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Abstract
In this article, we examine to what extent the settlement of university graduates can be derived from satellite images.
We apply a convolutional neural network (CNN) to grid images of a city and predict five density classes of university
graduates at a micro level (250 m × 250 m grid size). The CNN reaches an accuracy rate of 40.5% (random approach:
20%). Furthermore, the accuracy increases to 78.3% when considering a one-class deviation compared to the true class. We
also examine the predictability of inhabited and uninhabited grid cells, where we achieve an accuracy of 95.3% using the
same CNN. From this, we conclude that there is information that correlates with graduate density that can be derived by
analysing only satellite images. The findings show the high potential of computer vision for urban and regional economics.
Particularly in data-poor regions, the approach utilised facilitates comparative analytics and provides a possible solution for
the modifiable aerial unit (MAU) problem. The MAU problem is a statistical bias that can influence the results of a spatial
data analysis of point-estimate data that is aggregated in districts of different shapes and sizes, distorting the results.

Keywords Satellite images · Demographic structure · Machine learning · Urban areas

1 Introduction

The prediction of urban areas and the corresponding growth
[4, 9] utilising machine learning [1, 12, 22, 23] is a vital
topic in built environments. This work, as a first pilot
study, focuses on the prediction of demographic structures,
more specifically the distribution of university graduates, in
urban areas, as they can be used as a proxy for the wealth
distribution of cities as well as for the attractiveness of
neighbourhoods [6, 13, 20]. Satellite images can assist in
deriving visual characteristics—whether a residential area
is generally attractive—without the assistance of any other
(demographic) statistical data, distance measures, points
of interest (POIs) or any other relevant GIS data. Such
visual characteristics include the material of the buildings
in a residential area and the immediate neighbourhood
or vegetation in the area, as the presence of vegetation,
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street trees, parks, forests, open spaces, and bodies of water
usually enhances residential areas [24, 30]. We assume that
the presence of the aforementioned types of land covers
are indicators of a wealthy neighbourhood and thus also
correlate with the settlement of university graduates.

Satellite images and the capabilities of today’s computer
vision techniques, in combination with machine learning,
play an increasingly important role in economic evaluation.
Some examples of statistical economic variables that can
be predicted using computer vision are the gross domestic
product (GDP) [5], economic growth [17] and poverty
[51]]; computer vision can also be used in detecting,
estimating and monitoring socioeconomic dynamics such
as urbanisation, population and economic activity [3] using
nighttime luminosity. The focus of our research is on
predicting the university graduate ratio (GR) in an urban
population (the city of Vienna, Austria) by the use of
satellite images depicting a 250 m × 250 m area, which
is the smallest population grid data available in Austria.
Figure 1 shows example satellite images from our dataset
with different densities of university graduates and the
related visual characteristics.

Our approach enables us to constantly monitor economic
data in a populated area and to circumvent the modifiable
areal unit (MAU) problem, which arises due to administra-
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Fig. 1 Where do university graduates live? Four example areas from
our dataset are represented by high-resolution satellite images (4285 ×
4285 pixels). From left to right: Image (a), with a high graduate ratio
of 51.2%, in the city centre of Vienna. Image (b), with a high graduate

ratio of 32.4%, in the outskirts of the city. Image (c), with a gradu-
ate ratio of 10.0%, near an industrial zone. Image (d), which displays
panel buildings with a graduate ratio of 3.3%

tive borders and other spatial limitations [41, 47]. The MAU
problem arises when spatial aggregated data are analysed, as
the size and scale of the aggregation district can lead to sta-
tistical bias. The MAU problem is resolved when the trained
neural network can be applied to arbitrary locations, inde-
pendent of the size and scale of any predefined grid. Part of
the increased accuracy needed to circumvent MAU problem
distortions is the use of the smallest possible spatial area
when predicting sociodemographic data [50]. For a review
of the MAU problem and suggested solutions see [8, 40].

Additionally, most evaluations conducted in the field
are executed at a highly aggregated level (e.g., 1 km ×
1 km satellite image grid cells [21]) to predict economic
variables. Our approach differs in the sense that we focus
on a much more fine-grained analysis of the images, which
can enable a more precise economic analysis in the future.
This small-scale analysis together with the free positioning
of the satellite image grid can address problems and provide
possible solutions (e.g., varying the shape and size of the
investigated area) [8, 40, 52]. Additionally, we do not make
any assumptions, and our work is fully data driven. This
means that characteristic visual patterns are discovered and
learned autonomously and do not have to be predefined.

The overall aim of this article is to combine methodology
from the disciplines of urban economics and computer
vision to realise innovative services for urban analysis.
We enable the analysis of an important economic variable,
namely the settlement of university graduates, with a low-
resource technology, assisting in urban policy analysis.
An advantage of this approach is that a properly trained
computer vision model can be applied to any other raster
of satellite images. This makes the proposed methodology
applicable to any size and position of a corresponding raster
and therefore relaxes the dependency from the existance of
suitable GIS data. As a computer vision-based prediction
with a previously trained model is a time-saving procedure,
the efficiency of urban planning and development processes
can be increased.

2 RelatedWork

Computer vision has gained great importance in recent
years due to the increasing availability of geo-data [49]. It
includes various techniques for detecting and monitoring
the physical properties of an area by photographing or
measuring its reflected and emitted radiation at a large
distance from the Earth’s surface [43]. Computer vision in
this area has thus far been used for land-use classification
and segmentation (e.g., detecting and segmenting meadows,
forests, and roads) [11, 35, 38, 53], building (footprint)
detection [34, 42], building detection and classification
(e.g., differentiating residential, commercial, single-family
houses, and apartments) [27, 32, 45], building roof
analysis (e.g., to estimate the potential for solar power
systems) [10, 33] and 3D city modelling [15, 25]. For
a comprehensive review of computer vision and neural
network applications in the real estate sector, urban systems
and built environments, see [26] and [14]. We contribute to
this research in the sense that we establish a novel, visually
grounded approach to predict the spatial distribution of
residents according to their education level from satellite
images.

The relevance of satellite images in economic prediction
was assessed in [7], where the authors provided proof
of a relationship between economic development and
deforestation utilising satellite images of forest cover. They
found that the key determinant of per capita income
differences among countries is determined by the relation
between forest cover and GDP.

The authors of [21] utilised daytime satellite images to
predict socioeconomic variables for consumption expen-
diture and asset wealth by employing a CNN. Trained
separately for each country, the model explains 37 to 55%
of the variation in the average household consumption of the
four countries and 55 to 75% of the household asset wealth
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Fig. 2 Flow chart summarising the proposed method. Our approach consists of three main parts: “Data Preparation” (alignment of meta-data and
satellite images), “Pre-Processing” (detection of inhabited areas) and “Training and Prediction” (prediction of graduate ratios)

variation across all five compared countries. For their inves-
tigation, the researchers used 1 km × 1 km daytime satellite
images with up to 10 km of noise in the ground-truth data
to protect the survey respondents. In our work, we focus
on much smaller areas for a more fine-grained analysis and
employ an accurate high-resolution ground truth. Similar to
their methodology, we employ transfer learning to increase
the speed of learning meaningful visual features from the
satellite images. Research in urban economics leveraging
computer vision and machine learning does not only focus
on the prediction of economic variables. The authors of [39],
e.g., predicted the perceived safety of US cities by analysing
street view images. They found that the visual appearance of
a neighbourhood can influence the liveability for the neigh-
bourhoods’ inhabitants. This task is related to our article,
as university graduates tend to agglomerate in areas with
higher quality of life and thus in safer neighbourhoods [6,
13, 20].

The cost of living plays a negligible role in the location
choice, in contrast to the prevalent wage levels [31].
This is in line with research that suggests that rural
population growth is reduced by schooling, as highly
educated individuals will migrate into urban areas, where
they can expect a higher return on their education [19, 36].

The agglomeration of human capital or knowledge
has been addressed in the theoretical foundations of the
new economic geography, with its core-periphery model
focusing on the spatial concentration and specialisation of
production factors [28]. A derivation of the core-periphery
model yields theoretical proof of the agglomeration of
skilled workers [37], where education is among the
determinants of skill.1

1In this regard the reader might bear in mind that according to [2]
], education is not equivalent to skill, as education is part of the
development process that determines skill. Other factors that determine
skill are the abilities and traits of a labourer. For a detailed introduction
to recent economic geography, the core-periphery-model and the
agglomeration of production factors, see [29].

Reference [46] follows a similar idea as our work, as they
predict the socioeconomic profile of a city using satellite
images and a neural network. They find proof of visual
patterns that correlate with the socioeconomic classes of
the inhabitants. Nonetheless, the methodology employed
differs significantly from our approach, as the authors use
a different social group and a more complex preparation
of the ground truth; they focus their predictions on the
presence of certain objects (e.g., swimming pools). Thus,
our approach has broader applicability, as it is not dependent
on the presence of predefined objects.

Recently, satellite images have become an increasingly
popular source of data in the field of urban economics. The
migration and agglomeration of production factors, in this
case education or skill, is a prevalent topic in the field of
economics that has been examined in different ways (e.g.,
[19, 36] as well as [37] on a theoretical level). Overall, the
question of whether academic agglomeration is reflected
visually in satellite images is currently open. We examine the
agglomeration of graduates on a fine scale by analysing small
grids of satellite images together with population statistics.

3Methodology

For our investigation, we employ population data together
with satellite images of the city of Vienna in Austria. The
objective is to predict the spatial distribution of university
graduates on a grid cell level using a convolutional neural
network (CNN). Our approach is based on the assumption
that satellite images of residential areas contain visual
indicators that allow an estimation of the proportion of
university graduates in a defined residential area.

An overview of our approach is depicted in Fig. 2 and
described below (the numbers in the description are linked
to the figure). A detailed description is given in Sections 3.1,
“Data Preparation and Pre-Processing”, and 3.2 “Training
and Prediction”.
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First, we obtain the regional statistical grid data (1) for
the study location. Next, we extract the grid coordinates to
collect the respective satellite images (2). Then, we align
the statistical grid data (population count and university
graduate count per grid cell) with the satellite images.
As a result, we obtain cell-based satellite images together
with the computed graduate ratios that serve as the target
variables (the ground truth) for our experiment (3). The
ground truth is necessary to train and evaluate our model,
which aims at learning the relationship between the visual
modality (images) and the statistical measure (density of
graduates).

In the next step, we identify grid cells with no or
very little population density. This can be performed
automatically by training a model for the detection of low-
population-density areas or by using information from the
ground truth, i.e., using a certain threshold (20 inhabitants,
in this paper) to differentiate residential and non-residential
cells (4). The non-residential cells are excluded from further
analysis in our approach.

For the training of our density prediction network, we
employ a five-fold cross validation protocol (5), where
we obtain five independent predictions of graduate ratios co-
vering the populated area of the city. After predicting all five
folds, we obtain a prediction of the graduate ratios for the
entire city. Combining the predictions with the ground truth,
we compute confusion matrices to analyse misclassifica-
tions and to estimate the overall performance (6).

3.1 Data Preparation and Pre-Processing

Demographic data For our investigation, we use 250
m × 250 m regional statistical grid data2, which are
laid out across the entire federal territory and are made
publicly available by Statistik Austria, the statistical office
of the Republic of Austria. The grid is independent of
administrative boundaries and therefore allows for a more
subject-related delimitation of territories, which also solves
the aforementioned MAU problem [47]. In future research,
the determination of grids can be done independently on the
basis of size. The statistical grid data with the corresponding
satellite images are needed only for training and not for
prediction. The dataset includes the grid cell coordinates
with the population count as well as the count of university
graduates.

2Statistik Austria offers a Europe-wide grid on the area-true Lambert
azimuthal projection (ETRS-LAEA grid) according to the EU directive
INSPIRE. A uniform European projection system is particularly
advantageous for the exchange of geo-data in Europe, since the geo-
data no longer has to be transformed in a time-consuming way.
This also makes it easier for small-scale, cross-border presentations,
evaluations and research in Europe.

Satellite data To obtain suitable image data, we need
high-resolution satellite images for the study location. We
retrieve satellite images from the Google Tile Server3 of
size 4285 × 4285 pixels (at a resolution of 1 pixel ≈ 5.8
centimetres) and resize them to 224 × 224 pixel images
that match the regional statistical grid data (at a resolution
of 1 pixel ≈ 111.6 centimetres). Resizing is necessary, as
the employed neural network processes 224 × 224 pixel
images.

Population and graduate ratio The statistical grid data with
the matching satellite images consist of 6,632 grid cell
data points. The dataset contains absolute numbers for
the overall population as well as absolute numbers of
university graduates for every cell. For machine learning,
however, a normalised value range of the target variable is
beneficial (see Fig. 3 for the distribution of the absolute
and relative data). Furthermore, absolute numbers add a
population size bias; thus, using proportions results in less
biased results. To convert the data to relative numbers, we
calculate the graduate ratio (GR) for every grid cell by
dividing the absolute number of university graduates by
the total population of the grid cell. This ratio facilitates
the interpretation and comparability of the distribution of
graduates in the investigated areas. To obtain the classes
for prediction, we separate the dataset using the GR-20%
percentile. Reference [46] also uses five classes in their
prediction model based on a neural network. Their approach
differs in the sense that the determination of classes is made
according to the presence or absence of certain objects in
the images, which is decided a priori by the researchers..
An equal distribution of classes is beneficial in machine
learning. The result is a set of five classes, from class 1,
containing the lowest graduate ratio grid cells, up to class 5,
with the highest graduate ratio grid cells. In Appendix A, we
show sample satellite images for all the classes, from low
(class 1) to high (class 5) graduate ratios.

Pre-filtering The employed categorisation scheme is to
some degree sensitive to changes in absolute numbers,
especially in sparsely populated grid cells, where small
changes in the absolute numbers can strongly impact
the resulting ratios. To mitigate this sensitivity, we filter
out the sparsely inhabited and completely uninhabited
grid cells. For our experiments on graduate density
prediction, we define a threshold of 20 inhabitants. This (i)
excludes sparsely populated cells that are counterproductive
for our analysis (artificially increase the accuracy) and
(ii) counteracts unstable class assignments for sparsely

3for a detailed description see the following link: https://stackoverflow.
com/questions/58846393/how-to-apply-api-key-to-google-maps-tile-
server-url
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Fig. 3 Graph (a) depicts the absolute graduate count per grid cell on
the x-axis over the population count per grid cell on the y-axis. Graph
(b) depicts the calculated graduate ratio per grid cell on the x-axis and
the population count per grid cell on the y-axis. Graph (c) depicts the
grid cell-based graduate ratio on the x-axis and the frequency of the

corresponding ratio on the y-axis. The coloured lines depict the upper
20% percentile boundaries for the five graduate ratio classes in ascend-
ing order, with the numerical boundaries in brackets (black: null ratio
[0.0%], red: class 1 [6.4%], orange: class 2 [10.8%], yellow: class 3
[16.2%], green: class 4 [26.2%], blue: class 5 [60.7%])

populated cells and thus improves the robustness of classes.
After filtering, our ground truth consists of 3,314 grid cells.
For the filtering of the dataset, we tested an automatic
approach. For further details, see Section 4.1.

3.2 Training and Prediction

Once the uninhabited areas have been filtered out (via our
population threshold), we train a CNN for the prediction
of graduate ratio classes using satellite images. To model
the relationships between the visual information from
the satellite images and the five target classes, we build
VGG-16 [44], which is a pre-trained CNN, and apply
transfer learning to adapt it to our requirements. Prior
to the selection of VGG-16 as the network model, we
have evaluated a number of alternative promising CNN
architectures, namely DenseNet201 [18] (a CNN that is
201 layers deep with connections between each layer and
subsequent layers, preserving features in previous layers,
giving the model more flexibility in multi-scale modeling)
and VGG-19 [44] (a deeper version of VGG-16). We
trained all networks on the graduates density data from
Vienna where VGG-16 showed the best accuracy on the test
set compared to VGG-19 and DenseNet201 and was thus
selected for all further experiments.

Network architecture VGG-16 is a feed-forward neural net-
work architecture that builds upon a stack of convolutional
filters followed by several dense (fully-connected) layers
(see Fig. 4 for an overview and Table 1 for details on all
hyperparameters of the architecture).

The inputs to the network are three-channel RGB images
of size 224 × 224 pixels (i.e. 224×224×3 tensors) covering
one grid cell of 250 m × 250 m. The network consists of
two major parts. The first part is a stack of convolutional
layers that aims at learning a hierarchical (multi-scale)
visual representation from satellite images. In each of the
five convolutional layer groups, image filters are learned
for different image scales. The pooling layers after each
layer group reduce the resolution of the representation by
half. The filters in the early layers (e.g., Conv 1-1 and
Conv 1-2) represent very basic and generic small-scale
image structures (usually edges). The intermediate layers
(e.g., Conv 3-1 to 3-3) represent larger-scale structures (e.g.,
image textures). The higher layers (Conv 5-1 to 5-3) capture
visual structures at the largest scale, related to buildings
and building parts. The hierarchical representation stack is
followed by a stack of dense layers, which can be considered
a non-linear classifier. We employ two dense layers, as in
the original VGG implementation, and replace the third
dense layer (i.e., the output layer) by a smaller layer with
five nodes, where each node corresponds to one density
class. The neuron activation functions throughout the entire
network are rectified linear unit (ReLU) functions of the
form:

f (x) = max(0, x)

where x is the current activation fed into the activation
function. After the last dense layer, we position a softmax
layer. The softmax layer re-scales the outputs xj of the
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Table 1 VGG-16 network architecture: The adapted network architecture for graduate density estimation with satellite images input, which is
zero-center normalised, based on the VGG-16 network (138M network parameters)

Shape: Layer type: Activation: Pooling: Dropout:

224×224×3 input – – –

64 3×3×3 conv ReLU – –

64 3×3×64 conv ReLU max pooling –

128 3×3×64 conv ReLU – –

128 3×3×128 conv ReLU max pooling –

256 3×3×128 conv ReLU – –

256 3×3×256 conv ReLU – –

256 3×3×256 conv ReLU max pooling –

512 3×3×256 conv ReLU – –

512 3×3×512 conv ReLU – –

512 3×3×512 conv ReLU max pooling –

512 3×3×512 conv ReLU – –

512 3×3×512 conv ReLU – –

512 3×3×512 conv ReLU -max pooling –

4096 fully connected – – 50% dropout

4096 fully connected – – 50% dropout

5 fully connected – – –

softmax – – –

loss function: categorical cross-entropy

Convolutional layers with stride [1 1] and padding [1 1 1 1]. 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

network to obtain class probabilities (for the five density
classes) that sum to one overall:

yj = exj

∑N
i=1e

xi

,

where yj represents the normalised output for the respective
un-scaled network output xj (yj > 0) and N is the number
of network outputs: x1, ..., xN (N = 5 in our case).

Training Prior to training, we normalise the input images
by subtracting the average red, green and blue values from

each image. As a result, all the images become zero-
centred colour channels. Normalisation is recommended
to accelerate the optimisation process during training
(gradient descent). To estimate the model quality, we
employ categorical cross-entropy loss to measure the match
between the network predictions and the ground truth during
training. Categorical Cross-entropy is commonly used for
multi-class classification problems and defined as follows:

where ŷi is the i-th scalar value in the model output, yi is
the corresponding target value, and N is the number of scalar
values in the model output (N = 5 classes in our case).
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Fig. 4 The adapted network architecture for graduate density estimation from satellite images based on the VGG-16 network
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The loss function estimates how well the network outputs
correspond to the desired target outputs and is used as a
target function during training which is minimised.

The percentile-based classes obtained from the statistical
data serve as the target variables for training. Training is
performed via mini-batch gradient descent with a batch-
size of 32 images. The SGD optimizer is used to minimise
the loss function. To avoid over-fitting the network, we
freeze the first 10 network layers during training. This
means that the network weights for those layers remain
unchanged. Only the higher layers are fine-tuned and
adapted to the current task. For training the neural network,
we use the MATLAB framework MatConvNet from [48].
The experiments were performed on a workstation with
an Ubuntu 18 OS, 64 GB RAM and an NVIDIA GTX
1080Ti. Retraining (fine-tuning) is performed for 50 epochs
with a learning rate of 0.0001, momentum of 0.9 and
weight decay of 0.0005. We use classification accuracy
as performance measure in our experiments. To monitor
overfitting during training a validation set is employed
(see below)

Prediction and evaluation For training, we employ five-
fold cross-validation. The motivation for using cross-
validation is to make the best use of the limited amount
of data (number of grid cells) that is available for our
experiment. We train five networks using five independent
training partitions from the ground-truth dataset. The
partitions are composed of randomly assigned datasets to
avoid location dependencies. To avoid bias from different
locations in the city or from similar characteristics of
neighbouring cells, three parts (60%) of the available data
are used for training, one part (20%) of the available data is
used for validation and the fifth part (20%) of the available
data is used for predicting and testing. The assignments of
the parts to the training, validation and test data vary across
all five iterations.

After the application of all five networks, the result is a
prediction of the entire study area, which can subsequently
be evaluated with the five test sets, which are composed of
20% of the ground truth each, thus yielding the entire study
area and the aggregated confusion matrix in Section 4.2
“Prediction of Graduate Ratios”. Since all the networks are
trained independently from different data and there is no
optimisation of a hyperparameter over all networks, their
results can be considered independent. Thus, their joint
predictions provide a reasonable performance estimate for
the prediction of the target variable (the graduate ratio
distribution) over the entire study area (i.e., the whole grid
of Vienna). As a performance measure, we employ the
accuracy rate (the portion of correctly classified grid cells),
which is justified due to the balanced class sizes in the
experiment.

Note that we do not use the cross-validation approach to
select the model or training parameters (e.g., the network
architecture, learning rate or loss function), i.e., to optimise
our approach. This is important to avoid over-fitting and
biased (i.e., overly optimistic) results. For all five folds, the
same hyperparameters are used.

4 Results

Below, we first state the results for the automated
differentiation of inhabited and non-inhabited areas and
then present the results of the graduate ratio prediction.
We conclude the result presentation with the analysis of
graduates class deviations.

4.1 Prediction of Inhabited Grid Cells

In our analysis, we focus on inhabited areas only. In
a preliminary study, we investigate whether we can
automatically differentiate inhabited from uninhabited grid
cells to provide automatic pre-filtering.4 The results
show that the trained CNN correctly predicts 95.3% of
the inhabited and uninhabited areas in the test dataset.
This shows that data pre-processing can be almost fully
automated in future work.

Nevertheless, for the following experiments, we man-
ually split the inhabited and non-inhabited areas using
ground-truth information with a manually defined thresh-
old of 20 residents per cell. The reason for enforcing this
separation is to assure that the subsequent experiment is
completely based on error-free data.

4.2 Prediction of Graduate Ratios

After filtering out all uninhabited areas, 3,313 populated
grid cells remain for the subsequent analysis. In what
follows, we investigate the prediction accuracy of the
distribution of graduates obtained by our approach. For each
fold, we compute the accuracy rate on the independent
test set and identify false detections. The aggregated
(summed) confusion matrix of all five cross-validation runs
in Table 2 shows the correctly predicted grid cells on its
main diagonal (absolute numbers and percentages of the
respective classes). With 245 an overall accuracy rate (AR)
of 40.5%, we are able to correctly predict twice as many
grid cells as a random approach (which would yield a
classification accuracy of 20% due to the five equally likely

4We fine-tune a pre-trained network (Resnet50 pre-trained on
ImageNet [16]) for 30 epochs, a learning rate of 0.0001, a momentum
of 0.9 and a weight decay of 0.0005 for the study area of Vienna.
We split the data into 470 validation and 5750 training samples and
evaluate the network on a set with 470 independent test images

8094 D. Koch et al.



Table 2 Aggregated confusion matrix for Vienna

True class

c1 c2 c3 c4 c5

Prediction c1 400 (60.3%) 228 (34.1%) 134 (20.4%) 72 (10.9%) 17 (2.6%)

c2 121 (18.3%) 136 (20.3%) 109 (16.6%) 51 (7.7%) 19 (2.9%)

c3 101 (15.2%) 166 (24.8%) 201 (30.6%) 153 (23.2%) 61 (9.2%)

c4 32 (4.8%) 96 (14.4%) 130 (19.8%) 174 (26.3%) 134 (20.2%)

c5 9 (1.4%) 43 (6.4%) 83 (12.6%) 211 (31.9%) 432 (65.1%) AR: 40.5%

The main diagonal of the matrix shows the correct predictions of our classifier (CNN) summed over all five folds. The accuracy rate of the
predictions is shown at the bottom right of the table (abbreviated by AR). All correct predictions per class as well as the overall accuracy (AR)
are printed in bold letters. The percentages in brackets show the distribution of predictions for each class (which sum to one for each column)

classes), and we obtain an overall accuracy rate that is
10.5% higher than that in reference [46] (30.0% overall
accuracy) which employs a similar prediction model for
a sociodemographic variable. Furthermore, 78.3% of the
predicted density estimates deviate by no more than one
class from the true class (random approach: 52%). This
indicates that the model learned visual patterns that correlate
with the graduate density in the grid cells.

Comparing the prediction accuracy for the individual
graduate density classes (the diagonal of Table 2), we
observe that the model performs best for the lowest and
highest graduate ratio classes (i.e., class 1 and class 5; the
same evidence is used as in reference [46]).The weakest
performance is achieved for class 2, where 34.1% (true class
2: 669 observations) of the grid cells belonging to class 2
are assigned to class 1 (compared to 20.3% or 136 grid
cells of the data that are correctly predicted as class 2).
This may be due to the narrow width of the corresponding
class boundaries of classes 1 and 2. The upper boundary of
class 1 is a graduate ratio of 6.4%, and class 2 exhibits an
upper boundary of 10.8%, resulting in a margin of only 4.4
percentage points. Thus, class 2 spans a low range of ratios,
which can explain the difficulties in robustly predicting the
grid cells.

Next, we investigate whether there is a bias in the
misclassifications towards higher or lower densities. To this
end, we sum the misclassifications above the diagonal in the

confusion matrix (the sum of upper diagonals, SUD) and
the sum below the diagonal (the sum of lower diagonals,
SLD). The similar values for the SUD, 29.5%, and SLD,
30.0%, indicate that there is no bias towards higher or lower
densities.

To further analyse a potential bias, we investigate the five
confusion matrices obtained for the five folds. In Table 3,
the accuracy rates of the five CNN runs and the respective
SUDs and SLDs are listed. The confusion matrices for all
five runs can be found in Appendix B. From Table 3, we
can conclude that the performance is at a comparable level
across the whole study area (approx. 37-45% accuracy), and
thus, the dependency on the training data selection is rather
low. Looking at the accuracy rates as well as the SUDs and
SLDs, we do not see significant outliers in the deviations
from the aggregated results in Table 2 which indicates
that our models perform equally well over all five test
datasets.

After analysing the aggregated results, we examine the
data on the grid level by generating a heat map that depicts
the true and predicted class distributions. In Fig. 5, we show
the city area partitioned into the statistical regional grid
employed. Utilising the ground truth data, we are able to
construct a grid map of the distribution of the true graduate
ratio for the city area depicted in the image, and we plot the
predicted grid cells of our model in image (b). Both maps
show similar trends and patterns. The differences are mostly

Table 3 Accuracy rates (ACR) and sums of upper diagonals (SUDs) as well as sums of lower diagonals (SLDs) for all five runs of cross-validation

Network run ACR SUD SLD Dev. ACR

Network run 1 37.6% 36.5% 25.9% | 2.9 |
Network run 2 41.3% 34.3% 24.4% | 0.8 |
Network run 3 44.9% 26.5% 28.6% | 4.4 |
Network run 4 39.4% 18.2% 42.4% | 1.1 |
Network run 5 39.4% 32.3% 28.3% | 1.1 |

In the column “Dev. ACR”, the absolute deviations of the five runs from the aggregated model are listed
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Fig. 5 True distribution of graduates in Vienna according to the ground truth (a) and the prediction of our model (b). The red cells indicate a grid
cell with a low graduate ratio. The blue grid cells show a high graduate ratio. The white cells are uninhabited areas (fewer than 20 inhabitants)

on a local level. Therefore, the predictions of our model are
consistent.

To evaluate our results, we sensitise our approach in two
ways:

i) i) To evaluate the generalisation ability of our
methodology, we evaluate our approach on other (yet
unseen) cities for which adequate ground-truth or
reference data are available. We select the Austrian
cities of Graz, Linz and Salzburg for testing and
predict the distribution of the graduate ratios over
the space.Our network, when trained on the Vienna
ground truth, achieves 28.7% accuracy in Graz, 32.7%
accuracy in Linz and 27.8% accuracy in Salzburg.
The lower accuracy rates are mainly because the
populations of these three cities are considerably
smaller than that of Vienna (by a factor of approx. 10).

ii) Furthermore, we tested the prediction accuracy for
Vienna with a different number of graduate ratio
classes. Using two graduate ratio classes, the CNN
achieves a prediction accuracy of 74.1%; three classes
yield an accuracy of 48.7%, and four classes yield
a prediction accuracy of 43.9%. In summary, these
accuracy rates are substantially higher than those of
random guessing (50%, 33% and 25%, respectively),
which further confirms that the CNN finds patterns in
the satellite images that correlate with graduate density.

4.3 Analysis of Class Deviations

To further investigate the performance of our machine
learning approach, we create an additional heat map, shown
in Fig. 6, which depicts the deviation of the predicted classes
from the true class. This enables us to analyse the spatial

distribution of the misclassifications, which in turn can help
to better understand the performance of the model. We
compute the signed deviation between the prediction and
ground truth for each cell. Blue indicates an underestimation
of graduate density, while red indicates an overestimation of
the density compared to the true value per cell. All grid cells
with correct predictions are coloured in green.

Figure 6 shows that large areas are correctly predicted
(green). False predictions are distributed across the entire
area, and no large spatial clusters can be observed. A
certain tendency can be observed towards false predictions
as we move into suburban regions away from the city
centre. When considering the overall population density
(see Appendix C for the heat map), there may be
a link between the prediction accuracy and population
density. As the population count decreases towards the
periphery, this may explain the difficulties of the prediction
model in suburban areas, leading to a higher number of
misclassifications.

Examples of matching (“Match”) and mismatching
(“Mismatch”) predictions of our CNN are marked on the
city map in Fig. 6. Satellite images of the four example
matches and mismatches (a)-(d) are shown in Figs. 7 and 8.
Pairs (a) and (b) show strongly deviating images, where the
CNN predicts a much higher or lower GR class. Pairs (c)
and (d) show minor deviations compared to the true class.

Match (a) is located in the suburban area of Vienna and
corresponds to class 4 (a graduate ratio of 21.6%). The CNN
correctly predicts the satellite image as class 4. Mismatch
(a) is in the same suburban area and neighbours the cell
of Match (a). The CNN assigns it to the incorrect class;
i.e., the ground truth indicates class 1 (a graduate ratio
of 5%), while the CNN classifies it as class 5 (highest
graduate ratio). By human visual judgement, both pictures
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Fig. 6 Heat map showing the deviation of the model predictions from
the ground truth. Green indicates a match of the predicted and true
graduate ratios. The reddish and blueish colours indicate an under-

and overestimation of the density, respectively. More saturated colours
indicate larger errors in estimation

generally look similar,; one difference is that Mismatch (a)
depicts fewer streets and buildings than Match (a). Both
pictures show vegetation and generally look like attractive
residential areas. Thus, due to the attractiveness of the
neighbourhood, it is reasonable to us that the CNN would
predict Mismatch (a) as an incorrect class.

Match (b) is located in the city centre of Vienna. The true
graduate ratio is 28.1%, i.e., class 5. Our prediction model
correctly predicts this class. The neighbouring Mismatch (b)

has a graduate ratio of 32.4% according to ground truth and
thus would fall into class 5 as well. The model, however,
fails to predict the true class and assigns class 1. Comparing
the two pictures, we can see similar images with residential
housing of different densities. An obvious difference is
the square-shaped houses (panel buildings) in the wrongly
predicted cell. We observe that panel buildings frequently
correlate with lower graduate ratios (see, e.g., Match (c)).
We assume that the network has recognised that this pattern

Fig. 7 Matches. Example satellite images (in the 224 × 224 pixel res-
olution employed for the CNN) of correctly matched predictions. The
images correspond to Match (a) (GR: 21.6% with a population of 97),

Match (b) (GR: 28.1% with a population of 839), Match (c) (GR: 3.0%
with a population of 985) and Match (d) (GR: 8.1% with a population
of 86)
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Fig. 8 Mismatches. Example satellite images (in the 224 × 224 pixel
resolution employed for the CNN) of false predictions. The images
correspond to Mismatch (a) (true class: 1, predicted class: 5, GR: 5.0%
with a population of 40), Mismatch (b) (true class: 5, predicted class:

1, GR: 32.4% with a population of 173), Mismatch (c) (true class: 1,
predicted class: 2, GR: 5.7% with a population of 456), and Mismatch
(d) (true class: 3, predicted class: 2, GR: 15.5% with a population of
181)

frequently accompanies a low graduate density and thus
assigns the wrong GR class to the cell.

Match (c) is located on the outskirts of Vienna and
shows numerous panel buildings. The true graduate ratio
of the grid cell is 3.0% and is correctly predicted as
class 1 by our approach. The neighbouring Mismatch
(c) is falsely predicted as class 2 but actually belongs
to class 1 (a graduate ratio of 5.7%). The two cells do
not significantly deviate from each other visually, as both
are only sparsely populated and show considerable areas
covered by vegetation, especially trees. One difference is
that match (c) contains more panel buildings and mismatch
(c) contains more individual buildings surrounded by
greenery. This may incline the model towards predicting
a higher graduate density class, which is generally in line
with the ground truth (there is a higher graduate ratio in
Mismatch (c), 5.7%, than in Match (c), 3.0%). The network
seems to overestimate the ratio, and thus, the result falls into
the higher density class.

Match (d) is again in a suburban area and corresponds to
a grid cell with a graduate ratio of 8.1% (correctly classified
as class 2). The neighbouring cell, labelled as Mismatch (d),
has a graduate ratio of 15.5% according to the ground truth
and thus falls into class 3. Our model predicts it as a class 2
image. Match (d) depicts a rural neighbourhood with areas
of farmland. Mismatch (d) displays denser settlement with
less single family housing. This might be the reason why
our approach underestimates the graduate density.

Overall, when looking at the example matching and
mismatching predictions, we can draw the conclusion that
a high proportion of the chosen pictures are difficult to
assess even with human judgement. This may be a reason
for the difficulties of the CNN in accurately modelling the
classes and can also explain class confusions (especially
between neighbouring classes). Regarding the prediction of
graduate settlement, we are aware that the CNN could also

predict variables such as rent or housing/apartment prices
instead of the intended variable of graduate class. In that
regard, one could claim that graduates are agglomerating in
desirable areas [6, 13, 20] and therefore increasing rents or
vice versa. Such correlations in the data are worth closer
examination and represent an important direction of our
follow-up research.

5 Conclusion

In this article, we show that a CNN can predict the spatial
distribution of university graduates in a city using only
satellite images. Our research hypothesis is that visual
features exist in satellite images that correlate with the
settlement of graduates. To investigate this hypothesis, we
leverage the rich capabilities of machine learning to extract
useful data from satellite images (250 m × 250 m small-
scale city grid cells) and to link it to statistical population
data. We split the statistical population data into five equally
balanced classes with a wide range of graduate ratios. We
train five neural networks on the ground-truth data and
achieve an overall accuracy rate of 40.5% (random baseline:
20%) in predicting the five graduate density classes for the
study site of the Austrian city of Vienna. We also show that
we can differentiate inhabited and uninhabited areas with a
probability of 96% by purely visual features using machine
learning.

Our findings show that computer vision (i) has great
potential for future examinations in urban economics (socio-
economic and demographic studies), (ii) can mitigate the
MAU problem or can serve as the basis for a solution and
(iii) can be used in economic fields where no (statistical
reference) data are available or the data are outdated, as
computer vision can be deployed independently of the
availability of statistical data and the metadata derived
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from them. Computer vision therefore opens up a so far
underestimated but extremely useful information source for
economic analyses.

Future research will analyse how the network recognises
the distribution of graduates in detail. Colours, contours,
textures, arrangements of buildings, etc. can play a role.
Another step will be to investigate to what extent a
network trained on one site (e.g., Vienna) generalises to
another site and whether the findings and patterns are
consistent.

Overall, we see a broad applicability for our prediction
model in future research and practice. The investigation of
the predictability of graduate settlement in a metropolitan
area could enhance future urban planning and guide
urban development in the sense that it is controlled for
human capital agglomeration. Especially in regard to urban
governance, our findings can add a new dimension to
city planning if future research is able to extract the
visual characteristics that increase graduate agglomeration
in certain city areas.

Appendix A: Example Images for Different Graduate Classes

Example images of the five graduate density classes employed in our study, from the top, “class 1” (with a low graduateratio),
to the bottom, “class 5” (with a high graduate ratio)

Fig. 9 : Class 1 examples: Image (a) depicts a location near the city centre of Vienna, with a graduate ratio of 5.8% and a population of 956.
Image (b) is located in the suburban area of Vienna, with a graduate ratio of 1.6% and a population of 81
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Fig. 10 Class 2 examples: Image (a) depicts a grid cell near the city centre of Vienna, with a graduate ratio of 8.1% and a population of 2,024.
Image (b) is located in the suburban area of Vienna with a graduate ratio of 10.3% and a population of 107

Fig. 11 Class 3 examples: Image (a) depicts a grid cell near the city centre of Vienna, with a graduate ratio of 16.1% and a population of 1,516.
Image (b) is located in the suburban area of Vienna with a graduate ratio of 14.4% and a population of 181 it falls into class 3
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Fig. 12 Class 4 examples: Image (a) depicts a grid cell near the city centre of Vienna, with a graduate ratio of 18.1% and a population of 1,598.
Image (b) is located in the suburban area of Vienna with a graduate ratio of 22.6% and a population of 62 it falls into class 4

Fig. 13 Class 5 examples: Image (a) depicts a grid cell near the city centre of Vienna, with a graduate ratio of 41.3% and a population of 886.
Image (b) is located in the suburban area of Vienna with a graduate ratio of 35.0% and a population of 20 it falls into class 5
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Appendix B: ConfusionMatrices for All Network Folds

Table 4 Confusion matrix of network run 1

Prediction

c1 c2 c3 c4 c5

True class c1 45 (34.3%) 16 (12.0%) 10 (7.7%) 10 (7.6%) 3 (2.3%)

c2 63 (48.1%) 73 (54.9%) 61 (46.9%) 29 (22.1%) 17 (13.1%)

c3 20 (15.3%) 30 (22.6%) 37 (28.5%) 29 (22.1%) 21 (16.1%)

c4 3 (2.3%) 12 (9.0%) 19 (14.6%) 45 (34.4%) 43 (33.1%)

c5 – 2 (1.5%) 3 (2.3%) 18 (13.8%) 46 (35.4%) AR: 37.6%

Table 5 Confusion matrix of network run 2 for Vienna

Prediction

c1 c2 c3 c4 c5

True class c1 103 (76.9%) 60 (44.5%) 46 (34.9%) 22 (16.5%) 5 (3.7%)

c2 16 (11.9%) 18 (13.3%) 23 (17.4%) 8 (6.0%) 1 (0.8%)

c3 11 (8.2%) 27 (20.0%) 25 (18.9%) 23 (17.3%) 9 (6.7%)

c4 4 (3.0%) 22 (16.3%) 28 (21.2%) 43 (32.3%) 32 (23.9%)

c5 – 8 (5.9%) 10 (7.6%) 37 (27.8%) 87 (64.9%) AR: 41.3%

Table 6 Confusion matrix of network run 3 for Vienna

Prediction

c1 c2 c3 c4 c5

True class c1 93 (69.4%) 50 (37.0%) 25 (18.9%) 14 (10.5%) 5 (3.7%)

c2 8 (6.0%) 17 (12.6%) 15 (11.4%) 8 (6.0%) –

c3 27 (20.1%) 31 (23.0%) 55 (41.7%) 44 (33.1%) 7 (5.2%)

c4 2 (1.5%) 17 (12.6%) 21 (15.9%) 22 (16.6%) 9 (6.7%)

c5 4 (3.0%) 20 (14.8%) 16 (12.1%) 45 (33.8%) 113 (84.4%) AR: 44.9%

Table 7 Confusion matrix of network run 4 for Vienna

Prediction

c1 c2 c3 c4 c5

True class c1 71 (53.0%) 42 (31.1%) 16 (12.1%) 3 (2.3%) –

c2 33 (24.6%) 28 (20.7%) 10 (7.6%) 6 (4.5%) 1 (0.8%)

c3 12 (9.0%) 20 (14.8%) 21 (15.9%) 5 (3.8%) 6 (4.5%)

c4 18 (13.4%) 41 (30.4%) 50 (37.9%) 49 (36.8%) 33 (24.6%)

c5 – 4 (3.0%) 35 (26.5%) 70 (52.6%) 94 (70.1%) AR: 39.4%
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Table 8 Confusion matrix of network run 5 for Vienna

Prediction

c1 c2 c3 c4 c5

True class c1 88 (67.7%) 60 (45.8%) 37 (28.2%) 23 (17.5%) 4 (3.1%)

c2 1 (0.8%) – – – –

c3 31 (23.9%) 58 (44.3%) 63 (48.1%) 52 (39.7%) 18 (13.7%)

c4 5 (3.8%) 4 (3.0%) 12 (9.2%) 15 (11.5%) 17 (13.0%)

c5 5 (3.8%) 9 (6.9%) 19 (14.5%) 41 (31.3%) 92 (70.2%) AR: 39.4%

Appendix C: Population Distribution in the Study Area

Fig. 14 Heat map depicting the distribution of the population density in the 250 m × 250 m regional statistical grid data for Vienna. The red cells
indicate a low population density, and the blue cells indicate a high population density. The white cells indicate a population of fewer than 20
people
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Towards automated real estate assessment from satellite images
with CNNs. Forum Media Technology 10:14–23

39. Naik N, Philipoom J, Raskar R, Hidalgo C (2014) Streetscore
– predicting the perceived safety of one million streetscapes. In:
2014 IEEE Conference on computer vision and pattern recognition
workshops, vol 55, IEEE, pp 793–799

40. Openshaw S. (1984) Ecological Fallacies and the Analysis of
Areal Census Data. Environment and Planning A: Economy and
Space 16(1):17–31

41. Openshaw S, Taylor PJ (1979) A Million or so Correlation
coefficients: Three Experiments on the Modifiable Areal Unit
Problem. Wrigley N. Publishers, London

42. Raikar A, Hanji G (2016) Automatic building detection from
satellite images using internal gray variance and digital surface
model. Int J Comput Appl 145(3):25–33

43. Richards JA, Xiuping J (2006) Remote Sensing Digital Image
Analysis, 4th edn. Springer, Berlin

44. Simonyan K, Zisserman A (2015) Very deep convolutional
networks for Large-Scale image recognition. In: International
conference on learning representations, pp 1–14

45. Sumer E, Turker M (2013) An adaptive fuzzy-genetic algorithm
approach for building detection using high-resolution satellite
images Computers. Environ Urban Syst 39:48–62

46. Tapiador FJ, Avelar S, Tavares-Corrêa C, Zah R (2011) Deriving
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