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Abstract
A large amount of research on Convolutional Neural Networks (CNN) has focused on flat Classification in the multi-class
domain. In the real world, many problems are naturally expressed as hierarchical classification problems, in which the
classes to be predicted are organized in a hierarchy of classes. In this paper, we propose a new architecture for hierarchical
classification, introducing a stack of deep linear layers using cross-entropy loss functions combined to a center loss function.
The proposed architecture can extend any neural network model and simultaneously optimizes loss functions to discover
local hierarchical class relationships and a loss function to discover global information from the whole class hierarchy while
penalizing class hierarchy violations. We experimentally show that our hierarchical classifier presents advantages to the
traditional classification approaches finding application in computer vision tasks. The same approach can also be applied to
some CNN for text classification.

Keywords Convolutional neural network · Hierarchical deep learning · Image classification

1 Introduction

In recent years researchers have become increasingly
interested in the multi-label and hierarchical learning
approaches, finding many applications to several domains,
including classification [1, 2], image annotation [3],
bioinformatics [4–7]. Nowadays, machine learning is
commonly used to solve complex problems, where for
example an object is classified by assigning a label based on
the rules learned from the model used. However, classes are
not always disjoint from others and objects within them can
be related to others as a hierarchical structure [8]. Human
beings perceive the world with different types of granularity
and can translate information from coarse-grained to fine-
grained and on the contrary, perceiving different levels
of abstraction of the information acquired [9, 10]. This
concept is reflected in the taxonomy of the multi-label
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general approaches under the idea of structured output
prediction [11].

In terms of neural models, the main difference between
the prediction of structured output and flat multi-label
classification lies in the level of neurons that contains the
label prediction. In fact, in the presence of a structured
output, the information is based on a different level of
abstraction, while with the multi-label flat approach it is
based on a single level.

Hierarchical multi-label classification (HMC) is a variant
of the classification task where instances may belong to
multiple classes at the same time and classes are organized
in a hierarchy. In HMC approaches a relationship among
classes and can be formalized by a tree or directed acyclic
graph (DAG).

Our approach to HMC exploits the annotation hierarchy
by building a single neural network that can simultaneously
predict all categorization of an input source exploiting
multiple layers of a neural model. For example, considering
the class label prediction for an image containing a tiger, the
proposed system can simultaneously predict that a “tiger”
has been found but at the same time the same object is also
a “feline” and a “mammal”.

In literature exists two main approaches to HMC
problem, known as local and global [8, 12, 13]. In the
global approach, the output of the final layer predicts the
test instance in which only one classifier sees information
globally without having local information. In the local
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approach, there is a set of trained classifiers that follows
a top-down strategy, in particular, the training process is
independently for each base classifier.

Different local approaches have been proposed in the
literature, like Local classifier per Node (LCN) [4], Local
classifier per parent node (LCPN), Local classifier per
level (LCL) [14]. LCN strategy trains a local classifier for
each node of a graph providing a local decision to make
predictions. LCPN uses a multi-class classifier for each
internal class to recognize classes from its sub-classes and
LCL methods train a multi-class classifier per hierarchical
level. In contrast with local (LCN, LCL, LCPN) and global
approaches, we use a single trained model and a single
back-propagation error with many different layers fully
connected, responsible to synchronize with a concept linked
to a given hierarchical structure.

A recent paper [1] describes a novel method to solve
HMC problem, that preserves local and global information
simultaneously to discover the local hierarchical relation-
ship among classes. Unlike this paper, our architecture
exploits recent neural network potentialities and facilitates
the multi-class prediction for each deep layers to capture
local context following the hierarchical structure of the
information. In our approach, we have a cascade of fully
connected linear layers each one with softmax plus cross-
entropy, where the output of a layer l−1 is the input of layer
l; instead, in [1] the model has ReLu activation functions
on two different layers fully connected with softmax and
binary cross-entropy per block. Another difference with [1]
is that the input of each layer l fuse with the input, instead,
in our approach the input per layer is the output of the pre-
vious layer. The last difference is that our model uses local
classification as final prediction in according to hierarchi-
cal multi-label classification task, instead of in HMCN-F
the final layer is used as flat layer plus another layer that
uses jointly local and global output information to obtain the
final prediction.

In [15] the authors propose an approach called Hier-
archical Complement Objective Training (HCOT) which

exploits information extracted from the label hierarchy.
Their approach maximizes the probability of the correct
class and, at the same time, penalizes the probability of the
other classes by using the respective class hierarchy as truth.
However, they do not consider additional hyper-parameters
in the training phase and apply their loss function in the
last layer along with the cross-entropy loss function without
changes for the CNN topology.

Our method can be summarized in the following key
contributions:

– We propose a new Hierarchical Deep Loss (HDL)
function as an extension of convolutional neural
networks to assign hierarchical multi-labels to images.

– Our extension can be adapted to any CNN designed for
classification by modifying its output layer.

– We have conducted experiments on many image
classification problems but the same approach can be
applied to other classification problems, such as text
documents classification.

– We created and released two simple benchmark datasets
for hierarchical multi-label image classification.

– To prove the effectiveness of our hierarchical classifi-
cation approach we conduct empirical studies on many
different datasets reporting results in terms of hierar-
chy recognition and the final accuracy. You can find full
code on Gitlab repository [16].

2 The proposed approach

As mentioned above, our solution is an architectural
extension that can be adapted to a generic neural network.
In this paper, we used a standard Convolutional Neural
Network, the ResNet18, as a base model to which we added
our solution to solve a hierarchical images classification
problem. As graphically represented in Figure 1, what we
do is to extend the output layer with a set of new neural
layers equal to the number of levels available in the class
hierarchy tree of the problem to be solved, and to associate a

Resnet Block Resnet Block Resnet Block Resnet Block
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Fig. 1 A graphical representation of the proposed model. The output
layer of a CNN (represented here by a Resnet-18) is replaced by N

fully connected layers equal to the number of levels available in the

class hierarchy tree of the problem to be solved. Each of the N added
layers lineari is associated with a Li cross-entropy loss function. LC

is the center loss function
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loss function to each of these new layers added. In practice,
we construct a mapping between the layers 1L, . . . , NL of
a class hierarchy and the new layers linear1, . . . , linearN
of the neural network, as shown in Fig. 1. In this way, the
network can learn to discriminate between all class labels
belonging to a given layer of the hierarchy. The new layers
linear1, . . . , linearN added to the neural network The new
added neural layers linear1, . . . , linearN must necessarily
contain fully connected layers containing a number of
neurons equal to the dimension of the level of the class
hierarchy to which it is associated, but they can also be
preceded by other neural layers to avoid bottlenecks for
very large problems to learn. To minimize the intra-class
variance and at the same time to keep the features among
different classes separated we compute the Center Loss
function [17] on each training mini-batch and update all
class centers after each training epoch. More formally we
compute the center loss LC as follow:

LC =
m∑

i=1

‖xi − cyi
‖2

2 (1)

where cyi
∈ R

d denotes the center for the class yi in the
features space of the deep model. In our experiments, we
chose a Resnet-18 as a general model and apply Center Loss
after the adaptive pooling layer. More formally, let linearg
be a new added layer with a size equal to the number of
classes available at the gL level of the class hierarchy, so we
can describe this layer with the following formula

linearg = φ(Wgx + bg) (2)

where Wg ∈ R
|linearg |×|d| , bg ∈ R

|lg |×1 is the bias vector
with φ linear activation function and d be the number of
features. Then, we add a neural layer linearg for each
hierarchical level gL of a generic dataset in order to perform
the cross-entropy loss function to maximize the inter-class
variance. More precisely, we apply softmax function from
logits of layer linearg and use the cross-entropy loss
function described below in the equation (3).

Lg = −
m∑

i=1

log
e
WT

yi
xi+byi

∑n
j=1 e

WT
j xi+bj

(3)

where g is the layer g-th, m and n are the mini-batch size
and number of classes respectively, xi ∈ R

d denotes the i-th
deep feature, belonging to the yi-th class and b is the bias.

Finally, the total loss function computed in our proposed
approach is:

L = λ0 · LC + λ1 · L1 + · · · + λN · LN (4)

where λ0,1,...,N = 1, LC is the center loss function and
L1,..,N are the cross-entropy loss functions for each level
{1L, ..., NL} of the class hierarchy. the generic formula

of the complete loss function that we propose here is the
following

L = λ0 · LC +
N∑

l=1

λl · Ll (5)

3 Datasets

In this section, we briefly describe all the datasets used in
this paper and available in the literature. We also introduce
two new datasets useful for further evaluating the proposed
approach.

Medical Visual Question Answering task (VQA-Med 2019)
[7] is focused on radiology images (some examples are
showed in Fig. 2) grouped in four main classes: Modality,
Plane, Organ system, Abnormality. The original challenge
of this dataset is to classify an image starting from a question
connected to it, in fact for each image of the training set
we have a combined question. In this paper, our focus is
on the multi-label hierarchical classification of images, so
in our experiments, we ignore the text classification task.
We use all images in the training set to train the model
while we use the validation set as a test set because the test

(a) (b)

(c) (d)

Fig. 2 Four images extracted from VQA-Med 2019 [7] dataset
(synpic371, synpic10103, synpic16486, synpic48315). The labels
separated by comma belong to the sub-categories of the three main
classes following the order: Modality, Plain, Organ
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set is not labelled with all labels. The training set contains
2816 images while the validation set contains 340 images.
In total, we consider three levels of hierarchy (Modality
Class, Plane Class, Organ Class) with their related different
types of concepts. These three levels of class hierarchy
are respectively 44, 15, 10 in size. In these experiments,
our goal is to experimentally prove the effectiveness and
robustness of our model to discriminate different concepts
even in the case in which we have few examples per class
on the training set.

We have created a synthetic geometric shapes dataset
which contains images of two different geometric shapes:
triangle and square, representing the first level of the class
hierarchy. The next level of the class hierarchy contains
c1, c2, . . . , c6, which are six different colours used as the
fill colour of the geometric figure. The last level of the
hierarchy contains six other different colours s1, s2, . . . , s6,
used to draw a coloured outline for the geometric figure.
The Fig. 3) shows some examples of images of this dataset,
together with its class hierarchy.

Consequently, the different possible configurations that
can be obtained from this class hierarchy is equal to 72. The
dataset contains 20,000 training images and 6,000 images
used for testing. The images size is 128x128x3. In these
experiments, we want to answer the question “Which kind
of shape is this? What is the fill colour? and the out fill
colour?.

AnimalsTaxonomy8 is a dataset created by us starting from
images of animals downloaded from Flickr, the hierarchy
represents a small taxonomy with class, family, and species,
as shown in Fig. 4. The two classes that we selected at
the first level of the hierarchy are mammalia and reptilia.
In the second level of the hierarchy (family), we selected
felidae and ursidae for mammalia and crocodyle, iguanidae,
emydidae and pythonidae for reptilia. The last hierarchical
level represents species as malaysia tiger, felis catus known
as cat, ailuropoda melanoleuca known as giant panda, ursus
maritimus known as polar bear, python molurus known
as green python, trachemys scripta as small turtle, iguana
iguana and crocodylus niloticus known as crocodile nilus.
An entire schematic representation of the dataset can be

Fig. 3 Some examples of images belonging to the synthetic geometric
shapes dataset. On the left, two examples of squares, followed by two
examples of triangles with different colours used for the filling of the
figure and for the outline of the same. On the right, the class hierarchy
of this dataset. c1, c2, . . . , c6 and s1, s2, . . . , s6 are two sets of different
colors

seen in Fig. 5 while some examples of images contained in
the dataset are shown in Fig. 6.

ImageNet is the dataset most widely used for images
classification. The main reason is due to the high number of
classes and the inhomogeneous of the images. We conduct
an experiment using the ILSVRC2012 [18] version of this
dataset, containing 1000 classes and 1.2 million images
(see Fig. 7). This is a huge hierarchical dataset available in
the literature where all the annotation labels are extracted
using WordNet [19]. WordNet is a large lexical database
of English who contains Nouns, verbs, adjectives, adverbs,
and they are grouped into sets of cognitive synonyms called
synsets. This lasts are linked using conceptual-semantic and
lexical relations.

Cifar100 [20] is a dataset commonly used in the literature
as a benchmark for image classification. It contains 60,000
training samples and 10,000 test samples, each sample is
a 32 × 32 RGB image and it is divided into 100 different
classes (see Fig. 7). We conduct experiments on this dataset
because is possible to extract different hierarchies on many
levels of depth (see results in experiment 6).

4 Experiments

To evaluate various aspects of our approach to hierarchical
classification, we conducted the following experiments on
different datasets:

Reptilia

Mammalia

Felidae

Ursidae

Felis catus

Ailuropoda
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Iguana
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Python 
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Class Family Species

Pythonidae
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Fig. 4 Class hierarchy of the Animals Taxonomy8 dataset we created

Learn class hierarchy using convolutional neural networks 6625



Mammals

Felidae

Polar bear

Tiger

Cat

Orsidae

Giant Panda

Pythons A

A. Crocodile

Reptiles

Green Iguana

Turtles A

Crocodylia
Pythonae

Iguana

Testudines

Turtles B

Pythons B

X

X

Fig. 5 Hierarchy of categories used in Animals Taxonomy8

1. To analyze the behaviour of our method under
conditions of a low amount of data available, in the
first experiment we use the well-known dataset VQA-
Med 2019 containing biomedical real images and the
proposed Animals Taxonomy8 dataset.

2. In the second experiment we test the abstraction
capacity of our approach on large datasets and at the
same time we try to estimate the best learning rate to
train the proposed model.

3. In the third, we extract hierarchical structure on the real-
images dataset contains images of three types of animal
taxonomy levels (Class-Family-Species) and prove the
robustness of our HDL in the case which images are
hard to recognize and they contain noise.

4. In the four experiments, we compare our HDL with a
ResNet18 proving the effectiveness of our approach.

5. In the fifth experiment, we use WordNet to extract
all category annotations from the ImageNet dataset to

investigate the ability of our approach to obtain a correct
hierarchy classification in case a non-hierarchical
model makes a mistake in a way to do not lose the
entire information. We also want to demonstrate that if
the dataset is huge, we can always leverage the levels
for the hierarchical classification proposed in this paper,
using a pre-trained model to reduce training times.
Furthermore we report the precision per class showing
an high ability to hierarchy recognition.

6. We conduct experiments on Cifar-100 using HDL on
variants of Resnet and compare with non-hierarchical
models. We use WordNet to extract three different
levels of hierarchy reporting the accuracy.

Experiment 1 In this experiment, we test our model in a
situation where we have a few instances with high image
complexity. We are interested in analyzing the performance
in terms of the accuracy of the various linear1, . . . linearn

Fig. 6 An example image for
each species of the class
hierarchy represented in Fig. 4
and extracted from the dataset
Animals Taxonomy8 proposed
by us

(a) (b) (c) (d)

(e) (f) (g) (h)
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Fig. 7 Some sample images extracted from the Cifar-100 dataset (on
the left) and from the ImageNet dataset (on the right)

layers introduced. The hypothesis we are interested in
verifying is that the classification accuracy is greater
when the number of different concepts to be distinguished
is lower. To do this we use the VQA-Med 2019 and
Animals Taxonomy8 datasets. As shown in the Table 4 in
the first row (VQA-Med 2019), we have an accuracy of
38.05%, 74.04% and 66.66% for the levels having 44, 15
and 10 classes respectively. We can, therefore, observe that
the accuracy of the first level is 1.94 times lower than the
second level and 1.75 times lower than the third level, this
demonstrates that our model offers better scalability when
we have few concepts per level to learn. Similar results
can be found in Animals Taxonomy8, where the greater
accuracy of level 3L, shown on the third row of the Table 4,
compared to others, is because we only have two concepts
(mammals or reptiles) to be distinguished compared to the
8 concepts of level 2L (see Figs. 8 and 9 for details).

Experiment 2 In a second experiment, we use our synthetic
geometric shapes dataset containing several instances. In
fact, the size of this dataset is 7.10 times greater than
the VQA-Med 2019 dataset. We want to show that using
more instances per class can improve the accuracy of our
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Fig. 8 Training losses Animals Taxonomy8 with lr = 0.01
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Fig. 9 Training losses Animals Taxonomy8 with lr = 0.005. We
emphasize the different descent of losses. This is due to the number of
concepts to distinguish from each layer. Each line represents the loss
for each layer. For this dataset, we design our model with a shape of
6, 8, 2 to distinguish Family, Species and Classes respectively. As we
show also in 4, the line yellow that represents linear layer 3 with 2
concepts (Mammals or Reptiles) has more descent power, indicating
that our model quickly learns a few concepts rather than many as red
line or green

model and subsequently, and then we can obtain better
performance compared with a configuration like the first
experiment. To prove that, we train with 20K instances the
proposed HDL model and test it with 6k instances. The
results are shown in Table 4 and confirm our expectations.
The higher number of instances jointly with the simplicity
of images allows the model to reach high accuracy starting
from the first ten epochs. Furthermore, we conduct three
different runs of this experiment jointly with the experiment
conducted in Experiment 1, changing the learning rate from
0.005 to 0.01 and using a batch-size of 64. As can be
observed from Table 4, there is no particular rule on the
choice of the learning rate.
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Fig. 10 HDL vs original Resnet18 with lr = 0.005
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Fig. 11 HDL vs original Resnet18 with lr = 0.01

Experiment 3 In these experiments, we test our model
using more instances than the first experiment and with
images of animal (Animals Taxonomy8) that contains noise.
In particular, our model offers good performance also
in the case the images are not simple as in the second
experiments and when they contain noise or offers little
comprehensibility, indeed many images are not clear, like
for example a snake completely hidden by forest or a
bar sign with a panda logo. However, as we show in
Table 4, the accuracy of the third level 3L, responsible to
recognize mammals or reptile is very high. We conclude
that considering the poor understanding of images, noise
and hard images to recognize, experimental results prove the
robustness of our model.

Experiment 4 HDL is designed to maximize the learning
capacity and to extract the hierarchical structure from the
labelled data. Our intuition is that our model, lead to
different losses at any level, with the power to reduce intra-
variance and to maximize inter-variance, can obtain better
accuracy than a classical convolutional neural network. To
prove this, we conduct six different experiments using a
classic ResNet18 and our HDL on Animals Taxonomy8

using two learning rate and a batch size of 64. The results
showed in Table 5 and Figs. 10 and 11, clearly confirm
our expectations. In all cases, the accuracy is higher than a
classical ResNet18, this experiment proves the effectiveness
of our proposed model.

Experiment 5 In this experiment, we use the output of a
pre-trained Resnet18 on ImageNet extended with the deep
stack of fully connected layers. Since the ImageNet class
hierarchy was extracted from WordNet, we directly use it to
generate the class hierarchy for all ImageNet samples.

Then, from each class of 1000 available on ImageNet,
we find the path of its hypernyms. Starting from the root,
the size of the first five levels in the class hierarchy
obtained from ImageNet-2012 is [2, 11, 28, 61, 107]. In this
experiment we chose only the fifth level with 107 classes,
some of which are for example: organism, living being,
sound, flesh, physical condition, color, instrumentality,
commodity, fish, district, boxer, European and so on. The
goal of this experiment is to count how many instances are
misclassified by the pre-trained model considering the 1000
classes of the dataset, but at the same time, thanks to our
deep stack hierarchy levels, to count how many of these
samples are correctly classified using the fifth level of the
class hierarchy.

In the Table 1 we report the ability of our approach
to extract the right predictions from the fifth level of
the class hierarchy even if the pre-trained model makes
misclassifications. In the first column, we show the correct
prediction value in case the pre-trained model makes a
wrong classification. So 3306 is the number of instances
that the pretrained Resnet18 misses but with our approach
we are able to recognize the correct category among the 107
classes of the fifth level of the hierarchy. (see Table 1 for the
details and descriptions of the experiment). This experiment
demonstrates the ability of our hierarchical approach to
recognize the correct categories of a class hierarchy, even
when a classification model fails to recognize the correct

Table 1 Results obtained on the ImageNet-2012 dataset

Correct Wrong Other Pre-trained Acc HDL Acc

3306 803 16996 76.45% (1000 classes) 88.31% (107 classes)

The leftmost column reports the number of samples misclassified by the pre-trained Resnet-18 model using the 1000 classes of the dataset while
for the same 3306 instances our hierarchical model has correctly predicted the class among the 107 available in the fifth level of the hierarchy.
The column labeled “Wrong” contains the number of samples correctly classified by Resnet-18 (1000 classes) but where at the same time we
are unable to recognize the category (107 classes). The “Other” column reports the number of instances that are correctly/incorrectly classified
both on the 1000 leaf classes and on the 107 classes of the hierarchy. In the last column, we show the accuracy calculated in the fifth level of the
hierarchy, while in the second-last column we report the accuracy (1000 classes) from the pre-trained model
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class. Furthermore, to check the ability to class hierarchy
recognition, thanks to the deep stack layers introduced,
we compute the precision metric per class (see Table 2),

Table 2 Accuracy per class reported using our hierarchical level of
107 ImageNet classes

Class Precision Class Precision

0 0.914893617021277 1 0.94286154320037

2 0.709677419354839 3 0.888888888888889

4 0.923076923076923 5 0.888888888888889

8 0.892263759086189 9 0.815719947159841

10 0.845528455284553 12 0.96969696969697

13 0.75 14 0.96875

16 0.828571428571429 17 0.869158878504673

18 0.931818181818182 19 0.933333333333333

20 0.91304347826087 21 0.857142857142857

22 0.941176470588235 23 0.91666666666666

24 0.793103448275862 25 0.90625

26 0.796875 27 0.830527497194164

28 0.807692307692308 29 0.733333333333333

30 0.761904761904762 31 0.936708860759494

32 0.948717948717949 33 0.846715328467153

34 0.815384615384615 35 0.875

37 1 38 0.823529411764706

39 0.777777777777778 40 0.705882352941176

42 0.607142857142857 43 0.933333333333333

44 0.735294117647059 45 0.757575757575758

46 0.645161290322581 47 0.772727272727273

50 0.827586206896552 51 0.8125

52 0.852941176470588 53 0.814814814814815

54 0.818181818181818 55 0.807692307692308

56 0.870967741935484 58 0.909090909090909

59 0.84 60 0.909090909090909

61 0.814814814814815 62 0.871794871794872

64 0.858974358974359 65 0.761904761904762

67 0.6875 68 0.857142857142857

69 0.772727272727273 73 0.717948717948718

74 0.941176470588235 76 0.689655172413793

79 0.971428571428571 80 0.758620689655172

81 0.828571428571429 82 0.888888888888889

83 1 84 0.708333333333333

85 0.882352941176471 86 0.827586206896552

88 0.863636363636364 91 0.807017543859649

92 0.525423728813559 93 0.955555555555556

94 0.470588235294118 96 0.612903225806452

97 0.727272727272727 98 0.480769230769231

99 0.761904761904762 100 0.904761904761905

105 0.65

Some classes have been hidden because, in the randomly drawn test
set, we don’t have any samples for those classes

showing a high ability of our model to recognize the single
categories introduced with the class hierarchy.

In conclusion, we demonstrate the capability of our
approach to does not lose the entire information in the
case the main model makes a misclassification in a way
to preserve the truth of the categories from fine-grained to
coarse-grained. For instance, if the main model makes an
error to classify a frog instead of a green t-shirt, with our
approach, we can recognize the hypernyms of t-shirt like for
example, physical entity, object, artifact, covering, clothing,
garment. In the last example, the dimension of our deep
stack layers is 6 and in general, the dimension depends on
all categories we can find at the same level on WordNet.

Experiment 6 We investigate and analyze the behavior
of our model on Cifar100, using the same WordNet-
based approach of experiment 5, to create the useful
annotations to build the categories of the class hierarchy.
Differently by [15], that groups the 100 classes of Cifar100
into 20 coarse classes, we extract the class hierarchy
automatically using WordNet at different levels of depth. In
our experiment we extract the following categories:

– Category 1L: whole, person, phenomenon, body of
water, arrangement, substance, solid, geological forma-
tion, part, collection, location, land.

– Category 2L: object, causal agent, process, thing,
group, matter.

– Category 3L: physical entity, abstraction.

Respectively, we extracted {12, 6, 2} classes per layer from
Cifar-100.

In this experiment, we do not use a pre-trained model and
we train the whole Resnet model with a deep hierarchical
stack. We use three different levels of abstraction from fine-
grained to coarse-grained inserted after the final output layer
of the baseline model used. Specifically, our deep stack is
composed by three different layers lineari , and in particular
linear1 contains two fully connected layers of size 100, 12
respectively; linear2 contains two fully connected layers
of size 10, 6 respectively; and linear3 contains two fully
connected layers of size 4, 2 respectively.

We use ReLu activation function (except for the layers
of size 12, 6, 2). In Table 3 we compare variants of ResNet
used as baseline with our deep stack layers (1L, 2L, 3L).
From this experiment we can conclude that our hierarchical
approach, under the conditions of this experiment, does
not improve in classification accuracy (100 classes of
Cifar-100), however, it can be noted that the introduction
of hierarchical stacks leads to a considerably improved
classification accuracy for individual layers of the classes
hierarchy.
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Table 3 Error rates (%) on CIFAR-100 using ResNet and its variants

Model Baseline HDL 1L (12 cls) 2L (6 cls) 3L (2 cls)

Resnet-18 [21] 35.70 35.70 12.23 11.43 1.20

PreAct ResNet-18 [22] 27.40 27.40 9.68 9.18 1.0

PreAct ResNet-101 [22] 24.39 24.70 8.79 8.46 1.17

PreAct ResNet-152 [22] 26.18 25.90 9.59 8.95 1.01

1L, 2L, 3L represent 3 hierarchical categories level (coarse-grained) chosen for this experiment

4.1 Experiments settings

We build our hierarchical multi-label classifier model as an
extension on a Resnet-18, but is it possible to apply to any
Convolutional Neural networks. We implement our exten-
sion in Python using Pytorch framework. Figure 1 shows
the architecture used for experiments. The size of the input
images is re-scaled to 64x64x3 for Geometry dataset and
256x256x3 for VQA-Med 2019 and Animals Taxonomy8
datasets. We do not apply any preprocessing of images as
data augmentation, rotation or normalization. The kernel
size of the first convolutional layers is 7x7 with a stride of 2
pixels, followed by a normalization of layer and a non-linear
layer with ReLu activation function. A max-pooling opera-
tion over 3x3 regions and a stride of 2 pixels. Then, we have
four blocks of Convolution, with 64, 128, 256, 512 numbers
of plans respectively and apply an adaptive average pool-
ing over 1x1 region. Finally, we add three fully connected
linear layer, where each layer corresponding to the total
number of concepts in our hierarchical dataset. In the for-
ward process, we take the output after the adaptive average

Table 4 Accuracies comparison using three different datasets on
different learning rate

lr=0.005

Datasets 1L 2L 3L

VQA-Med 38.05% (44) 74.04% (15) 66.66% (10)

Shapes 100% (6) 100% (6) 100% (2)

Animals Taxonomy8 71.98% (8) 69.07% (6) 92.82% (2)

lr=0.001

VQA-Med 35.98% (44) 70.20% (15) 67.84% (10)

Shapes 100% (6) 100% (6) 100% (2)

Animals Taxonomy8 72% (8) 69.12% (6) 92.89% (2)

lr=0.01

VQA-Med 34.8% (44) 71.97% (15) 69.61% (10)

Shapes 100% (6) 100% (6) 100% (2)

Animals Taxonomy8 69.2% (8) 66.53% (6) 91.32% (2)

We use a batch size of 32 on VQA-MED and 64 on the other datasets.
In round brackets the number of classes for that level of the class
hierarchy

pooling and apply Center loss function and for each linear
layers we apply softmax function and then cross-entropy
loss. The total loss will be the sum of the local loss per lay-
ers. Our network was trained with Adam optimizer [23]. The
batch-size used, learning rate, epochs are described jointly
with the results for each dataset. In the fifth experiment,
we use a Resnet18 pre-trained on ImageNet. Then, we
introduce two fully connected layers of size 1000 and 107
(categories at fifth level extract by WordNet) and trained
only these last two layers. We use the same configuration
described before, except for the size of the input images
changed to 256 × 256 × 3.

In experiment 6, we use variants of Resnet (see
references available in Table 3), a learning rate equals
to 0.001, random crop, random horizontal flip as data
augmentation and run all the experiments for 800 epochs.

5 Results and discussion

This study is placed in the sub-category of multi-label
classification called Structure output learning. In according
with experimental results at Tables 1, 3, 4 and 5 we achieved
good results on five different datasets finding the way to
exploit the dependency among classes and make accurate
categories predictions, reducing the misclassification than
a main model. We obtain good results in categories

Table 5 Accuracies comparison of our model with a original ResNet
from coarse-grained (1L) to fine-grained (3L)

lr=0.005

Our model 1L 2L 3L ResNet18

71.98% - - 71.19%

Animals Taxonomy8 - 69.07% - 68.58%

- - 92.82% 90.86%

lr=0.01

Our Model 1L 2L 3L ResNet18

69.2% - - 68.34%

Animals Taxonomy8 - 66.53% - 65.36%

- - 91.32% 90.98%
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recognition task on ImageNet dataset showing the flexibility
of our approach to be adapted also in a pre-trained
network. We get the same results on Cifar-100 using
variants of Resnet models on the “leaf” node of the
classes hierarchy, however, we show high accuracy on
coarse categories recognition allowing our model to get
some useful information even when the main model makes
misclassifications (Table 3).

6 Conclusion

In literature, multi-label classification is an important field
in machine learning and it is strongly related to many
real-world applications for example, in biomedical images
annotation, document categorization and whatever problem
which the instances inside the classes are not disjoint but
they keep a hierarchical structure. In this paper, we have
conducted widely empirical studies on different datasets
to prove by experimental results the effectiveness and
robustness of our proposed model, that can be applied as an
extension of any Convolutional Neural Network configured
for classification tasks.
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