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Abstract
The quick spread of coronavirus disease (COVID-19) has become a global concern and affected more than 15 million confirmed
patients as of July 2020. To combat this spread, clinical imaging, for example, X-ray images, can be utilized for diagnosis.
Automatic identification software tools are essential to facilitate the screening of COVID-19 using X-ray images. This paper aims
to classify COVID-19, normal, and pneumonia patients from chest X-ray images. As such, an Optimized Convolutional Neural
network (OptCoNet) is proposed in this work for the automatic diagnosis of COVID-19. The proposed OptCoNet architecture is
composed of optimized feature extraction and classification components. The GreyWolf Optimizer (GWO) algorithm is used to
optimize the hyperparameters for training the CNN layers. The proposed model is tested and compared with different classifi-
cation strategies utilizing an openly accessible dataset of COVID-19, normal, and pneumonia images. The presented optimized
CNNmodel provides accuracy, sensitivity, specificity, precision, and F1 score values of 97.78%, 97.75%, 96.25%, 92.88%, and
95.25%, respectively, which are better than those of state-of-the-art models. This proposed CNNmodel can help in the automatic
screening of COVID-19 patients and decrease the burden on medicinal services frameworks.

Keywords Automatic diagnosis . Coronavirus . COVID-19 . Convolutional neural network . Grey wolf optimizer . Stochastic
gradient descent

1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a novel virus that is enveloped with a large,
single-stranded RNA genome. It emerged in Wuhan, China
in December 2019 and caused the greatest pandemic of the
millennium [1]. According to the World Health Organization
(WHO) report, the total number of people infected by the
disease as of 27 July 2020 is 16,114,449 with 646,641 deaths.
The typical symptoms of the disease are fever, breathlessness,
cough, fatigue, and loss of taste and smell [2]. The standard

method for diagnosing COVID-19 is reverse transcription-
polymerase chain reaction from a nasopharyngeal swab.
Even though the continuous polymerase chain reaction exam-
ination of the sputum has the best quality for detecting
COVID-19, the time required to confirm COVID-19 in infect-
ed patients can be high given the elevated false positive results
of the examination [3]. Therefore, clinical imaging modalities,
for example, chest X-ray (CXR), can play an important role in
diagnosing individuals where there is a high doubt of infection
according to symptoms and hazard factors, with the exception
of pregnant women and children outside of emergency situa-
tions [4]. CXR images have been explored in the ongoing
pandemic for detecting COVID-19.

Chest computed tomography (CT) imaging may likewise
aid in the diagnosis of COVID-19; however, current guide-
lines do not suggest utilizing CT imaging for routine screen-
ing. Hence radiologists recommend CXR for the diagnosis of
COVID-19. The advantage of X-ray machines is that most
radiological laboratories and hospitals are capable of acquir-
ing 2-dimensional projection images of the patient’s chest. In
general, CXR images play a vital role for radiologists in per-
ceiving the chest pathology and have been applied in the con-
firmation or recommendation of COVID-19 in infected
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patients [5]. Figure 1a, b, and c show sample CXR images of a
normal, COVID-19, and pneumonia patient, respectively [6].

Computer-aided diagnosis (CAD) frameworks assist with a
rapid, automatic diagnosis using graphical processing units
(GPUs) by processing medical images. To the best of our
knowledge, deep learning (DL) architecture has been used in
many CAD frameworks and in numerous medical imaging
applications, such as for COVID-19 [7]. In recent years, the
convolutional neural network (CNN) has yielded the most
promising results in classifying radiological images. CNNs
are DL algorithms and have been used in many applications,
including image classification. These advantages motivated
our attempt to propose a CNN algorithm for COVID-19 diag-
nosis in this paper.

The hyperparameters of CNNs have an important influ-
ence on the network’s performance, as they directly con-
trol the training process. The selection of appropriate
hyperparameters plays a vital role in the training of the
CNN network. For example, if the learning rate is too
low, the network may lose important details in the data.
By contrast, if the learning rate is too high, it may lead the
model to converge too quickly. Therefore, there is a need
to optimize the hyperparameters of CNNs for proper train-
ing and optimum performance results.

The novelty of this work is twofold. First, we optimized the
hyperparameters of a CNN using the Grey Wolf Optimization
algorithm according to CXR images. In addition, the proposed
method avoids the overfitting of input images and real-time
images with better performance metrics.

The details of the contributions are as follows:

I. Hyperparameters of the CNN are optimized using Grey
Wolf Optimization to determine the best accurate results
in diagnosing COVID-19, normal, and pneumonia pa-
tients from CXR images.

II. Grey Wolf Optimization is compared with other optimi-
zation algorithms for tuning the CNN’s hyperparameters.

III. ACNNmodel is proposed for the automatic diagnosis of
COVID-19 using CXR images with an accuracy of
97.78%.

The rest of this paper is arranged as follows: Related works
are introduced in Section 2. The theoretical and mathematical
fundamentals are given in Section 3. The material and meth-
odology are presented in Section 4. The experiments are given
in Section 5. Finally, the conclusion is presented in Section 6.

2 Related works

Recently, AI-based techniques for identifying and tracing
COVID-19 have been popular in the global attempt to end
the pandemic. This section briefly covers ongoing attempts
at determining a COVID-19 diagnosis utilizing CXR images.
Since uncovering the possibility of using CXR images in rec-
ognizing COVID-19 and the shortcomings of manual detec-
tion, there have been a number of investigations attempting to
create automatic COVID-19 classification frameworks,

Fig. 1 Sample CXR images a
Normal b COVID-19 c
Pneumonia

Table 1 Dataset used in this
study Dataset Images category No. of images Reference

Chest imaging COVID-19 134 [21]

COVID-19 COVID-19 64 [22]

Covid-chestxray COVID-19 646 [23]

Figure 1 COVID-19 Chest X-ray COVID-19 55 [24]

Provincial peoples hospital COVID-19 1 [25]

Kaggle Normal 900 [26]

Kaggle Pneumonia 900 [26]
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mainly utilizing CNNs. Narin et al. [8] introduced a study of
three distinctive CNN models, including InceptionV3,
ResNet50, and Inception-ResNetV2, that were proposed for
the recognition of COVID-19 utilizing CXR images.

Hemdan et al. [9] presented COVIDX-Net, which incorpo-
rates seven unique designs of deep convolutional neural net-
work (DCNN) including an improved VGG19 and the second
form of Google MobileNet. Each DCNN model can inspect
the normalized forces in CXR images to portray the patient
status as either negative or positive COVID-19. The DenseNet
and VGG19 models were capable of automatically detecting
COVID-19. Khan et al. [10] proposed CoroNet, a DCNN
model, to perform image processing on X-ray images and
classify them positively or negatively. Li et al. [11] demon-
strated a mobile-based lightweight DL network architecture,
namely, COVID-MobileXpert.

Maghdid et al. [12] proposed an AI model for radiolo-
gists and health experts to analyze COVID-19 cases
quickly and accurately. This involved constructing an ex-
tensive dataset of CXR and CT images from various
sources and developed a necessary yet compelling
COVID-19 identification procedure utilizing DL and TL
techniques. Mahdy et al. [13] introduced a strategy for
identifying COVID-19-infected persons utilizing CXR
images. Multilevel thresholding and a support vector ma-
chine (SVM) were introduced to achieve high accuracy
with images of the infected lungs of COVID-19 patients.
Rehman et al. [14] utilized pretrained information to

improve demonstrative execution using TL methods and
performed a comparative analysis with different CNN
structures.

Abbas et al. [15] validated and adapted their recently cre-
ated Decompose, Transfer, and Compose (DeTraC) CNN for
the diagnosis of COVID-19 with CXR images. DeTraC can
manage any anomalies in the image dataset by researching its
class limits utilizing a class disintegration system. The TLwas
used for tweaking the parameters.

Table 2 Architecture of proposed CNN

Layer Type Filter size No .of filters stride

Input 224x224x3

Conv_1 CL + BN+ReLu 3 × 3 64 1 × 1

MPL_1 2 × 2 2 × 2

Conv_2 CL + BN+ReLu 3 × 3 64 1 × 1

MPL_2 2 × 2 2 × 2

Conv_3 CL + BN+ReLu 3 × 3 32 1 × 1

MPL_3 2 × 2 2 × 2

Conv_4 CL + BN+ReLu 3 × 3 16 1 × 1

MPL_5 2 × 2 2 × 2

Conv_5 CL + BN+ReLu 3 × 3 8 1 × 1

Fully connected Output size =3

Output Classification layer Soft-max

BN Batch Normalization Layer

Fig. 2 Flow diagram of grey wolf optimized CNN for COVID-19 diagnosis
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Afshar et al. [16] introduced an elective demonstrating sys-
tem dependent on capsule networks (rather than CNNs), al-
luded to as the COVID-CAPS, which was equipped to work
with small datasets vitally because of the abrupt and fast de-
velopment of COVID-19. Apostolopoulos et al. (2020) [17]
depicted a method to assess the performance of best-in-class
CNN models proposed over recent years for clinical image
classification. More specifically, a methodology called TL
was employed in their work.

Apostolopoulos et al. (2020) [18] additionally introduced
the best-in-class CNN called Mobile Net. This was utilized
and developed without any preparation to research the signif-
icance of the extricated features for the characterization of
COVID-19. Farook et al. [19] built open source datasets for
COVID-19. They introduced an exact CNN structure for sep-
arating COVID-19 from pneumonia cases. This work utilized
the best training techniques, including dynamic resizing, TL,
and discriminative learning, to train the CNN quickly and
accurately using DL frameworks.

All the techniques on DL–based COVID-19 screening
have so far used CNNs, which, despite their incredible image
handling capability, are unable to identify the unique relations
between image examples. Because of this disadvantage,
CNNs cannot perceive items as similar when one has been
rotated or subject to another sort of change. As a result,
CNNs require large datasets, including all possible changes
to which images can be subjected. Nonetheless, in clinical
imaging settings, including COVID-19 screening, large
datasets are most certainly not adequately available. The pro-
posed Optimized Convolutional Neural Network (OptCoNet)
is an alternative model capable of screening COVID-19 with-
out a vast dataset since it captures spatial information coming
from instances and object parts using potential changes in the
existence of the objects.

3 Grey wolf optimizer

The Grey Wolf Optimizer (GWO) [20], a recently developed
swarm intelligence (SI) algorithm, has proven to be a reliable
optimization algorithm compared to conventional evolution-
ary and swarm-based algorithms. The gray wolf belongs to the
Canidae family. It is considered a high-level predator and
dwells at the top of the food chain. They live in a pack that
comprises 5–12 wolves on the whole. In gatherings, an exact
predominance order is maintained. The pack is driven by al-
phas and trailed by betas, the subordinate wolves who are
mindful to help the alpha in maintaining the dynamics of the
pack.

The beta wolf strengthens the alpha’s orders all through the
pack and offers input to the alpha. In the interim, the lowest
rung among the gray wolves is the omega, who generally
assumes the scapegoat’s job. They are the last wolves allowed
to eat from the prey. On the off chance that a wolf is not alpha,
beta, or omega, the individual in question is known as a delta.
Delta wolves act as scouts, sentinels, seniors, trackers, and
guardians.

The motivation for proposing the GWO algorithm for
COVID-19 diagnosis is twofold. First, it is a very competitive
optimization algorithm. It has been applied to various research
fields, such as feature selection, economic load dispatch prob-
lems, and flow scheduling problems. In addition, the GWO
algorithm benefits from avoiding high local optima, which
leads to avoidance of overlapping features in the problem of
feature selection.

The main mechanisms of GWO, including social pecking
order, following, circling, and attacking prey, are introduced
as follows.

In the GWO algorithm, the fittest solution can be rep-
resented as the alpha (α), with the second and third-best

Table 3 Training options using
GWO optimization Training

algorithm
Momentum Initial learning

rate
Maximum
epoch

Validation
frequency

L2Regularization

SGD 0.6 0.015 10 30 1.0000e-04

Fig. 3 Sample training images a-b COVID-19 c-d Normal e-f Pneumonia
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solutions represented as beta (β) and delta (δ), respective-
ly. The remainder of the up-and-coming solutions are con-
sidered omegas (ω). GWO uses these simple principles to
rank the solutions in each iteration and update their
positions.

When wolves hunt, they will, in general, enclose their prey.
The following mathematical equations delineate this
encircling behavior

D ¼ jC:Xp tð Þ−X tð Þj ð1Þ
X tþ 1ð Þ ¼ Xp−A:D ð2Þ

where D denotes distance, t represents the present iteration, A
and C are coefficients, Xp is the prey’s location, and X denotes
the position of a gray wolf.

The coefficients A and C are calculated as follows:

A ¼ 2ar1−a ð3Þ
C ¼ 2r2 ð4Þ
where r1 and r2 are random values between 0 and 1 and ‘a’ is a
decreasing parameter.

As mentioned above, the three best solutions (alpha, beta,
and delta) are updated first, and then, the other search agents
(omega wolves) update their positions, all using the following

equations:

Dα ¼ jC1Xα−Xj;Dβ ¼ jC1Xβ−Xj;Dδ ¼ jC1Xα−Xj ð5Þ
X1 ¼ Xα−A1: Dαð Þ;X2 ¼ Xβ−A1: Dβð Þ;X1

¼ Xδ−A1: Dδð Þ ð6Þ

X tþ 1ð Þ ¼ X 1þ þ X 2þX 3

3
ð7Þ

To summarize, the optimization approach for GWO com-
mence with making an arbitrary populace of grey wolves,
which can be called applicants of solution. During the recrea-
tion, alpha, beta, and delta wolves gauge the conceivable sit-
uation of the prey. The parameter of ‘a’ in Eq. (3) can be
demonstrated as investigation and abuse forms by diminishing
the incentive from 2 to 0. Up-and-comer arrangements have
separated from the prey if |A| > 1 and converged toward the
prey |A| < 1. The GWO algorithm iteratively updates and eval-
uation candidate solutions until an end condition is met.

To summarize, the optimization approach for GWO begins
with making an arbitrary populace of gray wolves, which can be
called applicants of solution. During recreation, alpha, beta, and
delta wolves gauge the conceivable situations of the prey. The
parameter ‘a’ in Eq. (3) can represent investigation or abuse by
decreasing the value from 2 to 0. Up-and-comer solutions indi-
cate distancing from the prey if |A| > 1 and convergence toward
the prey if |A| < 1. The GWO algorithm iteratively updates and
evaluates candidate solutions until an end condition is met.

4 Materials and methodology

4.1 Dataset

CXR images of COVID-19, normal, and pneumonia patients
collected from publicly available repositories [21–26] were

Fig. 4 Sample testing images a-b COVID-19 c-d Normal e-f Pneumonia

Table 4 Performance measures for COVID-19

Parameters Formula

Accuracy TPþTN
TPþTNþFPþFN

Sensitivity or recall TP
TPþFN

Specificity TN
TNþFP

Precision TP
TPþFP

F1 Score 2 Precision x Recall
PrecisionþRecall

True Positive Rate TP
TPþFN

False Positive Rate FP
FPþTN

Table 5 Experimental results of the proposed network model

Accuracy Sensitivity Specificity Precision F1 Score

97.78% 97.75% 96.25% 92.88% 95.25
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used in this work. These repositories yielded a total of 2700
images, out of which 900 were COVID-19 images. The reso-
lution of all images was set to 224x224x3 pixel size. The
details of the images are stated in Table 1.

4.2 Workflow

A CNN is a type of DL model that extends the capability of
the artificial neural network (ANN) by adding more layers to
its architecture. CNNs have excellent feature extraction, pat-
tern recognition, and classification performance of the raw

input data without any preprocessing. The CNN architecture
is divided into two parts: feature extraction and classification.
Feature extraction is performed using several layers, including
a convolutional layer (CL) followed by a max-pooling layer
(MPL). Classification consists of a fully connected layer
(FCL) and a classification layer to classify the input features
into a particular class. CLs and FCLs are composed of weights
and biases, which should be tuned using a gradient descent
training algorithm. The training algorithm should also include
many hyperparameters, which strongly reflect the CNN
model’s performance. These parameters are the training algo-
rithm, momentum, learning rate, number of epochs, validation
frequency, and L2Regularization. The current work is focused
on optimizing these hyperparameters for training the CNN to
yield optimal performance results. Although hyperparameters
are very important for producing better performance, testing
each hyperparameter is computationally expensive.
Therefore, GWO is proposed in this architecture to optimize
the hyperparameters for training the layers of the CNN.
Figure 2 shows the flow diagram of the proposed network of
hyperparameter optimization for a CNN using GWO. The
description of the proposed model is discussed as follows.

4.3 Convolutional neural network

The CNN architecture is composed of an input layer, CL,
MPL, FCL, and output layer. The CL layer of the CNN is
responsible for extracting features from the input images using
several convolutional filters. These convolutional filters per-
form the convolutional operation at every offset of the input
image. The CL contains weights that should be optimized
using gradient descent training, which adjusts the parameters
of the CL. The features extracted from the CL are mapped into
feature space using a nonlinear rectified linear unit (ReLU)
activation function. A batch normalization layer (BNL) is
used between the CL and ReLU to normalize the gradients
and activations through the network. The PL is used to reduce
the dimensions of the feature maps obtained from the CL and
retain the most relevant information of the image. Pooling
methods include max-pooling and average pooling. There
are no weights or biases in the PL of the CNN to train. The
last layer is a fully connected classifier layer that classifies the
extracted features from the CL and MPL into a particular
class.

CNN training involves adjusting the parameters of the
convolutional kernels and hidden neurons in the fully connect-
ed classification layer. Generally, CNNs utilize stochastic gra-
dient descent (SGD) training to tune the CL and fully connect-
ed layer parameters. SGD minimizes the cost function by
updating the weights of the network in the backward direction.

The disadvantage of using SGD is that it contains many
hyperparameters that influence the network’s performance.
The next section explains the algorithm used to optimize these
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Fig. 5 Generated ROC curves of the proposed GWO optimized CNN
(Class 1-COVID-19, Class 2- Normal, Class 3-Pneumonia)

Fig. 6 Generated confusion matrix from the GWO optimized CNN
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hyperparameters to achieve the best network performance.
Details of the layers of the proposed CNN are given in
Table 2.

4.4 Hyperparameter optimization using GWO

In this work, the hyperparameters are optimized using GWO.
Hyperparameters play a crucial role in determining the accu-
racy and convergence of the CNN. Selecting the network’s
hyperparameters is essential and depends on the application
for which the CNN is used. The learning rate, number of
epochs, momentum, and regularization coefficient are the
most common CNN training hyperparameters. The learning
rate controls the gradient descent algorithm’s speed, and the
momentum controls the influence of the update of previous
weights on the update of current weights. The number of
epochs determines the number of times the learning algorithm
will update the network parameters according to the training
dataset. Regularization overcomes the issue of overfitting in
the network. Therefore, to address all these settings, optimiz-
ing these hyperparameters is required to help the network
yield the most accurate results. The GWO algorithm for the
optimization of hyperparameters in SGD training is given in
Algorithm (1).

5 Experiments

To benchmark the performance of the proposed GWO-based
CNN for COVID-19, normal, and pneumonia images, tests
were conducted for classification using different optimization
techniques.

5.1 Implementation details

The algorithm was implemented in MATLAB 2020a and ex-
ecuted using Windows 10 Pro with a 64 GB RAM Nvidia
GPU. The proposed architecture was tested for both normal,
phenomena, and COVID-19 CXR images using publicly
available datasets.

5.1.1 Training

For the diagnosis of COVID-19 from CXR images, a six CL
CNN is used. The A total of 70% of the data are used for
training, and the remaining 30% of the data are used for testing
the network. The proposed architecture classifies images into
three categories: normal, pneumonia, and COVID-19. The
dataset is partitioned randomly into training and test sets. All
the images are resized to 224x224x3 using data augmentation
and converted to color images. A six convolutional layer ar-
chitecture is used to classify the images, and parameters are
tuned using SGD training, whose hyperparameters are opti-
mized using GWO at the time of training. The optimized
hyperparameters obtained using GWO optimization are given
in Table 3, and sample training images are provided in Fig. 3.

5.1.2 Testing

First, the images are resized to 224x224x3 using data augmen-
tation and training the proposed network. After that, the test
images are given as input to the trained CNN, where all the
parameters of the CLs and FCLs are already optimized. Then,
the CNN first extracts the images features and classifies them
into the appropriate class using FCL and soft-max classifiers.
The sample testing images are given in Fig. 4.

5.2 Performance indicators and evaluation metrics

This subsection presents the proposed methodology’s perfor-
mance in classifying the images into COVID-19, normal, and
pneumonia. The proposed method is validated using the per-
formance metrics of accuracy, sensitivity, specificity, preci-
sion, and F1-score, and receiver operating characteristic
(ROC) analysis will be used for verifying the results from
actual cases. The performance metrics equations are summa-
rized in Table 4.where TP indicate True Positive; TN indicate

Table 6 Parameters of GWO

Batch
Size

Number search
Agent’s

Dimensions No. of optimizations
iterations

Lower bound Upper bound Hyperparameter evaluation
function

32 30 4 30 [0.5, 0.01, 5,
1.0000e-04]

[1, 0.5, 15,
5.0000e-04]

Error rate = (FP + FN)/
(TP + TN + FP + FN)

1357OptCoNet: an optimized convolutional neural network for an automatic diagnosis of COVID-19



True Negative; FP indicate False Positive; FN indicate False
Negative.

Accuracy evaluates the ability of the classifier to dif-
ferentiate between COVID-19 and non–COVID-19 cases.
A TP is where the model adequately predicts a positive

case. Therefore, a TN is where the model viably predicts a
negative instance. An FP is where the model erroneously
predicts a positive case, and an FN is where the model
mistakenly predicts a negative situation. Sensitivity
gauges the proportion of correctly classified positive

Fig. 7 Training progress for the
(a) GWO-optimized (a)
Nonoptimized CNNs

Table 7 Performance analysis
with other optimization methods Method Accuracy Sensitivity Specificity Precision F1 Score

Nonoptimization 91.23 93.33 90.19 82.62 87.64

GA 96.05 98.61 95.83 92.21 96.39

Pattern search 95.31 99.13 93.15 87.91 93.40

SA 95.93 95.93 92.17 95.93 95.93

PSO 95.76 97.75 94.76 90.31 93.88

WOA 96.41 95.93 96.67 93.50 94.70

Proposed optimization 97.78 97.75 96.25 92.88 95.25
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instances. Specificity is a measure of the correctly classi-
fied negative instances. Precision measures the fraction of
relevant cases among the retrieved cases and is also

known as the positive predictive value. The F1-score mea-
sures a test’s accuracy and is defined as the weighted
harmonic mean of the test’s precision and recall. The
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Fig. 8 ROC curves of the aGWO
b GA c PS d PSO e SA and f
WOA-optimized CNNs (Class 1-
COVID-19, Class 2- Normal,
Class 3-Pneumonia)
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receiver operating characteristic (ROC) curve is the char-
acteristic representation of the classification method per-
formance executed for all values. This curve is drawn as
the relationship between 1-specificity and sensitivity.

5.3 Experimental results

In this paper, CXR images are used to diagnose COVID-19
from normal and pneumonia-infected persons. X-ray imaging
is a noninvasive technique for diagnosis and is also available

in most hospitals. Using the trained proposed optimized CNN,
testing of the images will take less than 5 s. The proposed
network results are given in Table 5, which shows that an
accuracy of 97.78% is achieved.

5.3.1 Receiver operating characteristics (ROC) and confusion
matrix

The ROC curve (in Fig. 5) and confusion matrix (in Fig. 6)
were generated for the proposed method to analyze the

Fig. 9 Confusion matrixes of the a GWO b GA c Pattern search d PSO, e Stimulated annealing, and f WOA-optimized CNNs
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classification effectiveness. Following application of the pro-
posed methodology for 2700 chest X-ray images, 98.5% were
classified as COVID-19, 97.4% were classified as normal im-
ages and 97.4% were classified as pneumonia images. The
proposed method has high accuracy for all three cases.
Hence, this OptCoNet can be used for automatic screening
of COVID-19. This OptCoNet will substantially help radiol-
ogists by overcoming the burden on the healthcare system.

5.3.2 Training progress of the proposed OptCoNet

As the selection of hyperparameters in training the CNN plays
an important role, this subsection presents the results of an
experiment comparing the training progress and loss functions
between the GWO-optimized and nonoptimized CNNs. The
training progress of the optimized and nonoptimized CNNs is
shown in Fig. 7a and b, respectively. The proposed OptCoNet
achieves better accuracy and minimum loss in all epochs. The

training parameters of the optimized GWO are described in
Table 6.

5.4 Performance analysis

In this work, five standard optimization techniques other than
GWO are used in the classification of images. These are
Genetic Algorithm (GA) [27], Pattern Search (PS) [28],
Particle Swarm Optimization (PSO) [29], Simulated
Annealing (SA) [30], and Whale Optimization Algorithm
(WOA) [31]. For training the DL networks, 70% of the data
are used; the remaining 30% of the data are used for testing. A
comparison of all these networks in terms of the metrics ac-
curacy, specificity, sensitivity, precision, and F1-score is giv-
en in Table 7. Comparisons in terms of ROC curves and con-
fusion matrixes are illustrated in Figs. 8 and 9. The results of
these comparisons indicates that the CNN optimized by GWO
provides the best accuracy. Therefore, the proposed network

Fig. 11 Confusion matrixes for
the a GWO-optimized CNN and
b Nonoptimized CNN
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can be reliably used to diagnose COVID-19 in real-time
applications.

5.5 Comparative analysis

This subsection presents a comparative analysis for the pro-
posed methodology in classifying the images into COVID-19,
normal, and pneumonia. Comparisons are made with other
state-of-the-art methods using the aforementioned

performance metrics. A discussion and limitations of the pro-
posed work are given at the end of this subsection as well.

5.5.1 Comparison with nonoptimized CNN

Figures 10 and 11 show the performance comparison in terms
of the ROC curves and confusion matrixes between the opti-
mized and nonoptimized CNNs. From Figs. 10 and 11, the
optimized CNN yields a better accuracy than the
nonoptimized CNN.

5.5.2 Comparison using cross-validation

Cross-validation (CV) is an important tool in predicting net-
work performance by splitting the data k times into training
and testing sets. In the present work, k is set to 10. Therefore,
the X-ray data of each class are split into ten subsets. For every
iteration of the CV, one subset from the k subsets is used for
testing, and the remaining k-1 subsets are used for training the
network. Then, the error rate is calculated k times for the
proposed optimized nonoptimized CNN. A comparison of
the CV results is shown in Fig. 12.

5.5.3 Comparison with grid search optimization

The conventional method for optimizing the hyperparameters
of a neural network is the grid search strategy (GSS) [32]. In
the GSS, a subset of each hyperparameter space is manually

Fig. 15 Architecture information of different CNNs a OptCoNet b Network2 c Network3 d Network4 e Network5
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specified and evaluated for a particular performance metric.
The GSS evaluates the network performance by making a grid
of all possible candidates within the hyperparameter space.
The combination of hyperparameters that yields the best per-
formance metric will be selected as the optimized
hyperparameter values. The main drawback of the GSS is
the exponential increase in the number of evaluations as a
new parameter is added. Therefore, with only four
hyperparameters with five candidates for each, the number
of iterations is 758, making this optimization impractical.

On the other hand, GWO uses random values for the pa-
rameters and stops according to prespecified stopping criteria
such as maximum time, number of parameters, or perfor-
mance goal. In this way, it avoids overfitting the data and is
practical for real-time problems with good performance re-
sults. The accuracy comparison of GWO with GSS is shown
in Fig. 13.

5.5.4 Comparison with different CNN architectures

An experiment was conducted to compare the proposed
OptCoNet architecture with other nonoptimized CNN archi-
tectures, namely, network2, network3, network4, and net-
work5. The proposed OptCoNet provides better accuracy than
the other CNN architectures. The results and the developed
architectures are found in Figs. 14 and 15, respectively.

5.5.5 Comparisons of the results with state-of-the-art CNN
methods

For further analysis of the results, the performance metrics,
such as accuracy, sensitivity, specificity, precision, and F1-
score, are also compared between the proposed CNN and
pretrained DL networks. The acquired performance parame-
ters for the proposed CNN are better than those of other state-

Table 8 Comparison of the results with state of the art CNN methods using X-ray images

Reference Task No of images Method Accuracy Sensitivity Specificity Precision F1 Score

Narin et al. [8] COVID-19 50 ResNet-50 98 – – – –

Normal 50

Hemdan et al. [9] COVID-19(+) 90 COVIDX-Net 90 – – – –

Normal 25

Khan et al. [10] COVID-19 284 CoroNet 89.5 97 100 – –

Maghdid et al. [12] COVID-19 85 AlexNet 94.1 – – – –

Razzak et al. [14] COVID-19 200 DL 98.75 – – – –

Abbas et al. [15] COVID-19 105 DCNN 95.12 97.91 91.87 – 93.36

Afshar et al. [16] COVID-19 1668 COVID-CAPS 95.7 90 95.8 – –

Farook et al. [19] COVID-19 68 COVID-Net 96.23 – – – –

Ghoshal et al. [33] COVID-19 70 CNN 92.9 – – – –

Wang et al. [34] COVID-19 45 CNN 83.5 – – – –

Bac.Pneu* 931

Vir.Pneu# 660

Zhang et al. [35] COVID-19 70 ResNet – 96.6 70.7 – –

Ioannis et al. [36] COVID-19 224 VGG-19 93.48

Pneumonia 700

Normal 504

Sethy et al. [37] COVID-19 (+) 25 ResNet-50 + SVM 95.38

COVID-19(−) 25

Ozturk et al. [38] COVID-19(+) 125 DarkCovidNet 98.8 – – – –

No findings 500

COVID-19(+) 125 87.02 – – – –

Pneumonia 500

No findings 500

Proposed COVID-19 1000 OptCoNet 97.78 97.75 96.25 92.88 95.25

Normal 900

Pneumonia 900

*Bacterial Pneumonia, # Virus Pneumonia
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of-the-art approaches, as shown in Table 8. The advantage of
the proposed method is that no settings are required while
training the images. Consequently, no tuning is needed for
different databases, as opposed to other model-based method-
ologies, as in [8, 14]. In this way, the proposed approach can
successfully deal with any concealed databases with no par-
ticular parameter tuning. The specialists in [8, 14, 32] accom-
plished a marginally poorer accuracywith their DLs compared
to the proposed OptCoNet because of the absence of primary
data in the images. Likewise, the proposed method is com-
pared with recently published works in terms of the accuracy
and F1-score. The proposed approach produced better results
than other state-of-the-art techniques.

5.6 Discussion

Given how COVID-19 has infected millions of people world-
wide, there is a need for quick and accurate diagnosis of the
disease. The proposed network can discriminate COVID-19
patients from normal and pneumonia patients using X-ray
images. X-ray image diagnosis is a noninvasive, cost-
effective technique that is available in almost all hospitals.
The proposed optimized CNN network was trained using
1890 images and then tested on 810 images. It provides an
accuracy of 97.78%, which is the best accuracy achieved on
X-ray images to date with more number of images. The opti-
mized CNN was compared with state-of-the-art optimization
techniques and four other CNN to show its efficiency. The
advantages of the proposed optimized CNN include its ability
to directly give diagnostics results from X-ray images without
the need of a radiologist. In this way, it can help clinicians test
patients with accurate results quickly. There is no need to
preprocess the test images; the data augmentation step will
resize all the test images to 224 × 224 pixels. Finally, the
CNN hyperparameters are optimized using the GWO algo-
rithm on X-ray images to avoid the problem of overfitting
and mode collapse and give the best performance results.

Similar to any other new methods, the proposed method
also has some limitations. One of the limitations is that the
proposed OptCoNet does not encode the position orientation
of the input images, so some preprocessing steps are required.
In addition, OptCoNet is not spatially invariant to the input
images. Finally, GWOhas a number of controlling parameters
that need to be carefully chosen if applied to problems with an
extremely large number of features and parameters.

6 Conclusions

This work proposes OptCoNet, which depends on an opti-
mized CNN structure for the automatic diagnosis of
COVID-19, normal, and pneumonia patients from X-ray im-
ages. This system comprises a number of convolutional, batch

normalization, and pooling layers. The acquired outcomes
show that the OptCoNet performed well, even with a low
number of trainable parameters. The proposed OptCoNet pro-
duced better performance metrics such as accuracy, sensitivi-
ty, specificity, precision, and F1-score than current state-of-
the-art methods. As increasingly more COVID-19 cases are
being recognized all around the globe, larger datasets are be-
ing created. Future studies will focus on advancing and alter-
ing the architecture of the OptCoNet and fusing newly acces-
sible datasets to test the network.
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