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Abstract
The purpose of this study was to establish and validate a new deep learning system that generates quantitative computed
tomography (CT) reports for the diagnosis of pulmonary tuberculosis (PTB) in clinic. 501 CT imaging datasets were collected
from 223 patients with active PTB, while another 501 datasets, which served as negative samples, were collected from a healthy
population. All the PTB datasets were labeled and classified manually by professional radiologists. Then, four state-of-the-art 3D
convolution neural network (CNN) models were trained and evaluated in the inspection of PTB CT images. The best model was
selected to annotate the spatial location of lesions and classify them into miliary, infiltrative, caseous, tuberculoma, and cavitary
types. The Noisy-Or Bayesian function was used to generate an overall infection probability of this case. The results showed that
the recall and precision rates of detection, from the perspective of a single lesion region of PTB, were 85.9% and 89.2%,
respectively. The overall recall and precision rates of detection, from the perspective of one PTB case, were 98.7% and
93.7%, respectively. Moreover, the precision rate of type classification of the PTB lesion was 90.9%. Finally, a quantitative
diagnostic report of PTB was generated including infection possibility, locations of the lesion, as well as the types. This new
method might serve as an effective reference for decision making by clinical doctors.
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1 Introduction

Pulmonary tuberculosis (PTB) is one of the leading respirato-
ry infectious diseases worldwide [1]. India, Indonesia, and
China have the highest PTB burden [2, 3]. Also, in China,
the PTB is the second-highest infectious disease after viral
hepatitis [4]. Therefore, correct detection and diagnosis of
PTB are crucial importance.

With the rapid development of big data and artificial intel-
ligence (AI), deep learning method [5] has been gradually
applied to computer-aided diagnosis (CAD),deep learning
technologies, such as the convolutional neural network
(CNN) with its strong ability of nonlinear modeling, have also

been applied extensively in medical image processing.
Relevant studies have been conducted on the diagnosis of
pulmonary nodules, the classification of benign andmalignant
tumors worldwide. [6–12]. This approach has been used to
improve the diagnosis of pulmonary nodules and lung cancer
worldwide [13–16]. So far, several intelligent diagnostic sys-
tems have been available for lung nodule detection, such as
the Dr. Watson system from IBM. At the same time, some
well-known academic institutions and organizations have also
launched competitions to encourage lung nodule detection on
computed tomography (CT) images. Of these, the most fa-
mous was the Lung Nodule Analysis 2016 (LUNA16) [17]
and the Data Science Bowl 2017 (DSB2017), which were held
by the notable data science website Kaggle. These open-
sourced datasets contain a series of detection and segment
algorithms. However, so far, only a few studies have explored
the detection and classification of PTB infection using this
approach. Currently, very few open-sourced CT image
datasets of PTB are available. Moreover, wider distribution
and different characteristics of PTB lesion regions compared
with those of lung nodules have further complicated the diag-
nosis. Despite the differences in morphological features be-
tween PTB lesion and pulmonary nodule, some of the open-
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sourced intelligent detection methods for pulmonary nodules,
such as data preprocessing and image segmentation, have a
considerable reference value for PTB detection.

The traditional CT image processing methods are mainly
used in the preprocessing stage, and the image segmentation
and classification process is based on deep learning algorithms
[18–20]. Huang et al. [21] proposed a noisy U-Net (NU-Net)
that can enhance the neural network’s sensitivity to small nod-
ules by adding noise to the hidden layers in the training set,
they found that the algorithm’s sensitivity to small nodules
with diameters of 3–5 mm (97.1%) was greater than the U-
Net value (90.5%). Ciompi et al. [22] constructed a labeling
system to automatically classify the morphological character-
istics of pulmonary nodules into solid, sub-solid, calcified and
non-solid lesions. Moreover, Cao et al. [23] proposed a two-
stage convolutional neural network (TSCNN) for lung nodule
detection. The first stage is based on the improved U-Net
segmentation network with a high recall rate; after which,
three 3D-CNN classification networks are designed to reduce
false positive. Their experiments showed that the proposed
TSCNN architecture could be used to obtain competitive de-
tection performance. In order to improve the classification
accuracy of lung nodules, Zuo et al. [24] proposed a method
based on a three-dimensional (3D) convolution neural net-
work (ConvNet) model, which is trained by transferring
knowledge from a multi-resolution two-dimensional (2D)
ConvNet model. The experimental results showed a compet-
itive average score in the false-positive reduction, with the
sensitivities of 0.619 and 0.642 at 0.125 and 0.25 FPs per
scan. Additionally, Julian de Wit et al. [25], who won the
second place in the DSB2017 competition, constructed a pul-
monary nodule detector through a 3D CNN to predict the
possibility of cancer. Besides, Pezeshk et al. [26] designed a
two-stage computer-aided detection system for automatic de-
tection of pulmonary nodules and discovered that the nodule
detection system could achieve 91% sensitivity at two false
positives per scan. Liao et al. [27] used a modified 3D u-net to
detect all suspicious lesions (pulmonary nodules) and evaluate
pulmonary malignancy. Huang et al. [28] studied the benign-
malignant nodules classification, theymerged a Deep Transfer
Convolutional Neural Network (DTCNN) and Extreme
Learning Machine (ELM) to achieved the classification with
superb AUC (94.9%). Xu et al. [29] constructed a multi-
resolution CT screening image dataset (DeepLN Dataset).
They proposed an effective framework (called DeepLN) to
detect lung nodules and demonstrated the proposed method
can address the issue well.

In this study, four fine-tuned 3D CNN models were evalu-
ated. The best model was then used to detect and classify the
PTB lesion regions based on CT image datasets. Our main
contributions can be summarized as follows: the spatial location
of each lesion, the confidence (infection probability) of every
single infection, presence of calcifications, the classification of

lesion type, overall infection probability, and effective volume
of the left and right lungs were digitally analyzed according to
the output of the AI network model. These reports generated a
quantitative evaluation of a single infection region and the
whole PTB case, thus greatly assisting clinical doctors in mak-
ing more accurate diagnostic decisions.

2 Method

2.1 Process

Figure 1 shows the whole process of PTB diagnostic report
generation. First, the CT images were preprocessed to extract
effective lung regions. Second, the 3D CNN model was used
to detect and classify the lesion region. Then, the overall in-
fection probability was calculated using the Noisy-Or
Bayesian function. Finally, a quantitative diagnostic report,
together with the corresponding labeled CT images were
exported for reference.

2.2 Dataset introduction

Five types of active PTB lesions were defined according to the
Expert Consensus of the Chinese Society of Radiology [30]
(Fig. 2): miliary, infiltrative, caseous, tuberculoma, and
cavitary.

This study used 501 CT imaging datasets from 223 patients,
diagnosed with active PTB at the inpatient department of tuber-
culosis of the Affiliated Hospital of Zhejiang University from
2016 to 2019.Moreover, 501 CT image datasets from a healthy
population collected in the same hospital were added as nega-
tive samples. Therefore, 1002 CT imaging datasets, all in
Digital Imaging and Communications in Medicine (DICOM)
format, were analyzed.

The ethics committee of the First Affiliated Hospital,
College of Medicine, Zhejiang University approved this study,
and all research was performed in accordance with relevant
guidelines/regulations. All participants and/or their legal guard-
ians signed the informed consent form before the study.

Two professional radiologists manually annotated the le-
sions of PTB. Together, 2884 (117 miliary, 2255 infiltrative,
135 caseous, 91 tuberculoma, and 286 cavitary) regions were
labeled as PTB lesions.

2.3 Dataset preprocessing

To facilitate the detection of PTB lesions, the CT images were
resampled to keep the voxel of CT image to 1 × 1 × 1 mm3

measured in the real space, following the rule of nearest-
neighbor interpolation. A CT image contains not only the lung
but also other tissues, and some of them may have similar
shape and structure as the infections of tuberculosis, such as
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the stomach. Furthermore, it was straightforward to reduce
irrelevant regions to speed up the convergence rate during
the training process and to improve the accuracy of results.
Hence, the resampled CT sets were preprocessed to generate
masks of the effective lung so as to eliminate the unrelated
regions before the training of the deep learning model, as
follows:

(1) As the digital grayscale image had the pixel value rang-
ing [0, 255], the resampled CT raw data were converted
from the Hounsfield Unit (HU) to the interval of the
aforementioned values accordingly. The HU data matrix
was clipped within [−1200, 600] (any value beyond this
was set to −1200 or 600 accordingly) and then linearly

normalized to [0, 255] to fit into the digital image format
as shown in Fig. 3a.

(2) A fixed threshold (−200) was used to binarize the
resampled CT images, and bones and soft tissues, such
as blood vessels and muscles with substantial HU
values, were filtered out (Fig. 3b).

(3) All connected components smaller than 0.3 cm2 and with
eccentricity larger than 0.99 were removed to eliminate
some high-luminance radial imaging noise. The compo-
nents (usually clothes and accessories) with the distance
to the center of the CT image more than 6.2 cm were also
removed. Furthermore, the components with a volume be-
tween 450 and 7500 cm3were kept, as shown in Fig. 3c.
The range in the present study was expanded compared

Fig. 2 Five PTB types. (a)Miliary; (b) infiltrative; (c) caseous; (d) tuberculoma; (e) cavitary. Top: the whole slices. Bottom: the zoomed-in regions

Fig. 1 Process flow chart
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with those reported by lung nodule detection studies [27],
which ranged from 680 to 7500 cm3. The nodule detection
study usually focuses on small regions, while lesions could
be more massive for PTB cases.

(4) The extracted mask in step 3 was eroded into two sectors
and then dilated to the original size to remove small black
holes (Fig. 3d).

(5) Convex hull operation was performed on the effective
region, which was extracted from the previous step, to
include lesion regions attached to the outer wall of the
lung (Fig. 3e).

(6) The matrix data of images in step 1 were multiplied by
the masks exported from step 5 to obtain the final effec-
tive pulmonary region for further processing. The space
out of the mask was filled with 170, which was equiva-
lent to 0 if converted back to HU value (Fig. 3f).

2.4 PTB data process and augment

To reduce the influence of the uneven distribution of different
PTB lesion types in the present dataset, types with fewer spec-
imens were expanded to ensure that the sampling frequency of
different types is consistent during training. The lesion of mil-
iary, caseous, and tuberculoma cases was duplicated 10 times;
cavitary cases were duplicated 5 times during the training to

balance the specimen number with the infiltrative type, which
was the dominant type among all. At the same time, generic
data augment mechanisms, random clipping and left-right
flipping were performed on specimens to increase the number
of training samples and prevent data overfitting [31].

2.5 Deep learning model for detection and
classification

2.5.1 Network structure

DenseVoxNet [32], 3D U-Net [33, 34], and V-Net [35] net-
works are among the most widely used networks in the do-
main of medical image segmentation. These networks usually
include two network paths: contracting and expanding. The
images are firstly fed into the contracting path to finish the
down-sampling process, and capture the context information.
Then, the up-sampling process is completed in the symmetri-
cal expanding path to obtain precise localization information
of the targets.

The segmentation models had to be replaced since they
were originally designed to generate the pixel-level mask of
designated objects. As the border between a healthy region
and the focus of infection usually is usually blurred and indis-
tinct, it is extremely hard to label pixel-level masks for lesion
regions of pulmonary tuberculosis. Furthermore, the variable

Fig. 3 Image data preprocessing.
(a) Normalized resampled CT
image; (b) binarized images with
HU equal to −200; (c) removal of
unrelated regions; (d) erosion and
dilation; (e) convex hull operation
to create the mask; (f) normalized
CT image multiplied by the mask
to generate a valid pulmonary
region
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three-dimensional structure of the lesion regions aggravates
this work. Therefore, the segmentation operation used in this
study was more like the anchor operation in the object detec-
tion algorithm. A Region Proposal Network (RPN) [36] was
used to detect the Region of Interesting (ROI) with 3D
bounding boxes, instead of pixel-level segmented masks.

Four 3D CNN network models, with different feature ex-
traction structures followed by the same RPN output layer,
were designed and evaluated. The first model (referred to as
DENSEVOXNET-RPN) used DenseBlock as the feature ex-
traction part, and there have no concatenation operations for
feature maps with the same dimensions. The second model
(referred to as 3DUNET-RPN) used a 3D U-Net backbone as
the feature extraction part. The third model (referred to as
VNET-RPN) used the V-Net backbone as the feature extrac-
tion part.

In this paper, we used a modified V-Net backbone
with inception-resnet [37] block added (fourth model),
as shown in Fig. 4. V-Net is a 3D version of U-Net
with resnet blocks [38], which has been demonstrated as
a effective method on the feature extraction part of lung
CT image, in the domain of pulmonary nodule detec-
tions. However, compared with nodules the lesion re-
gion of PTB is more widely distributed, and its shape
and size are more diverse. Therefore, we use inception-
resnet to extract features by using convolution kernel
with different sizes. The inception-resnet block included
convolution operations with different kernel sizes (1 ×
1 × 1, 3 × 3 × 3) to enable the model extracting more
detailed features from various receptive fields and to
greatly reduce network parameters. Furthermore, the

concatenate operation within the inception block was
used to amalgamate multi-scale features to enhance the
training of feature extraction procedure.

Then, a RPN was used to detect the Region of
Interesting (ROI) with 3D bounding boxes, instead of
pixel-level segmented masks. Therefore, we name the
model VNET-IR-RPN.

The original RPN algorithm [36] is a 2D network and we
add an extra z dimension by transforming the description of
anchor from 2D version {x, y, width, height} to 3D version {x,
y, z, d}, where d referred to the side length of this cube.

2.5.2 Definition of the loss function

The total loss Ltotal function included confidence loss Lconf,
location regression loss Lreg, and classification loss Lclass. The
first two losses were the nodule-detection loss function, while
the classification loss was added for PTB study. The confi-
dence loss Lconf is a cross-entropy loss that measured whether
this proposal was a valid target:

Lconf ¼ − plog pÞ Þ þ 1−pð Þlog 1−pÞ Þð Þðð ð1Þ

where p is the ground truth and pÞ is the predicted value.
The ground truth bounding box of a PTB lesion is

denoted by (Gx, Gy, Gz, Gd) and the bounding box of
an anchor is denoted by (Ax, Ay, Az, Ad), where the first
three elements stand for the center point and the last
element, for the side length.

The regression labels of the bounding box included the
regression of the center point (dx, dy, dz) and the side length dd

Fig. 4 VNET-IR-RPN network structure
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dx ¼ Gx−Axð Þ=Ad

dy ¼ Gy−Ay
� �

=Ad

dz ¼ Gz−Azð Þ=Ad

dd ¼ log Gd=Adð Þ
ð2Þ

The corresponding predictions were (d
Þ
x,d

Þ
y,d

Þ
z,d

Þ
d ). Then,

the total regression location loss was defined by

Lreg ¼ ∑
k∈ x;y;z;df g

S dk ; d
Þ
kÞ

� ð3Þ

where the function S was defined as

Sðd; dÞ Þ ¼
jd−dÞ j; if jd−dÞ j > 1

d−dÞ Þ2; else:
�

8
<

:
ð4Þ

Lclass is the cross entropy loss of five-classification dimen-
sion,

Lclass ¼ −∑
i
yi log y

Þ

i ð5Þ

where yi is the ground truth label and y
Þ

i is the predicted label.
Intersection over Union (IoU), which is equal to the overlap-

ping area of the bounding boxes of two objects divided by their
united area, is an evaluationmetric used tomeasure the accuracy
of an object detector on a particular target. It defines the tags of
each anchor box in the present study. The anchor box with IoU
larger than 0.5 was treated as a positive sample (p = 1), while
that with IoU < 0.02 was regarded as a negative sample (p = 0).
Others were neglected during training and validation.

Then, the loss function (Ltotal) is defined as follows:

Ltotal ¼ Lconf þ p Lreg þ λLclass
� � ð6Þ

p equals to 1 and 0 when the box is a positive sample and a
negative sample respectively; and λ is set to 0.5 according to
the setting of Yolo [39], which is a well-tuned deep learning
algorithm for 2D object segmentation and identification.

2.5.3 Training process

Patch-based input for training The 3D CT image patches
were cropped from the lung images and then individu-
ally fed into the network. The Clipped 3D CT image
patches were cropped from the lung scans to save GPU
memories and then fed into the network individually.
The size of the patch was 128 × 128 × 128 × 1 (height
× length × width × channel). All four models’ outputs
of the last convolution network were reshaped to 32 ×
32 × 32 × 3 × 10 in the transpose layer; the last two di-
mensions corresponded to 3 anchors in the RPN net-
work and the 10 regression dimension, respectively.
Three different scales of anchors with the side length
of 10, 40, and 80 mm were used. The 10 regression

dimension was {pi, xi, yi, zi, di, t0, t1, t2, t3, t4} where
pi is the confidence; xi, yi and zi denote for the center
of the candidate; di is the side length of the region, and
t0–4 is the possibility of 5 PTB types individually.

Transfer learning To accelerate the convergence rate of the
PTB analysis models, transfer learning was utilized in the
study by first training models for the task of lung nodule
detection using two open-sourced pulmonary CT datasets
LUNA16 and DSB2017, which contained 888 and 2101 lung
CT nodule analysis cases, respectively.

Proposed network DENSEVOXNET-RPN, 3DUNET-
RPN, VNET-RPN, and VNET-IR-RPN were firstly trained
with the above two lung nodule dataset. The outputs of the
detection models included the coordinates of the center point,
the side length, and the confidence of the region. There were no
classification vectors at this stage. Loss function Ltotal was used,
while λwas set to 0 to exclude the classification factors as well.
The models were relatively easy to converge as the morpholog-
ical characteristic of nodule compared with tuberculosis. When
the nodule detection models well converged, their parameters
were used to initialize the network for PTB study.

PTB training In the next PTB training stage, only the output
layer and the loss function were modified to include the lesion
classification task, while the rest of the network structure
remained unchanged.

At the beginning of the training, the PTB analysis network
was initialized with the parameters from the pre-trained nod-
ule detectionmodel (as they had the exact same network struc-
tures) except for the output layer, which was randomly initial-
ized with the normal distribution.

Performance evaluation A non-maximum suppression algo-
rithm [40] was first performed on detected PTB lesion regions
to remove repeated candidate bounding boxes. If the central
coordinate of the remaining box was within the radius of the
human annotated lesion region, the result was marked as true
positive (TP); otherwise, it was false positive (FP). False-
negative (FN) indicated that no predicted bounding box
corresponded to a human annotated region to measure the
number of issues missed by the model. Accordingly, Recall,
Precision, and the more balanced F1_scorewere used to mea-
sure the performance of the deep learning model:

Recall ¼ TP
TP þ FN

ð7Þ

Precision ¼ TP
TP þ FP

ð8Þ

F1 score ¼ 2� Precision� Recall
Precisionþ Recall

ð9Þ
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Quantitative diagnostic report The exported CT images
were converted back to the original size for easier re-
view. The final quantitative diagnostic report, based on
the detection and classification of PTB information, in-
cluded the overall infection probability, effective volume
of the left and right lungs, classification of lesion type,
the spatial location of the infection, and presence of
calcifications. The original CT images with correspond-
ing annotated lesion regions were also exported.

3 Overall infection probability of the left
and right lungs

According to the confidence level of each single detected le-
sion, the overall infection level (P) of the left and right lungs
was calculated using the probability formula of the Noisy-Or
Bayesian function [41] as follows:

P ¼ 1−∏
i

1−Pið Þ ð10Þ

where Pi represents the infection possibility of the ith lesion in
this single lung.

4 Effective volume of the left and right lungs

The effective volume of lungs has consulting value for
doctors in medical diagnosis [42, 43]. The effective vol-
ume of a single lung was calculated by extracting the
effective region in the original CT images according to
the value of HU (threshold equals to −200). By remov-
ing the blood vessels, soft tissues, and lesion regions,
the volume Vi of a single CT image was calculated as
Vi = Si × h, where Si is the effective lung region of the
ith piece, and h is the physical thickness between two
adjacent slices. Then, the total volume (in real physical
size) of the effective lung was measured as follows:

V total ¼ ∑
k

i¼0
Si � h ð11Þ

5 The spatial location of the infection

As a 3D system, the number of CT image slices was used
instead of coordinate z. The parameters x, y, and d (in pixel
size) represented the center point and the side length of this
single lesion region. The origin of coordinates of x and y was
at the lower-left corner of each CT image.

6 Classification of lesion type

The detected PTB lesion regions were classified into (1) mil-
iary, (2) infiltrative, (3) caseous, (4) tuberculoma, and (5)
cavitarytypes.

7 Recognition of the presence of calcification

According to clinical experience, a HU value of more than
120 of the nodule with an effective region of at least 3 pixels
indicated the presence of calcification.

8 CT image annotations

The location of lesions was annotated as the bounding box on
the CT slices corresponding to the output of the deep learning
model, together with their infection probabilities, types, and
presence of calcification. Only the image slice with the center
of the lesion was labeled to avoid confusion.

Table 1 M1-M4 referred to DENSEVOXNET-RPN, 3DUNET-RPN,
VNET-RPN, and VNET-IR-RPN The detection and classification accu-
racy values were based on the training set. All values were presented with

mean standard deviation within the brackets. The detection accuracywas
the recall rate. The classification accuracy was calculated only when it
was a true positive region

The average value in five folders M1 M2 M3 M4

loss 0.201(±0.015) 0.263(±0.027) 0.151(±0.019) 0.134(±0.022)

detection precision train 0.897(±0.016) 0.892(±0.012) 0.926(±0.023) 0.936(±0.021)

validation 0.796(±0.041) 0.859(±0.036) 0.882(±0.028) 0.901(±0.023)

classification accuracy train 0.921(±0.023) 0.918(±0.018) 0.942(±0.013) 0.948(±0.012)

validation 0.895(±0.028) 0.902(±0.020) 0.923(±0.016) 0.934(±0.014)
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9 Results

9.1 Evaluation platform

An Intel i7-8700k CPU together with NVIDIA GPU GeForce
GTX 1080ti was used as the testing server.

9.2 K-fold cross-validation

In order to evaluate the generalizability of the designed
models, we validated the results with 5-folder cross-val-
idation. In total, 852 CT samples were selected for
cross-validation, and the remaining 150 were used as
the final test set. In each fold, 752 train sets and 100
validation sets were used. The initial learning rate was
set to 0.01, and Stochastic Gradient Descent (SGD) was
used as the optimizer. In the experiment, 5-folder cross-
validation was used for each model. In order to evaluate
the performance of each model, the average loss value
of each model (if the loss was not significantly de-
creased) and the detection and classification accuracy
of the test model in the training and verification sets
were compared, as shown in Table 1.

9.3 Model performance on the test dataset

The performance of all four 3D CNN models was evaluated
on the test set, which consisted of 150 cases, including 75
cases from the PTB group and 75 normal cases from a healthy

group, with 412 valid PTB lesion regions. The best model in
5-fold cross-validation was selected. First, the detection accu-
racy was validated. The classification accuracy was calculated
only when a true positive region was observed.

The Free-Response Operation Characteristic (FROC) analy-
sis was utilized to evaluate the performance of different models
on the test dataset, as shown in Fig. 6. To facilitate directly
quantitative comparisons among models, FROC system score
was calculated; FROC was the average of the recall at seven
predefined false positives per scan (1/8; 1/4; 1/2; 1; 2; 4; and 8).

The cor re spond ing FROC sys tem scores fo r
DENSEVOXNET-RPN 3DUNET-RPN, VNET-RPN, and
VNET-IR-RPNwere 0.893, 0.875, 0.901, and 0.917, respectively
(Fig. 5). TheVNET-IR-RPNhad the best performance. This result
also highlighted the effectiveness and efficiency of inception-
resnet blocks in this 3D inspection architecture. Therefore, the
VNET-IR-RPN model was used for the rest of this study.

To achieve the maximum value of F1_score, the
threshold was set (classified as lesion region if the pre-
dicted probability is higher than the threshold) to 0.38. In
the test dataset, 397 candidate regions were detected by
the VNET-IR-RPN model, including 354 TP and 43 FP.
Moreover, 58 regions were observed as FN. The corre-
sponding Recall, Precision, and F1_score were 85.9%,
89.2%, and 0.875, respectively.

Furthermore, it was worthwhile to compare the perfor-
mance of VNET-IR-RPN on original CT images (Fig. 3a)
and preprocessed CT images (only valid lung regions shown
in Fig. 3f). The same test benchmark was used; 5.2%
bounding boxes were located out of the region of the lung,
especially close to the stomach. There were 423 candidate
regions detected by the VNET-IR-RPN model, including
340 TP and 83 FP. Moreover, 72 regions were observed as
FN. The corresponding Recall, Precision, and F1_score were

Fig. 5 The FROC curve of different models

Table 2 Results with and without preprocessing

Lesion region TP FP FN Recall Precision f1-
score

without preprocess 340 83 72 0.825 0.804 0.814

with preprocessed 354 43 58 0.859 0.892 0.875

Table 3 The Recall, Precision, and F1_score from the perspective of
whole CT cases

Recall Precision f1-
score

Whole PTB case 0.987 0.937 0.961
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82.5%, 80.4%, and 0.814, respectively. There was a 5.9%
retrograde for F1_score if the input CT images were not
preprocessed, as shown in Table 2.

From the perspective of a whole PTB case, 79 cases (74
cases from PTB group and 5 cases from a healthy group) were
detected to have at least one lesion, while 71 (1 case from PTB
group and 70 cases from a healthy group) cases were left as no
findings. The Recall, Precision, and F1_score of infected
cases as shown in Table 3.

In addition to the spatial label, the 354 detected TP samples
were classified using the VNET-IR-RPN model at the same
time with detection. The results showed that 322 regions were
correctly cataloged, and the classification precision rate was
90.9%. The results of sample detection and classification case
are shown in Fig. 6.

9.4 Example of the diagnostic report

An example of an exported diagnosis report, consisting of a
summarized description report and a series of images with
labeled lesions accordingly, is shown in Table 4 and Fig. 7.

10 Discussion

In this study, we have addressed the thorough research to the
pulmonary tuberculosis(PTB), four state-of-the-art 3D deep
learning models were adopted to analyze CT images of the
lungs. A VNET-IR-RPN backbone with inception-resnet
blocks achieved an excellent performance, both with reference
to the accuracy of detection and classification. The exported

Fig. 6 Detection and classification results of PTB lesion regions. Red line
represents the manual labels and the white line is the output of a deep
learning network. (a) The digit 0.88 on the top of the bounding box
denoted the probability of infection in this lesion region; the digit 3 at
the bottom of the box for type 3 (caseous) PTB; the “cal” and digit 20 on

the left of the box for the presence of calcifications with 20 pixels. (b)The
digit 0.8 for the probability of infection in this lesion region; the digit 5 at
the bottom for type 5 (cavitary) PTB; and the cal and digit 2 on the left for
the presence of cal with 2 pixels. (Usually, at least 3 pixels indicated
calcification)

Table 4 Example of a diagnostic report. The number of CT image slice was used instead of z. The parameters x, y, and d (in pixel size) represented the
center point and the side length of the lesion region. Cal., Presence of calcification; IP, infection probability

Quantitative diagnostic report of PTB
Name: xxx, Date of Birth: xxx, Gender: xxx, Study Date: xxx

Left lung:
Overall IP: 98.8%
Effective volume: 974.16 (cm3)
24th slice, x = 367, y = 377, d = 35, type: 2

(infiltrative), IP = 75.0%, Cal.: no
26th slice, x = 400, y = 314, d = 37, type: 2

(infiltrative), IP = 80.0%, Cal.: no
34th slice, x = 359, y = 383, d = 48, type: 2

(infiltrative), IP = 65.0%, Cal.: no
45th slice, x = 323, y = 370, d = 59, type: 5

(cavitary), IP = 75.0%, Cal.: yes

Right lung:
Overall IP: 98.3%
Effective volume: 1352.57 (cm3)
26th slice, x = 164, y = 196, d = 32, type: 2 (infiltrative), IP = 71.0%, Cal.: no
39th slice, x = 163, y = 315, d = 31, type: 2 (infiltrative), IP = 71.0%, Cal.: no
39th slice, x = 179, y = 244, d = 26, type: 2 (infiltrative), IP = 65.0%, Cal.: no
44th slice, x = 147, y = 226, d = 26, type: 2 (infiltrative), IP = 78.0%, Cal.: no
49th slice, x = 177, y = 325, d = 37, type: 2 (infiltrative), IP = 78.0%, Cal.: no
50th slice, x = 202, y = 239, d = 34, type: 2 (infiltrative), IP = 73.0%, Cal.: no
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quantitative report, with overall infection probability, calcifi-
cation information, effective lung volume, lesions with spatial
coordination, and corresponding labeled images, may serve as
an effective reference for doctors to make clinical decisions.

11 Conclusions

The pulmonary tuberculosis lesion area in the lung morphol-
ogy is various, it is difficult to quantify the analysis. In this
paper, after studying a large number of related papers and
methods, the detection of pulmonary tuberculosis has been
effectively studied, and a quantitative diagnosis report has
been generated. It makes up for the blank of using deep learn-
ing to explore tuberculosis.

This study has a few limitations. First, besides PTB, signs,
including lesions in the pleural cavity, pericardium, bones,
and lymph nodes, may be used for evaluating intrathoracic
TB. In this study, we were mainly focused on the five typical
types of pulmonary lesions while ignoring the other signs.
Second, due to the lack of relevant training samples, other
pulmonary lesions, such as infectious diseases (bacteria, fun-
gi, viruses, parasites, and so on) and non-infectious diseases
(tumors and vasculitis and so on) could not be correctly iden-
tified and could be misjudged as a certain type of PTB. In our

next study, we plan to include samples of pulmonary lesions
other than TB. Third, the CT samples in this study were col-
lected from inpatient PTB cases with a relatively massive
region of lesions. The current model might be less sensitive
to trivial PTB lesions. Moreover, the proposed model might
misjudge some of the lesions due to the false-positive rate;
therefore, doctors still needed to review the full CT scan to
confirm the result.

Future investigations can be improved from the follow-
ing aspects. First, when extracting effective lung regions,
this study applied a fixed threshold method to extract
masks. For improvement, more effective detection
methods can be used in data preprocessing due to the
wide distribution and different types of PTB lesion re-
gions. For example, a better pulmonary mask can be
achieved by extracting the lung contour by a deep learn-
ing regression method. Second, during the full complete
TB treatment cycle for one patient, clinical doctors were
more concerned about the changes in PTB lesions. Hence,
patients needed to be scanned several times. The compar-
isons should be made before, during, and after the therapy
to assess the treatment effect. An artificial intelligence
system can be used in the future to analyze all CT cases
of one patient along the time sequence with a quantitative
comparison of the whole PTB treatment.

Fig. 7 Example of a diagnostic result corresponding to the same case as in Table 2 (a) 24th slice; (b) 26th slice; (c) 34th slice; (d) 39th slice; (e) 44th slice;
(f) 45th slice; (g) 49th slice; and (h) 50th slice
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