Skip to main content
Log in

A novel bat algorithm with dynamic membrane structure for optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

To improve the optimization efficiency for different optimization problems and take advantage of the dynamic membrane computing framework, this paper proposes an improved bat algorithm, namely, Dynamic Membrane-driven Bat Algorithm (DMBA). The dynamic construction of the DMBA algorithm aims at enhancing population diversity by balancing the exploration-exploitation tradeoff. Unlike the static membrane algorithms, the membranes in DMBA will be dynamically evolved by using merging and separation rules which help in maintaining the diversity of the population. The experimental results on a set of well-known benchmark functions including CEC 2005, CEC 2011, and CEC 2017 clearly prove the effectiveness of the proposed DMBA algorithm in terms of maintaining the diversity and exploitation capabilities compared to that of the others. It is shown that the proposed DMBA algorithm is superior to recent variants of the bat algorithm and other well-known algorithms in terms of solution accuracy and convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abualigah L (2020) Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput Appl 1–24

  2. Luo J, Shi B (2019) A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems. Appl Intell 49(5):1982–2000. https://doi.org/10.1007/s10489-018-1362-4

    Google Scholar 

  3. Laskar NM, Guha K, Chatterjee I, Chanda S, Baishnab KL, Paul PK (2019) Hwpso: a new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems. Appl Intell 49(1):265–291. https://doi.org/10.1007/s10489-018-1247-6

    Google Scholar 

  4. Luo J, Liu Z (2019) Novel grey wolf optimization based on modified differential evolution for numerical function optimization. Appl Intell 50:468–486

    Google Scholar 

  5. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: González J, Pelta D, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO 2010), vol 284 of studies in computational intelligence. Springer, Berlin, pp 65–74

  6. Jun L, Liheng L, Xianyi W (2015) A double-subpopulation variant of the bat algorithm. Appl Math Comput 263:361–377

    MathSciNet  MATH  Google Scholar 

  7. Banati H, Chaudhary R Multi-modal bat algorithm with improved search (mmbais). J Comput Sci, 130–144

  8. Jaddi NS, Abdullah S, Hamdan AR (2015) Optimization of neural network model using modified bat-inspired algorithm. Appl Soft Comput 37:71–86

    Google Scholar 

  9. Abualigah LMQ (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer, Berlin

    Google Scholar 

  10. Abualigah L, Diabat A (2020) A comprehensive survey of the grasshopper optimization algorithm: results, variants, and applications. Neural Comput Appl 1–24

  11. Gandomi AH, Yang X-S (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232. empowering Science through Computing + BioInspired Computing

    MathSciNet  Google Scholar 

  12. Jordehi AR (2015) Chaotic bat swarm optimisation (cbso). Appl Soft Comput 26:523–530

    Google Scholar 

  13. Jaddi NS, Abdullah S, Hamdan AR (2015) Multi-population cooperative bat algorithm-based optimization of artificial neural network model. Inf Sci 294:628–644. innovative Applications of Artificial Neural Networks in Engineering

    MathSciNet  Google Scholar 

  14. Nakamura R, Pereira L, Costa K, Rodrigues D, Papa J, Yang X-S (2012) Bba: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), pp 291–297. https://doi.org/10.1109/SIBGRAPI.2012.47

  15. Osaba E, Yang X -S, Diaz F, Lopez-Garcia P, Carballedo R (2016) An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng Appl Artif Intell 48:59–71

    Google Scholar 

  16. Topal AO, Altun O (2016) A novel meta-heuristic algorithm: dynamic virtual bats algorithm. Inf Sci 354:222–235

    Google Scholar 

  17. Yilmaz S, Küçüksille EU (2015) A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput 28(1):259–275. https://doi.org/10.1016/j.asoc.2014.11.029

    Google Scholar 

  18. Chakri A, Khelif R, Benouaret M, Yang X-S (2017) New directional bat algorithm for continuous optimization problems. Expert Syst Appl 69:159–175

    Google Scholar 

  19. Mirjalili S, Gandomi AH (2017) Chaotic gravitational constants for the gravitational search algorithm. Appl Soft Comput 53:407–419

    Google Scholar 

  20. Liu Q, Wu L, Xiao W, Wang F, Zhang L (2018) A novel hybrid bat algorithm for solving continuous optimization problems. Appl Soft Comput 73:67–82. https://doi.org/10.1016/j.asoc.2018.08.012

    Google Scholar 

  21. Yildizdan G, Ömer Kaan Baykan A (2020) novel modified bat algorithm hybridizing by differential evolution algorithm. Expert Systems Appl 141:112–118. https://doi.org/10.1016/j.eswa.2019.112949

    Google Scholar 

  22. Gheorghe M, Zhang G, Pan L, Perez-Jimenez M (2014) Evolutionary membrane computing: a comprehensive survey and new results. Inf Sci 279(0):528–551

    Google Scholar 

  23. Heraguemi KE, Kamel N, Drias H (2016) Multi-swarm bat algorithm for association rule mining using multiple cooperative strategies. Appl Intell 45:1021–1033

    Google Scholar 

  24. Abualigah L (2020) Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications. Neural Comput Appl 1–21

  25. Maroosi A, Muniyandi RC, Sundararajan E, Zin AM (2016) A parallel membrane inspired harmony search for optimization problems: a case study based on a flexible job shop scheduling problem. Appl Soft Comput 49:120–136

    Google Scholar 

  26. Paun G (2000) Computing with membranes. J Comput Syst Sci 61:108–143

    MathSciNet  MATH  Google Scholar 

  27. Yahya RI, Hasan S, George LE, Alsalibi B (2015) Membrane computing for 2d image segmentation. Int J Adv Soft Comput Appl 7(1):35–50

    Google Scholar 

  28. Martin-Vide C, Păun G, Pazos J, Rodríguez-Patón A (2003) Tissue p systems. Theor Comput Sci 296(2):295–326

    MathSciNet  MATH  Google Scholar 

  29. Song T, Liu X, Zeng X (2015) Asynchronous spiking neural p systems with anti-spikes. Neural Process Lett 42(3):633–647. https://doi.org/10.1007/s11063-014-9378-1

    Google Scholar 

  30. Alsalibi B, Venkat I, Al-Betar MA (2017) A membrane-inspired bat algorithm to recognize faces in unconstrained scenarios. Eng Appl Artif Intell 64:242–260

    Google Scholar 

  31. Nishida TY (2006) Membrane algorithms: approximate algorithms for NP-complete optimization problems. Springer, Berlin, pp 303–314

    Google Scholar 

  32. Liu C, Fan L (2016) A hybrid evolutionary algorithm based on tissue membrane systems and cma-es for solving numerical optimization problems. Knowl-Based Syst 105:38–47

    Google Scholar 

  33. Pan L, Alhazov A, Isdorj T-O (2005) Further remarks on p systems with active membranes, separation, merging, and release rules. Soft Comput 9(9):686–690

    MATH  Google Scholar 

  34. Alomari OA, Khader AT, Al-Betar MA, Abualigah LM (2017) Gene selection for cancer classification by combining minimum redundancy maximum relevancy and bat-inspired algorithm. Int J Data Min Bioinform 19(1):32–51

    Google Scholar 

  35. Yahya RI, Shamsuddin SM, Yahya SI, Hasan S, Al-Salibi B, Al-Khafaji G (2016) Image segmentation using membrane computing: a literature survey. In: Bio-inspired computing-theories and applications. Springer, pp 314–335

  36. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  37. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization, Tech. rep., Nanyang Technological University, Singapore

  38. Liang J, Qu B -Y, Suganthan PN (2017) Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization

  39. Fister I, Yang XS A hybrid bat algorithm. Elektrotehniski Vestnik/Electrotech Rev 80(1):34–68

  40. Fister I Jr, Fister D, Fister I (2013) Differential evolution strategies with random forest regression in the bat algorithm. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation, GECCO ’13 companion. ACM, New York, pp 1703–1706

  41. Yilmaz S, Kucuksille EU, Cengiz Y (2014) Modified bat algorithm. Electron Electr Eng 20(2):71–78

    Google Scholar 

  42. Mirjalili S, Mirjalili SM, Yang X-S (2014) Binary bat algorithm. Neural Comput Appl 25 (3):663–681

    Google Scholar 

  43. He X-S, Ding W-J, Yang X-S (2014) Bat algorithm based on simulated annealing and gaussian perturbations. Neural Comput Appl 25(2):459–468

    Google Scholar 

  44. Aydilek IB (2018) A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl Soft Comput 66:232–249

    Google Scholar 

  45. Ngo TT, Sadollah A, Kim JH (2016) A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems. J Comput Sci 13:68–82

    MathSciNet  Google Scholar 

  46. Yazdani S, Nezamabadi-pour H, Kamyab S (2014) A gravitational search algorithm for multimodal optimization. Swarm Evol Comput 14:1–14

    Google Scholar 

  47. Abedinpourshotorban H, Shamsuddin SM, Beheshti Z, Jawawi DN (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol Comput 26:8–22

    Google Scholar 

  48. Topal AO, Altun O (2016) A novel meta-heuristic algorithm: dynamic virtual bats algorithm. Inf Sci 354:222–235

    Google Scholar 

  49. Yang X-S, Gandomi AH Bat algorithm: a novel approach for global engineering optimization. Eng Comput, 464–483

  50. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Google Scholar 

  51. Das S, Suganthan PN (2011) Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems

  52. Guo S-S, Wang J-S, Ma X-X (2019) Improved bat algorithm based on multipopulation strategy of island model for solving global function optimization problem. Comput Intell Neurosci, 12 pages

  53. Meng X-B, Gao X, Liu Y, Zhang H (2015) A novel bat algorithm with habitat selection and doppler effect in echoes for optimization. Expert Syst Appl 42(17):6350–6364. https://doi.org/10.1016/j.eswa.2015.04.026. http://www.sciencedirect.com/science/article/pii/S0957417415002560

    Google Scholar 

  54. Alomari OA, Khader AT, Al-Betar MA, Abualigah LM (2017) Mrmr ba: a hybrid gene selection algorithm for cancer classification. J Theor Appl Inf Technol 95(12):2610–2618

    Google Scholar 

  55. Alsalibi B, Venkat I, Subramanian KG, Lutfi S, Wilde PD (2015) The impact of bio-inspired approaches towards the advancement of face recognition. ACM Comput Surv 48(1):1–33

    Google Scholar 

  56. Song B, Li K, Orellana-Martín D, Valencia-Cabrera L, Pérez-Jiménez MJ (2020) Cell-like p systems with evolutional symport/antiport rules and membrane creation. Inf Comput 104542. https://doi.org/10.1016/j.ic.2020.104542. http://www.sciencedirect.com/science/article/pii/S0890540120300304

  57. Kechid A, Drias H (2020) Cultural coalitions detection approach using gpu based on hybrid bat and cultural algorithms. Appl Soft Comput 106368. https://doi.org/10.1016/j.asoc.2020.106368

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laith Abualigah.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsalibi, B., Abualigah, L. & Khader, A.T. A novel bat algorithm with dynamic membrane structure for optimization problems. Appl Intell 51, 1992–2017 (2021). https://doi.org/10.1007/s10489-020-01898-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01898-8

Keywords

Navigation