs (to DQNs)
generated from local observations with local beliefs. In
our problem formulation, all agents concurrently attempt
to learn Q-values, even without explicit communication, to
improve their cooperative behavior and earn more rewards
by updating their individual DQNs. We showed that various
coordination structures and associated behaviors could
emerge. When agents had the entire map with their absolute
locations, for example, they established segmented work
areas for each agent, or they shared a social norm to avoid
collisions. In contrast, agents with local views (LVs) as
input to the DQNs could not form explicit cooperative
structures, but they took appropriate, shorter routes and
moved synchronously between the two areas in the problem
environment. We found that this behavior also avoided
collisions.

In our next study, we plan to verify and improve the
scalability, efficiency, and robustness of the agents’ learning
process when the environment changes over time, because
new walls, pillars, floors, etc., are gradually built at a
construction site so its structure changes day by day. We will
also investigate the coordination structures with other DRL
methods, such as recurrent neural networks, the actor-critic
method, and extensions of those methods.
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