Skip to main content
Log in

Detecting earthquakes: a novel deep learning-based approach for effective disaster response

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In the present study, we present an intelligent earthquake signal detector that provides added assistance to automate traditional disaster responses. To effectively respond in a crisis scenario, additional sensors and automation are always necessary. Deep learning has achieved success in various low signal-to-noise ratio tasks, which motivated us to propose a novel 3-dimensional (3D) CNN-RNN-based earthquake detector from a demonstration paradigm to real-time implementation. Data taken from the ST anford EA rthquake D ataset (STEAD) are used to train the network. After preprocessing the raw earthquake signals, features such as log-mel spectrograms are extracted. Once the model has learned spatial and temporal information from low-frequency earthquake waves, it can be employed in real time to distinguish small and large earthquakes from seismic noise with an accuracy, sensitivity, and specificity of 99.057%, 98.488%, and 99.621%, respectively. We also observe that the choice of filters in log-mel spectrogram impacts the results much more than the model complexity. Furthermore, we implement and test the model on data collected continuously over two months by a personal seismometer in the laboratory. The inference speed for a single prediction is 2.27 seconds, and the system delivers a stable detection of all 63 major earthquakes from November 2019 to December 2019 reported by the Japan Meteorological Agency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Given D D, Allen R M, Baltay A S, Bodin P, Cochran E S, Creager K, de Groot R M, Gee L S, Hauksson E, Heaton T H, Hellweg M, Murray J R, Thomas V I, Toomey D, Yelin T S (2018) Revised technical implementation plan for the shakealert system—an earthquake early warning system for the west coast of the united states. Technical Reprto, Open-File Report, Reston Survey US G (ed)

  2. Murphy R R, Tadokoro S, Kleiner A (2016) Disaster robotics. Springer International Publishing

  3. Zhu W, Beroza G C (2018) Phasenet: a deep-neural-network-based seismic arrival-time picking method. Geophys J Int 216(1):261–273. https://doi.org/10.1093/gji/ggy423

    Google Scholar 

  4. Qu S, Guan Z, Verschuur E, Chen Y (2019) Automatic high-resolution microseismic event detection via supervised machine learning. Geophys J Int 218(3):2106–2121. https://doi.org/10.1093/gji/ggz273

    Article  Google Scholar 

  5. Wang J, Xiao Z, Liu C, Zhao D, Yao Z (2019) Deep learning for picking seismic arrival times. J Geophys Res Solid Earth 124(7):6612–6624. https://doi.org/10.1029/2019JB017536

    Article  Google Scholar 

  6. Dokht R M H, Kao H, Visser R, Smith B (2019) Seismic event and phase detection using time–frequency representation and convolutional neural networks. Seismol Res Lett 90(2A):481–490. https://doi.org/10.1785/0220180308

    Article  Google Scholar 

  7. Zhu L, Peng Z, McClellan J, Li C, Yao D, Li Z, Fang L (2019) Deep learning for seismic phase detection and picking in the aftershock zone of 2008 mw7.9 wenchuan earthquake. Phys Earth Planet Inter 293:106261. https://doi.org/10.1016/j.pepi.2019.05.004

    Article  Google Scholar 

  8. Zhou Y, Yue H, Kong Q, Zhou S (2019) Hybrid event detection and phasepicking algorithm using convolutional and recurrent neural networks. Seismol Res Lett 90(3):1079–1087. https://doi.org/10.1785/0220180319

    Article  Google Scholar 

  9. Pardo E, Garfias C, Malpica N (2019) Seismic phase picking using convolutional networks. IEEE Trans Geosci Remote Sens 57(9):7086–7092. https://doi.org/10.1109/TGRS.2019.2911402

    Article  Google Scholar 

  10. Ross Z E, Meier M-A, Hauksson E (2018) P wave arrival picking and first-motion polarity determination with deep learning. Journal of Geophysical Research: Solid Earth 123(6):5120–5129. https://doi.org/10.1029/2017JB015251

    Google Scholar 

  11. Ross Z E, Meier MA, Hauksson E, Heaton T H (2018) Generalized seismic phase detection with deep learning. Bull Seismol Soc Am 108(5A):2894–2901. https://doi.org/10.1785/0120180080

    Article  Google Scholar 

  12. Guo C, Zhu T, Gao Y, Wu S, Sun J (2020) Aenet: Automatic picking of p-wave first arrivals using deep learning. IEEE Trans Geosci Remote Sens:1–11. https://doi.org/10.1109/TGRS.2020.3010541

  13. Yeck W L, Patton J M, Ross Z E, Hayes G P, Guy M R, Ambruz N B, Shelly D R, Benz H M, Earle P S (2020) Leveraging deep learning in global 24/7 realtime earthquake monitoring at the national earthquake information center. Seismol Res Lett 92(1):469–480. https://doi.org/10.1785/0220200178

    Article  Google Scholar 

  14. Ku B, Kim G, Ahn J, Lee J, Ko H (2020) Attention-based convolutional neural network for earthquake event classification. IEEE Geosci Remote Sens Lett:1–5.https://doi.org/10.1109/LGRS.2020.3014418

  15. Mousavi S M, Sheng Y, Zhu W, Beroza G C (2019) Stanford earthquake dataset (stead): A global data set of seismic signals for ai. IEEE Access 7:179464–179476. https://doi.org/10.1109/ACCESS.2019.2947848

    Article  Google Scholar 

  16. Jung M, Chi S (2020) Human activity classification based on sound recognition and residual convolutional neural network. Autom Constr 114:103177. https://doi.org/10.1016/j.autcon.2020.103177

    Article  Google Scholar 

  17. Li G, Zhang M, Li J, Lv F, Tong G (2021) Efficient densely connected convolutional neural networks. Pattern Recogn 109:107610. https://doi.org/10.1016/j.patcog.2020.107610

    Article  Google Scholar 

  18. Lee H, Kwon H (2017) Going deeper with contextual cnn for hyperspectral image classification. IEEE Trans Image Process 26(10):4843–4855. https://doi.org/10.1109/TIP.2017.2725580

    Article  MathSciNet  Google Scholar 

  19. Zhang X, Zou J, He K, Sun J (2016) Accelerating very deep convolutional networks for classification and detection. IEEE Trans Pattern Anal Mach Intell 38(10):1943–1955. https://doi.org/10.1109/TPAMI.2015.2502579

    Article  Google Scholar 

  20. Sun Y, Xue B, Zhang M, Yen G G (2020) Evolving deep convolutional neural networks for image classification. IEEE Trans Evol Comput 24(2):394–407. https://doi.org/10.1109/TEVC.2019.2916183

    Article  Google Scholar 

  21. Ren S, He K, Girshick R, Sun J (2017) Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  22. Ding X, Li Q, Cheng Y, Wang J, Bian W, Jie B (2020) Local keypoint-based faster r-cnn. Appl Intell 50(10):3007–3022. https://doi.org/10.1007/s10489-020-01665-9

    Article  Google Scholar 

  23. Diaz J, Schimmel M, Ruiz M, Carbonell R (February 2020) Seismometers within cities: A tool to connect earth sciences and society. Frontiers in Earth Science 8. https://doi.org/10.3389/feart.2020.00009

  24. Vaezi Y, Van der Baan M (2015) Comparison of the STA/LTA and power spectral density methods for microseismic event detection. Geophys J Int 203(3):1896–1908. https://doi.org/10.1093/gji/ggv419

    Article  Google Scholar 

  25. Li X, Shang X, Wang Z, Dong L, Weng L (2016) Identifying p-phase arrivals with noise: An improved kurtosis method based on dwt and sta/lta. J Appl Geophys 133:50–61. https://doi.org/10.1016/j.jappgeo.2016.07.022

    Article  Google Scholar 

  26. Li Z, Zhan Z (2018) Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: a case study at the Brady geothermal field. Geophys J Int 215(3):1583–1593. https://doi.org/10.1093/gji/ggy359

    Article  Google Scholar 

  27. Dawei M, En-Jui L, Chen P (2017) Rapid earthquake detection through gpu-based template matching. Comput Geosci 109:305–314. https://doi.org/10.1016/j.cageo.2017.09.009

    Article  Google Scholar 

  28. Perol T, Gharbi M, Denolle M (2018) Convolutional neural network for earthquake detection and location. Sci Adv 4(2). https://doi.org/10.1126/sciadv.1700578

  29. Mousavi S M, Zhu W, Sheng Y, Beroza G C (2019) Cred: A deep residual network of convolutional and recurrent units for earthquake signal detection. Sci Rep 9(1):10267–10267. https://doi.org/10.1038/s41598-019-45748-1. 31311942[pmid]

    Article  Google Scholar 

  30. Deng Y, Wang L, Jia H, Tong X, Li F (2019) A sequence-to-sequence deep learning architecture based on bidirectional gru for type recognition and time location of combined power quality disturbance. IEEE Trans Ind Inf 15(8):4481–4493. https://doi.org/10.1109/TII.2019.2895054

    Article  Google Scholar 

  31. Kim G, Ku B, Ko H (2020) Multifeature fusion-based earthquake event classification using transfer learning. IEEE Geosci Remote Sens Lett:1–5. https://doi.org/10.1109/LGRS.2020.2993302

  32. Tous R, Alvarado L, Otero B, Cruz L, Rojas O (2020) Deep neural networks for earthquake detection and source region estimation in northcentral venezuela. Bull Seismol Soc Am 110(5):2519–2529. https://doi.org/10.1785/0120190172

    Article  Google Scholar 

  33. Ji S, Xu W, Yang M, Yu K (2013) 3d convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231. https://doi.org/10.1109/TPAMI.2012.59

    Article  Google Scholar 

  34. Torfi A, Iranmanesh S M, Nasrabadi N, Dawson J (2017) 3d convolutional neural networks for cross audio-visual matching recognition. IEEE Access 5:22081–22091. https://doi.org/10.1109/ACCESS.2017.2761539

    Article  Google Scholar 

  35. Zhang Y, Shi L, Wu Y, Cheng K, Cheng J, Lu H (2020) Gesture recognition based on deep deformable 3d convolutional neural networks. Pattern Recogn 107:107416. https://doi.org/10.1016/j.patcog.2020.107416

    Article  Google Scholar 

  36. Kubota T, Hino R, Inazu D, Suzuki S (2019) Fault model of the 2012 doublet earthquake, near the up-dip end of the 2011 tohoku-oki earthquake, based on a near-field tsunami: implications for intraplate stress state. Progress Earth Planet Sci 6(1):67. https://doi.org/10.1186/s40645-019-0313-y

    Article  Google Scholar 

  37. Ravanelli M, Brakel P, Omologo M, Bengio Y (2018) Light gated recurrent units for speech recognition. IEEE Trans Emerging Top Comput Intell 2(2):92–102. https://doi.org/10.1109/TETCI.2017.2762739

    Article  Google Scholar 

  38. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press

  39. Garbin C, Zhu X, Marques O (2020) Dropout vs. batch normalization: an empirical study of their impact to deep learning. Multimed Tools Appl 79(19):12777–12815. https://doi.org/10.1007/s11042-019-08453-9

    Article  Google Scholar 

  40. Ribeiro D, Nascimento J C, Bernardino A, Carneiro G (2017) Improving the performance of pedestrian detectors using convolutional learning. Pattern Recogn 61:641–649. https://doi.org/10.1016/j.patcog.2016.05.027

    Article  Google Scholar 

  41. Shearer P M (2009) Introduction to seismology. Cambridge Univ. Press

  42. Noda K, Yamaguchi Y, Nakadai K, Okuno H G, Ogata T (2015) Audio-visual speech recognition using deep learning. Appl Intell 42(4):722–737. https://doi.org/10.1007/s10489-014-0629-7

    Article  Google Scholar 

  43. Zhao Q, Guo F, Zu X, Li B, Yuan X (2019) An acoustic-based feature extraction method for the classification of moving vehicles in the wild. IEEE Access 7:73666–73674. https://doi.org/10.1109/ACCESS.2019.2920847

    Article  Google Scholar 

  44. Wang Y, Liu J, Mišić J, Mišić V B, Lv S, Chang X (2019) Assessing optimizer impact on dnn model sensitivity to adversarial examples. IEEE Access 7:152766–152776. https://doi.org/10.1109/ACCESS.2019.2948658

    Article  Google Scholar 

  45. Molaro J Parslee - the open source rover with rasberry shake on-board (2019 (accessed May 14, 2019)). https://raspberryshake.org/parslee-the-open-source-rover-with-raspberry-shake-on-board/

Download references

Acknowledgements

This work is supported by JSPS KAKENHI Grant No. 16H02884, 17K00365, and 19K12017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shakeel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakeel, M., Itoyama, K., Nishida, K. et al. Detecting earthquakes: a novel deep learning-based approach for effective disaster response. Appl Intell 51, 8305–8315 (2021). https://doi.org/10.1007/s10489-021-02285-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02285-7

Keywords

Navigation