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Abstract
Intelligent separation is a core technology in the transformation, upgradation, and high-quality development of coal.
Realising the intelligent recognition and accurate classification of coal flotation froth is a key technology of intelligent
separation. At present, the coal flotation process relies on artificial recognition of froth features for adjusting the reagent
dosage. However, owing to the low accuracy and subjectivity of artificial recognition, some problems arise, such as reagent
wastage and unqualified product quality. Thus, this paper proposes a new froth image classification method based on the
maximal-relevance-minimal-redundancy (MR MR)-semi-supervised Gaussian mixture model (SSGMM) hybrid model for
recognition of reagent dosage condition in the coal flotation process. First, the features of morphology, colour, and texture
are extracted, and the optimal froth image features are screened out using the maximal-relevance-minimal-redundancy
(MRMR) feature selection algorithm based on class information. Second, the traditional GMM clusterer is improved, called
SSGMM, by introducing a small number of marked samples, the traditional GMM’ problems of unclear training goals,
invisible clustering results, and artificially judged clustering results are solved. Then a new hybrid classification model is
proposed by combining the MRMR with the modified GMM (SSGMM) which can be named as (MRMR - SSGMM).
The optimal froth image features are screened by MRMR to provide the SSGMM classifier. In the process of training and
learning the feature samples, using the marked feature samples of froth images to guide the unmarked feature samples. The
information of marked feature samples of froth images is mapped to the unmarked feature samples, the classification of the
froth images were realised. Finally, the accuracy of the SSGMM classifier is used as the evaluation criterion for the screened
features by MRMR. By automatically executing the entire learning process to find the best number of froth image features
and the optimal image features, so that the classifier achieves the maximum classification accuracy. Experimental results
show that the proposed classification method achieves the best results in accuracy and time, compared with other benchmark
classification methods. Application results show that the method can provide reliable guidance for the adjustment of the
reagent dosage, realize the accurate and timely control of the reagent dosage, reduce the consumption of the reagent and the
incidence of production accidents, and stabilize the product quality in the coal flotation production process.

Keywords Coal flotation · Reagent dosage condition · Froth image classification · Image feature extraction and selection ·
Semi-supervised Gaussian mixture model · Machine learning

1 Introduction

Coal, which continues to occupy a dominant position in the
energy structure of the present China, is currently facing
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the challenges of energy transformation and upgradation
as well as clean and efficient utilisation. The intelligent
separation of coal is the core technology for transforming
and upgrading coal, as well as its clean and efficient
utilisation, where an intelligent recognition and accurate
classification of the froth play key roles in the main flotation
link. Coal flotation mainly uses the difference between the
surface hydrophilicity and hydrophobicity of coal particles,
caused by their interaction with reagents, which results in
the separation of clean and tail coal from coal slime in the
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flotation machine or flotation column [1, 2]. In the flotation
process, the reagent dosage is the main factor affecting
a stable operation and the quality of clean coal products.
However, in most of the Chinese coal preparation plants,
the reagent dosage of the flotation process is adjusted by
experienced flotation workers through visual observation of
features such as morphology, colour, and texture [3]. Owing
to the insufficient accuracy of artificial recognition and
classification, it is impossible to quantify the reagent dosage
control. Moreover, the dosing process incurs subjectivity
and extensiveness, which results in poor stability of the
flotation condition, low flotation precision, unqualified
product-quality indicators, wastage of flotation reagents,
high cost of coal preparation, and low economic benefit.
These problems have long troubled the flotation production
of coal preparation plants. If the image device can be used
instead of human eyes to collect the image of coal flotation
froth, and the visual features of the froth image can be
extracted through image processing and other methods.
Based on some mathematical models and algorithms, the
distribution characteristics of coal flotation froth image
features in various typical dosing conditions are studied, and
then real-time recognition of the reagent dosage condition
of coal flotation process is carried out, which will be
expected to solve the above technical bottlenecks. Current
machine vision and machine learning technologies have
the advantages of high accuracy, high repeatability, short
recognition time, and high objectivity. It is the best scheme
for an intelligent recognition and accurate classification of
coal flotation froth images, optimal control of the reagent
dosage, stable operation of the working condition, and
maintenance of product quality [4, 5].

Recently, the visual image features of certain metal and
non-metal industry flotation froth have been extensively
studied. The morphology, colour, and texture features of
froth images are often referred to as the good performance
indicators for working condition recognition [6, 7]. Haralick
proposed GLCM and defined the texture features of an
image [8]. Ren et al. extracted the texture features of a
froth surface based on GLCM, to recognise the flotation
conditions [9]. Sun and Wee used NGLDM-based second-
order statistics to describe the image texture [10]. It has
been verified that the fineness and roughness extracted
by NGLDM can be appropriately used to represent the
appearance information of froth [11, 12]. Peng proposed
a working condition recognition method based on an
improved NGLDM for the antimony roughing process
[13]. Xu et al. proposed a complex network-based
texture extraction and classification method for mineral
flotation froth images [14]. Liu studied the relations
among morphology, texture, and froth classification, and
proposed a statistical pattern recognition method for
determining the health status of reagent operations in the

flotation process based on adaptive learning of froth size
dynamic distribution features, as well as a comprehensive
classification and recognition method for the flotation
production conditions based on multi-scale and multi-
direction texture representation of the froth images [15].
Cheng took the extracted colour and texture features of a
froth image as input and constructed a condition recognition
model for realising the classification and recognition of the
froth images in the selection process [16]. Liu used colour
features of a flotation froth image to recognise the flotation
production conditions [17].

Various researches have extracted more and more fea-
tures from froth images for working condition recogni-
tion. However, the above mentioned recognition methods
selected only one or two types of froth image features for
working condition recognition or improving the original
extraction method. No study has yet explained why a cer-
tain feature is selected and whether this feature has a useful
contribution to froth image classification. Moreover, only
a little feature information is available, which may lead to
inaccurate recognition results. No attempt has been made
to apply all these extracted features to recognise produc-
tion conditions. However, too many features may contain
some redundant or irrelevant features, which may increase
the difficulty of model training and reduce the recogni-
tion performance. Therefore, it is very necessary to filter
features and eliminate irrelevant and redundant features.
Feature selection can solve this problem well. The aim is to
find the feature subset that has the greatest relevance and the
least redundancy with the class information from the origi-
nal feature set, and can provide the greatest contribution to
the subsequent classification model.

Froth image classification and working condition recog-
nition have always been the hotspots of continuous explo-
ration and research by experts and scholars. In the early
stage, Xu took the texture features as input and used linear
discriminant analysis (LDA) classifier to recognise produc-
tion condition [14]. Zhao took the extracted scale texture
features as input and used k-means (KM) clustering algo-
rithm to cluster froth images offline under different working
conditions [18]. Peng took the froth image texture features
as input, and used the support vector machine (SVM) clas-
sifier to recognise the working condition of the antimony
rough selection process [13]. Wang took the BoW descrip-
tion of the image as input, and used Bayesian probability
model (BMP) classifier to classify froth images [19]. How-
ever, the LDA classifier is limited by the types of sample.
SVM classifier has difficulty in solving multi-classification
problems and is sensitive to the choice of parameters and
kernel functions. The BMP classifier may fail to predict the
feature variables in the test set that have not appeared in the
training set, if there is a probability dependency relation-
ship between the variables, the performance of the classifier
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will be reduced. The KM clusterer limits the types of data
and its clustering effect depends on the initialization of
the cluster centers. The LDA, BPM and SVM classifica-
tion methods mentioned above are all supervised learning
algorithms. They need to mark training samples, especially
when there are many samples, the cost of manual class
marking is too high. KM clustering is an unsupervised learn-
ing algorithm, because there are no marked froth image
samples, its training target is not clear and the results of
froth image clustering are judged based on the distribution
of test samples in the feature space so that the accuracy is
poor.

In recent years, with the development of computer
technology, convolution neural network has been used
more and more in image recognition, and has also been
involved in recognition of flotation froth images. Zarie
used convolutional neural networks to classify the froth
images of coal flotation under various working conditions
[20]. Wang used convolutional neural networks to extract
the pixel set features of the froth image and fuse it with
the morphological features of the froth image to realize
the clustering of the froth image [21]. Fu used three pre-
trained convolutional neural networks (namely AlexNet,
VGG16 and ResNet) to estimate the froth level from a large
amount of industrial image data, of which the advantage of
AlexNet is more obvious [22]. Flotation froth images are
different from natural scenery pictures. Froth is formed by
countless bubbles surrounded by mineral particles, meaning
there is no prominent background or attractive subject in
froth images. And the difference between the froth images
is not very obvious. Convolutional neural network has
certain limitations in the application of flotation froth image
classification, and it requires parameter adjustment, large
samples, long training time, and complex implementation.

The above works have adopted supervised and unsu-
pervised machine learning and deep learning methods to
carry out related research on the classification and recog-
nition of froth images, but there are few reports on the
research work of semi-supervised machine learning in clas-
sification and recognition of froth images. In the process
of coal flotation production, there are many types of froth,
each of which exhibits multiple features simultaneously.
In terms of one of its features, when there are a suffi-
cient number of froth samples within a time period, there
is a Gaussian distribution trend. GMM is very suitable for
this nonlinear, high-dimensional pattern recognition. How-
ever, the traditional Gauss mixture model (GMM) belongs
to the unsupervised machine learning. It has the disadvan-
tages of clustering results which are not visible and needs
human judgment to implement classification. In order to
solve the shortcoming of the Gauss mixture model, this
paper improves on its basis and proposes a semi-supervised

Gauss mixture model (SSGMM) froth image classification
method.

In addition, due to the complexity of froth image
feature data, the low accuracy of froth recognition and
classification, and the difficulty of precise control of
reagent dosage, an accurate and applicable classification
and recognition model is still a very important research topic
for flotation production system. This requires not only to
obtain better feature data in many complex and diverse froth
image feature data, but also to establish an accurate froth
image classification model. This prompts us to propose
a combined classification model to achieve high accuracy
classification of froth images. In this paper, we aim to
design a hybrid classification model for coal flotation froth
images. The novelty and contribution of the proposal are
summarized as follows:

1. The multi-dimensional froth image features including
morphology, color and texture are extracted, and the
optimal froth image features are screened out using
the maximal-relevance-minimal-redundancy (MRMR)
feature selection algorithm based on class information.

2. An improved GMM (SSGMM) is proposed. By
introducing a small number of marked samples, the
problems of unclear training goals, invisible clustering
results, artificially judged clustering results based on
the distribution of test samples in the feature space, and
low clustering accuracy in traditional GMM are solved.

3. A new hybrid classification model is proposed by
combining the MRMR with the modified GMM
(SSGMM) which can be named as (MRMR - SSGMM).
The optimal froth image features that contribute the
highest to SSGMM classifier are screened out using
MRMR, and the SSGMM classifier is used as the
evaluation criterion for the pros and cons of screening
features with MRMR. Through repeated iterations to
find the best number of froth image features and the
optimal froth image features, so that the classifier
achieves the maximum classifier accuracy.

4. Compared with other classification methods, the
proposed hybrid model has more advantages in
classification accuracy, precision and time.

5. Applying the proposed MRMR-SSGMM method to
the flotation production process of a coal preparation
plant can improve the accuracy of froth classification
and recognition, realize accurate and timely control of
reagent dosage, stabilize product quality, reduce reagent
consumption, and promote the intelligent development
of coal flotation to a higher level.

The remainder of this paper is organised as follows.
Section 2 introduces the flotation froth recognition system
based on machine vision. Section 3 introduces the related
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Table 1 Abbreviations and full names

Abbreviation Full name

MRMR Maximal-relevance-minimal-redundancy

SSGMM Semi-supervised Gaussian mixture model

GLCM Grey-level co-occurrence matrix

NGLDM Neighbouring grey-level dependence matrix

SVM Support vector machine

GMM Gaussian mixture model

EM Expectation maximisation

ANN Artificial Neural Network

NB Naive Bayes

LDA Latent Dirichlet Allocation

KM k-means

BMP Bayesian probabilistic model

work. Section 4 presents the proposed hybrid classification
method (MRMR-SSGMM). Section 5 arranges the experi-
ments, conducts a contrast analysis, and discusses its results.
Section 6 concludes the paper. Abbreviations and full names
of the words are listed in Table 1.

2 Flotation froth recognition system based
onmachine vision

2.1 System architecture introduction

Figure 1 shows the process flow of coal flotation and the
architecture of proposed froth image recognition system.
The production equipment of the flotation system is a
mechanical stirring self-suction-type flotation machine with
model XJX-20, where the four rooms are connected, the

coal slurry and reagent are pumped into the slurry pre-
processor and completely mixed, and then, the mixture is
flown into the flotation machine from the first chamber
inlet. Utilising the negative-pressure self-absorbed gas
generated by the rotating impeller of each chamber and the
reagent to form bubbles to contact the coal particles, the
clean coal floats up and is scraped to the clean flotation coal
tank by scrapers, while the tail coal flows out from the tail
part of the fourth chamber.

In conventional froth flotation, experienced workers
usually manually adjust the reagent dosage by observing the
state variables of the froth (froth color, texture, morphology,
etc.) with the naked eye until the expected value is reached.
Obviously, accurate recognition of the current reagent
dosage conditions is essential for real-time adjustment of
coal flotation process. However, due to the low accuracy
of manual recognition and some subjective human factors,
it is considered to replace experienced workers with image
device. The image acquisition device is installed between
the second and third chambers, where the froth exhibits
clearly suitable features that can be used for recognition and
is the most representative. Different types of froth images
reflect different reagent dosage conditions, the images are
processed by pre-processing, feature extraction, feature
selection, and semi-supervised learning, so that the current
reagent dosage condition can be automatically recognised,
and then decisions can be made to control or optimize the
flotation process and guide production.

2.2 Analysis of froth image features and flotation
reagent dosage condition

At present, the main coal flotation reagents used in most
coal preparation plants are collectors and frothers. The
biggest effect of a collector is to change the surface
wettability of coal particles, followed by its hydrophilicity

Server Monitor

CollectorFrother Black light
ball camera

Flotation
machine

Froth
layer

Feeding 
cylinder

Coal slurry 
preprocessor

Mixing shaft

Pump

Pump
Pump

Rotor

Flotation machineImage device

Froth layer

Fig. 1 Froth image recognition system for coal flotation. (The left picture shows the process flow of coal flotation process. The right picture
shows is the actual installation diagram of the image system)
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and hydrophobicity, to increase the difference in the surface
properties of coal particles so that the bubbles carrying the
clean coal particles have floatability, thereby achieving the
purpose of separation. A frother can reduce the surface
tension of the coal slurry solution and make the gas entering
the coal slurry easily diffuse into the solution; thus, the
air and coal slurry merge to form bubbles, enhance their
stability, and provide enough bubbles for the flotation
process, to ensure the adsorption of clean coal particles.

During the flotation process, froth acts as a ’consign-
ment’ of clean coal. The froth features, such as morphology,
colour, and texture, are closely related to the adsorption
efficiency of clean coal, and are mainly affected by the
reagent dosage. When the amounts of collector and frother
are appropriate, a type a froth is formed, as shown in Fig. 2a.
In this case, the bubble sizes are uniform, the colours are
grey, and the textures are more complicated; moreover, the
flotation process is good, the froth surface carries more
clean coal particles, and the ash content of clean coal is
moderate. When the amount of collector is excessive, a type
b froth is formed, as shown in Fig. 2b, where the froth
layer is dense, the bubbles are mostly oblong and black,
the textures are very complicated, and the ash content of
clean coal is higher. This is because the surface properties
of the coal particles have been changed, causing many clean
coal particles to be adhered to the bubbles. Simultaneously,
considerable slime floats up, and the sludge and collapse
phenomena occur. When the amount of collector is small, a
type c froth is formed, as shown in Fig. 2c, where the froth
surface becomes smoother, with larger bubble morpholo-
gies, lighter greys, and less complex textures; moreover, the
ash content of clean coal is lower. This is mainly because
most of the floating coal particles are fine-grained, while
most coarse-grained coal particles are lost. When there is
an excessive amount of frother, a type d froth is formed,
as shown in Fig. 2d, where the froth layer is thick, numer-
ous froths overlap like a honeycomb, the bubbles formed
are small and mostly broken, the morphologies are irregular
and have many connected organisms, the edges between the
bubbles are not obvious, the colours are black, the textures

are very complicated, the bubbles are highly stable, the over-
flow speed is slow, and the ash content of clean coal ash is
very high. This is mainly because of several bubbles being
generated by the excessive frother, which causes several
coal particles, and even some gangues, to be floating. When
the amount of frother is small, a type e froth is formed, as
shown in Fig. 2e, where the froth layer becomes thinner; the
bubble sizes are different; the colours are lighter grey; the
textures are less complex; the bubbles have thin walls, and
thus, they can easily burst or merge; the bubbles are unsta-
ble; and the ash content of clean coal is very low. This is
mainly due to the lack of sufficient froth to float on the clean
coal owing to the small amount of frother, which causes
some clean coal particles originally attached to the bubbles
fall back into the coal slurry.

Among the above five types of froths, only under the
froth production condition shown in Fig. 2a, the produced
clean coal is a qualified product and the ash content meets
the production requirements of the coal preparation plant.
All other types, b–e (Fig. 2), are substandard products, and
such situations in the production process are all production
accidents. If these production conditions are not detected in
time or even under a long-term production of these bubbles
under these conditions, the ash content of the entire batch
of clean coal will be affected, which is an extremely serious
problem. Thus, type a froth is a clean coal product froth
pursued under the optimal reagent dosage ratio. There is
a certain relation among the features of froth morphology,
colour, texture and reagent dosage; therefore, these features
can be used to guide the reagent dosage of the flotation
process to ensure high quality of clean coal products.

3 Related work

This section introduces the related algorithms on which our
proposed method is based. These algorithms include the
maximal-relevance-minimal-redundancy feature selection
algorithm and the Gaussian mixture model clustering
algorithm.

(a) (b) (c) (d) (e)

Fig. 2 Images of coal flotation froth under different reagent dosage ratio
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3.1 Maximal-relevance-minimal-redundancy
(MRMR)

In the sample classification, using a large number of fea-
tures to design the classifier is too expensive and the
classification performance is poor. Feature selection aims
to convert samples in high-dimensional space to low-
dimensional space through mapping or transformation to
achieve dimensionality reduction, and then the minimum
feature subset is obtained by deleting redundant and irrel-
evant features, which does not significantly reduce the
classification accuracy and does not affect the class dis-
tribution, and provides the maximum contribution rate to
the next classification model. For example, Zhang et al.
developed a systematic feature extraction and selection
framework for whole-building automated fault detection
and diagnostics. The features are aggressively extracted
from raw sensor data and the best feature set is select by
hybrid feature selection algorithm that combines the filter
and wrapper method [23]. Syed computes the most rele-
vant feature subset of heart disease data by taking advantage
of feature selection and extraction techniques, and classi-
fies them based on the radial basis function kernel-based
support vector machines. An automatic diagnosis method
for clinical heart disease is proposed [24]. Priyanka used
the GLCM method to extract 44 texture features of kidney
ultrasound images, and the obtained features are reduced to
optimal subset using principal component analysis. These
features are helpful for further neural network classification
of different types of kidney ultrasound images [25]. In
the research work of shape recognition, Wang designed to
extract features in different ways and adopt the wrapper-
based feature selection driven by different learning algo-
rithms for obtaining diverse subsets of fused features [26].

In the process of coal flotation, the froth image
has multiple features (Morphology, texture, color, etc.)
as described in Section 2.2. These reflect the image
information of froth from different angles, however, it is
not enough to use only one of the features as the feature
quantity for recognition, which may lead to inaccurate
classification, and thus we attempt at determining multiple
froth image features for classification. However, too
many features excessively increase the dimensions of the
classification model, which affects the calculation time and
efficiency. Especially, the introduction of some unrelated
or redundant features may affect the classification of other
features, reduce the classification ability of the learning
algorithm, and affect the accuracy of the classification
model. Therefore, it is necessary to filter the features and
eliminate the unrelated and redundant ones. Let us consider
a comprehensive feature set containing morphology, colour,
and texture of a froth image, Xh×t = {X1, X2, · · · Xt }. Our
task is to screen out m froth image features that are strongly

correlated with the froth class and weakly correlated with
each other from these t features, which are usually measured
by mutual information [27]. Mutual information can be
regarded as the amount of information present in one
random variable containing another random variable, which
is a measure of the statistical relevance of two random
variables and measures the degree of mutual constraint
between them. Given two continuous random variables x

and y , their probability density and joint probability density
are determined as p(x) and p(y) and p(x, y) , respectively.
Then, the formula for the mutual information F between two
continuous variables can be expressed as:

F(x, y) =
y∫∫

x

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy (1)

Feature selection aims to find a feature subset S with
m features,

{
Xf

}
, from a comprehensive feature set of the

froth image, which has the largest dependency on the target
class Cl . The maximum relevance is obtained by calculating
the mean value of the mutual information of the single froth
image feature Xf and class Cl ; that is,

maxRl (S, Cl) , Rl = 1

|S|
∑
Xf

F
(
Xf ; Cl

)
(2)

The froth image features selected by the maximum rel-
evance may be redundant, and the relevance between them
may be very large. When the two features are redundant
and one of them is removed, the classification result does
not change much. Therefore, the minimum redundancy cri-
terion can be used to eliminate the redundant froth image
features. This is expressed as

minR2(S), R2 = 1

|S|2
∑

Xf ,Xl∈S

F
(
Xf , Xl

)
(3)

A combination of the maximum relevance R1 and min-
imum redundancy R2 is called the ’maximum-relevance-
minimum-redundancy criterion’. It is defined by the opera-
tor Φ (R1, R2) and optimised in the form of MIR.

MIR = maxΦ (R1, R2)

Φ = R1 − R2

=
⎡
⎣ 1

|S|
∑
Xf

F
(
Xf ; Cl

) − 1

|S|2
∑

Xf ,Xl∈S

F
(
Xf , Xl

)
⎤
⎦

(4)

In practice, we use the incremental search method to
determine the optimal froth image features. Assuming that
there is already a subset of froth image feature Sm−1, the
next step is to find the mth feature in the remaining froth
image feature set X − Sm−1 and select the feature that
maximisesΦ(·), that is, the mth optimal froth image feature.
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The specific incremental search algorithm can be expressed
as

max
Xl∈X−Sm−1

⎡
⎣F (Xl; Cl) − 1

m − 1

∑
Xf ∈Sm−1

F
(
Xl; Xf

)
⎤
⎦

(5)

3.2 GaussianMixture Model (GMM)

Clustering is an important unsupervised machine learning
technology, which divides a data set into different classes
or clusters according to a certain standard (such as distance
criterion), that the similarity of data objects in the same
cluster is as great as possible, and the differences of data
objects not in the same cluster are also as large as possible.
Cluster methods mainly include conventional clustering,
dynamic clustering, fuzzy clustering and meta-clustering,
etc. The most common conventional clustering includes k-
means clustering, Gaussian mixture model clustering and
so on. The literature [28] proposed a novel technique for
unsupervised change detection in multitemporal satellite
images using principal component analysis (PCA) and
k-means (KM) clustering. The literature [29] adopted
an improved clustering method based on k-means (KM)
algorithm to perform brain tumor segmentation on MRI
images. The literature [30] proposed a target detection
method based on HSV fusion Gaussian mixture model.
The literature [31] adopted Gaussian mixture model and
predict the COVID-19 pandemic. Fuzzy clustering includes
fuzzy c-means clustering etc., such as the literature [32]
proposed a cloud and cloud shadow detection method based
on fuzzy c-means algorithm. The literature [33] presented
a wavelet frame-based fuzzy c-means (FCM) algorithm for
segmenting images on graphs. Dynamic clustering method
such as two dynamic clustering approaches, Maria proposes
a dynamic clustering based driving styles identification and
profiling approach to identify which driving style transitions
are more likely to happen given different surrounding
environments [34]. To mitigate the adverse economic
impact of COVID-19 flare-up, Md proposes a data-driven
dynamic clustering framework through an intelligent fusion
of healthcare and simulated mobility data [35]. A concept
of meta-clustering was described in literature [36] this
paper presented a recursive clustering technique for such
networked environments, that is, granular meta-clustering
based on hierarchical, network, and temporal connections.

The GMM is very suitable for non-linear, high-
dimensional pattern recognition. It is much more flexible
than k-means in terms of clustering covariance. According
to the standard deviation parameter, the cluster can adopt

any ellipse shape, rather than being limited to a circle.
Gaussian distribution is a normal distribution from the
statistical viewpoint, and a Gaussian model can well-
describe the sample distribution and has been widely used
[37]. In the process of coal flotation, various froth image
samples exist randomly and independently. When there are
enough froth image samples, their distribution tends to
be Gaussian, according to the central limit theorem. The
histogram in Fig. 3 shows the distribution of the average
perimeter of bubbles in a coal flotation froth image over a
time period, where the distribution of the bubble number
is concentrated within 0–500, interval distribution of 150–
300 is dense, and the frequency is large. In other words, the
distribution is closely related to Gaussian distribution, and
thus, can be fitted with it. The black solid line represents
the approximate fitting result, where the fitting curve well-
reflects the frequency distribution of the histogram.

For a certain feature of a certain type of froth image
sample, Xf = [x1; x2; · · · ; xn], the fitting formula for its
1D Gaussian distribution is expressed as follows:

N
(
Xf ; μx, σ

) = 1

σ
√
2π

exp

(
−

(
Xf − μx

)2
2σ 2

)
(6)

μ̂x = X̄f = 1

n

n∑
i=1

xi (7)

σ̂ 2 = 1

n − 1

n∑
i=1

(
xi − X̄f

)2
(8)

where μx is the mean value of Xf , σ is its standard
deviation, and μ̂x and σ̂ are the unbiased estimates of μx

and σ , respectively.
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Fig. 3 Gaussian distribution fitting of number of bubbles
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For k image features of a certain froth type Xn×k =
{X1, X2, · · · , Xk}, to describe its distribution, the multi-
dimensional Gaussian distribution can be used to fit, and the
formula is as follows:

N(X;μX,Σ)= 1

(2π)
D
2 |Σ | l

2

exp

(
− 1

2
(X − μX)T Σ−1 (X − μX)

)

(9)

μ̂X = X̄ = 1

k

k∑
f =1

Xf (10)

Σ =

⎡
⎢⎢⎢⎣

cov (X1, X1) cov (X1, X2) · · · cov (X1, Xk)

cov (X2, X1) cov (X2, X2) · · · cov (X2, Xk)
...

... · · · ...
cov (Xk, X1) cov (Xk, X2) · · · cov (Xk, Xk)

⎤
⎥⎥⎥⎦

(11)

cov
(
Xf , Xl

) = 1

n − 1

n∑
i=1

(
Xf i − X̄f

) (
Xli − X̄l

)
(12)

where μX represents the mean value of sample Xn×k , μ̂X is
an unbiased estimate of μX, k represents the dimension of
sample Xn×k , and Σ represents its covariance matrix.

For a froth image feature set that contains multiple froth
image sample types, each containing multiple froth image
features, to describe the distribution of all its samples, a
GMM can be introduced to fit the samples [38], that is,
the weighted sum of multiple Gaussian distributions, as
follows:

p (xi) =
Z∑

z=1

πzN (xi | μz, Σz) (13)

Z∑
z=1

πz = 1 (14)

where p (xi) is the probability that the feature xi(i =
1, 2, · · · , q q is the total number of samples of the froth
image) belongs to each froth image type, N (xi | μz, Σz)

is the zth Gaussian distribution, πz indicates the zth (z =
1, 2, . . . , Z, Z is the number of froth types) Gaussian
distribution coefficients, μz is the froth image feature
samples’ mean of the zth Gaussian distribution, and Σz

is the covariance matrix of the zth Gaussian distribution
of the froth image feature samples. The estimation of
the froth image feature of GMM can be fitted using
the maximum likelihood estimation method. Because the
continuous multiplication result of joint probability density
is very small, logarithms are often taken for a simplified
calculation. Therefore, the likelihood function of the GMM

of the froth image feature can be expressed as:

L (xi) = log
q∏

i=1

p

(
xi =

q∑
i=1

log

(
Z∑

z=1

πZN (xi | μzΣz)

))

(15)

The direct calculation of the extreme value of L (xi) by
using the derivation method is very complex, and thus, it
is difficult to obtain a closed solution. Therefore, the EM
algorithm can be used for the iteration [39] which is divided
into E andM steps. In step E, according to the initial value or
clustering centreμ, the covariance matrixΣ , and the weight
π of the mixed model of the previous iteration, the posterior
probability MAP of each distribution is calculated using the
Bayesian formula. TheM step determines the newμ,Σ , and
π values according to the posterior probability. The specific
formulas involved in the algorithm are as follows:

E step:

τ
(z)
j i = p (ci = j | xi) = πjN

(
xi | μj , Σj

)
∑Z

z=1 πzN (xi | μz, Σz)
(16)

M step:

π
(z+1)
j = 1

q

q∑
i=1

τ
(z)
j i (17)

μ
(z+1)
j =

∑q

i=1 τ
(z)
j i xi∑q

i=1 τ
(z)
j i

(18)

(z+1)∑
j

=
∑q

i=1 τ
(z)
j i

(
xi − μ

(z)
j

) (
xi − μ

(z)
j

)T

∑q

i=1 τ
(z)
j i

(19)

The convergence condition of the EM algorithm, that is,
the variation in steps z and z + 1 of the above formula, is
less than the error value eps, which indicates the end of the
iteration.

4 The proposedmethodMRMR-SSGMM

4.1 Improved GMM (SSGMM)

The traditional GMM has no marked samples, which
leads to its unclear training objectives, and the clustering
results are not visible. Therefore, it is necessary to
judge the clustering results artificially according to the
distribution of test samples in the feature space, and the
accuracy is poor. In order to solve its drawbacks and
improve its accuracy, “cluster-map” semi-supervised GMM
classification structure, called SSGMM, is proposed in this
paper, which is more suitable for classifying few marked
samples and several unmarked samples [40–43]. Using the
froth image features as samples. First, a few known froth
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image feature samples are marked and mixed with several
unmarked froth image feature samples. Various clusters
are obtained by clustering the mixed froth image feature
samples through the GMM clusterer, and the information of
the marked froth image feature samples in various clusters
is mapped to that of the unmarked samples, so that the
SSGMM classifier is obtained to realize the classification of
mixed samples The specific semi-supervised classification
model structure is shown in Fig. 4, where D indicates a few
marked froth image feature samples, Z indicates the types of
marked feature samples, and L indicates several unmarked
froth image feature samples.

4.2 The proposedMRMR-SSGMM

The performance of a classifier or clusterer is not only
related to its own precision, but also closely related to the
input samples, so the quality of the input sample is critically
important to the classification accuracy of the classifier. In
this paper, MRMR is used to filter the optimal froth image
feature samples for SSGMM classifier. In turn, the quality
and quantity of the samples screened by MRMR can be
evaluated using the classification results of the SSGMM
classifier. Through the automatic execution of the whole
learning process, the optimal input samples and the highest
accuracy classifier are obtained. The flow chart in Fig. 5
can be used to summarize the entire process of the proposed
MRMR-SSMGG algorithm.

For a given froth image’s comprehensive feature set
Xh×t = {X1, X2, · · · , Xt }, h is the number of froth image
samples and t is the number of froth image features. Clh×1

is the class set. The specific feature selection algorithm
includes the following steps.

Step 1: Load feature sample set Xh×t = {X1, X2, · · · ,
Xt }, category set Clh×1 .

Step 2: Initialize the parameters of MRMR and SSGMM.
Step 3: Set the number of froth image features to be

filtered as m.
Step 4: Calculate the mutual information of each feature

and class from Xh×t and Clh×1 according to
formula 2, and arrange the mutual information in
descending order.

Step 5: Extract the feature ranking first in information as
the first feature of the candidate subset.

Step 6: Suppose Sm−1 is a selected subset containing
“m-1” features. The next purpose is to select
the mth feature from the remaining feature set
by using the incremental search algorithm in
formula 5, and maximise Φ(·) in formula 4.

Step 7: Extract the features step-by-step using Step 6,
continue feature selection until |Sm| = m, and
then output the feature set Sm.

Step 8: Mark the selected feature set Sm as the
features of the known froth image and mix
it with the unmarked feature set Xq×m =
{X1, X2, · · · , Xm}, namely Rm.

Step 9: Set the number of Gaussian distributions, that is,
the number of froth image types Z, and set the
iteration error value eps.

Step 10: Initialize the cluster centers and weights of each
Gaussian distribution.

Step 11: calculate the maximum posterior probability of
Gaussian distribution of each froth image feature
using Bayesian formula in the E-step of formula
16, according to the initial value or cluster centre
μ, the covariance matrix Σ , and the mixed
model weight π in the previous step.

Step 12: Determine the new cluster centre μ, covariance
matrix Σ , and mixed model weight π by the M
step in formulae 19-21 based on the maximum
posterior probability.

Step 13: Repeat step11 and step12 until convergence, that
is, the end of training and learning.

Step 14: Stain all froth image samples under a certain
class and using different colors as symbols of
different classes.

Step 15: Map the information of the marked froth image
feature samples to that of the unmarked froth
image feature samples, and the froth image
feature sample classification is completed.

Step 16: Calculate the accuracy of MRMR-SSGMM
hybrid classifier.

Step 17: Repeat Step3-Step16 until the hybrid classifier
has the highest accuracy.

 marked samples D

unmarked samples L

Classification 

results

ZLD

1LD
1D

ZD

mixingmixing
GMM

mappingmappingclustering clustering 
SSGMM

gettinggetting achievingachieving

Fig. 4 The structure of improved GMM (SSGMM)
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Fig. 5 The flow chart of the proposed MRMR-SSMGG algorithm (It
mainly includes two parts: feature selection and semi-supervised clas-
sification. Through feature selection, the optimal features are selected

to the classifier, and the accuracy of the classifier is used to evalu-
ate the selected features. Finally the best number of features and the
maximum classification accuracy are obtained)

5 Experiments and discussion

5.1 Experiment and results

5.1.1 Feature extraction and selection of froth images

First, the images of coal flotation froth are collected, and
before extracting their features, they were subjected to
a series of pre-processing, including image enhancement,
image denoising, binarisation, and morphological process-
ing.

Owing to the different reagent dosages, the amount of
clean coal carried by the froth, as well as the size and
type of the clean coal particles, differs. These, combined
with the principle of the reagent itself, cause the interaction
between the bubbles, showing different forms. In the actual
flotation process, the froth sizes are different, and the shapes

are irregular. To describe the bubble sizes quantitatively, a
single bubble is approximated as an ellipse, as shown in
Fig. 6, where the length of the long axis is 2m and that of
the short axis is 2n. The morphological features of the coal
flotation froth image are important in reflecting the flotation
index, and the feature quantities include the number of
bubbles, N; their area, A; and their circumference, C.
In the coal flotation process, the focus is not on the
morphology of a single bubble but on that of groups
of bubbles with different diameters. This paper uses the
average size to describe the area and circumference of a
bubble. After the segmentation of the froth images based on
the hierarchical watershed algorithm, the number of bubbles
can be obtained by marking the disconnected bubble regions
in the froth images [44], the bubble area is obtained by
statistical calculation of the pixels in the cross-sectional
area of the horizontal plane projection, the bubble ridge
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2n

2m
Fig. 6 Bubble size

lines are obtained after image segmentation, and the bubble
circumference is obtained by calculating the number of
pixels of the bubble ridge line. A and C are given by (1) and
(2), respectively.

A = πmn (20)

C = 2πn4(m − n) (21)

Owing to the different reagent dosages, the amount of
clean coal carried in the froth and the particle size of clean
coal are different. Because of the difference in the clean
coal content of the froth, the light absorbed and reflected
by the froth differs, resulting in different froth colours.
According to the structure of the human eye, all colours
can be expressed as different combinations of three basic
colours. The colour value of each pixel can be represented
by a point in 3D space. In this paper, the R, G, and B colour
components of the RGB colour space are selected as the
colour features of a froth image.

Because of the different reagent dosages, the amount of
clean coal carried on the froth surface, the particle size, and
the bearing of gangue and slime are different, resulting in
different degrees of smoothness or wrinkles on the froth
surface, showing different texture features. Thus, the surface
smoothness and roughness of the froth can be described by

texture features. Texture expresses the grey-level correlation
of adjacent pixels, and an effective method for texture
feature extraction aims to extract secondary features based
on GLCM. Haralick et al. defined 14 feature parameters
of GLCM for texture analysis [8]. Ulaby et al. found that
only 4 of the 14 GLCM texture feature parameters were
unrelated, which were not only easy to calculate but also
had high classification accuracy [45]. These parameters
included energy E, entropy En, moment of inertia I, and
relevance Re. This paper uses these features as the texture
features of the froth image. In summary, this paper extracts
10 features—-N, A, C, R, G, B, E, En, I, and Re—-from a
flotation froth image.

Five groups of experiments were conducted under the
conditions of five collector-to-frother ratios (this frother
performs the function of collecting): 1:3, 2:3, 0.5:3, 1:4,
and 1:2. Each experiment group was performed 10 times,
and one froth image sample was collected each time.
Simultaneously, the ash content of clean coal at this
time, corresponding to each froth image, was sampled and
measured, as shown in Table 2.

We extracted 10 features, N, A, C, R, G, B, E, En, I, and
Re, from the 50 froth images collected above, and formed
a subset of comprehensive features, including morphology,
colour, and texture, as shown in Table 3.

To select the features that contribute most to froth image
classification, each feature was evaluated and screened.
In this experiment, the ash contents of clean coal were
used as class information C50×1 and the extracted 10
froth image features were used as the comprehensive
froth image feature set X50×10. Using the MRMR feature
selection algorithm mentioned in this section for screening,
as well as the results shown in Fig. 7, the relevance and
redundancy of these 10 froth image features were in the
order C>En>N>R>I>G>B>A>E>Re. From the results,
the morphological and texture features are better than the
colour features, the morphological features have the greatest
relevance with the ash content of the clean coal, followed by

Table 2 Ash content of clean coal under different reagent dosage ratios

Dosage ratios Collector/Frother 1:3 2:3 0.5:3 1:4 1:2

Ash content of clean coal 10.815 13.324 9.722 17.444 8.041

10.906 13.563 9.859 17.717 8.168

10.127 11.389 8.69 15.381 7.078

10.913 13.541 9.87 17.74 8.179

10.632 12.637 9.449 16.897 7.785

10.098 11.243 8.646 15.293 7.037

10.278 11.426 8.918 15.835 7.29

10.547 12.351 9.32 16.641 7.666

10.958 13.856 9.936 17.873 8.241

10.965 13.225 9.947 17.895 8.251
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Table 3 Comprehensive image feature set of coal flotation froth

E En I Re R G B N A C

0.168 2.339 0.22 0.423 100.285 99.855 100.777 60 1093.639 159.853
0.157 2.302 0.201 0.411 99.952 101.355 101.87 61 1083.986 158.942
0.171 2.351 0.225 0.427 92.477 92.002 92.524 56 1166.539 166.73
0.173 2.356 0.228 0.429 102.109 101.203 101.961 61 1083.182 158.866
0.168 2.341 0.22 0.424 98.149 97.988 98.588 59 1112.97 161.676
0.17 2.345 0.223 0.425 91.913 91.241 92.17 55 1169.661 167.025
0.169 2.345 0.222 0.425 94.051 93.553 94.342 57 1150.479 165.215
0.163 2.324 0.212 0.418 96.465 97.02 97.563 59 1122.031 162.531
0.168 2.339 0.22 0.423 101.998 101.886 102.49 62 1078.504 158.425
0.159 2.31 0.205 0.413 100.972 102.058 102.579 62 1077.722 158.351
0.132 2.442 0.316 0.386 89.085 89.92 90.888 45 1755.583 279.487
0.153 2.402 0.263 0.419 89.445 90.629 91.435 46 1728.262 273.841
0.153 2.417 0.282 0.418 85.017 85.953 86.762 41 1961.904 322.127
0.141 2.403 0.264 0.399 89.76 90.577 91.48 46 1725.987 273.371
0.149 2.406 0.268 0.412 87.998 88.954 89.794 44 1810.292 290.794
0.132 2.449 0.326 0.386 84.813 85.614 86.585 41 1970.738 323.952
0.139 2.442 0.316 0.397 85.894 86.755 87.671 42 1916.451 312.733
0.152 2.419 0.285 0.417 87.399 88.464 89.281 44 1835.936 296.093
0.149 2.457 0.336 0.412 89.942 90.903 91.745 47 1712.748 270.635
0.153 2.402 0.263 0.418 89.841 90.981 91.789 47 1710.533 270.177
0.193 2.256 0.173 0.442 117.564 117.855 118.777 30 2266.749 228.152
0.181 2.289 0.189 0.427 117.912 119.355 119.87 31 2184.787 224.145
0.185 2.288 0.189 0.432 109.543 110.002 110.524 28 2885.712 258.413
0.181 2.269 0.18 0.427 119.081 119.203 119.961 31 2177.962 223.811
0.182 2.282 0.186 0.428 115.403 115.988 116.588 30 2430.877 236.176
0.196 2.256 0.173 0.444 109.08 109.241 110.17 28 2912.214 259.708
0.193 2.267 0.178 0.441 111.234 111.553 112.342 29 2749.352 251.746
0.186 2.287 0.188 0.433 114.033 115.02 115.563 30 2507.807 239.937
0.198 2.282 0.186 0.447 119.277 119.886 120.49 31 2138.244 221.87
0.181 2.288 0.189 0.427 118.784 120.058 120.579 32 2131.6 221.545
0.11 2.506 0.492 0.329 79.876 80.514 81.482 166 311.677 82.226
0.113 2.503 0.48 0.334 78.775 79.948 80.754 168 301.022 78.674
0.093 2.526 0.561 0.288 85.494 86.176 86.984 153 392.143 109.048
0.113 2.528 0.567 0.335 79.253 79.79 80.693 168 300.135 78.378
0.106 2.491 0.439 0.318 81.348 82.101 82.941 163 333.014 89.338
0.092 2.509 0.503 0.286 85.674 86.248 87.22 152 395.588 110.196
0.097 2.507 0.494 0.297 84.218 84.856 85.772 156 374.416 103.139
0.104 2.519 0.536 0.313 81.86 82.808 83.625 161 343.015 92.672
0.114 2.523 0.549 0.337 78.733 79.498 80.34 169 294.972 76.657
0.114 2.525 0.558 0.338 78.384 79.473 80.281 170 294.108 76.369
0.242 2.219 0.166 0.47 127.532 127.315 128.221 21 4307.485 398.16
0.24 2.221 0.168 0.468 127.658 129.169 129.587 22 4230.077 386.776
0.254 2.004 0.153 0.48 117.603 117.479 117.905 18 4892.061 484.127
0.255 2.05 0.168 0.481 129.569 128.992 129.701 19 4623.631 465.828
0.234 2.117 0.163 0.462 124.843 124.966 125.485 20 4462.495 420.955
0.244 2.012 0.152 0.472 116.979 116.548 117.463 17 4917.091 487.807
0.243 2.208 0.156 0.47 119.664 119.431 120.177 18 4763.277 465.188
0.25 2.138 0.161 0.477 122.988 123.753 124.203 20 4535.151 431.64
0.252 2.184 0.169 0.479 129.674 129.838 130.363 22 4186.119 380.312
0.253 2.206 0.169 0.48 128.816 130.049 130.473 21 4289.845 400.389
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the texture features, and then the color features. This may
be due to the black characteristic of coal itself, the color
difference of various types of froth is not obvious, which is
not conducive to the extraction of color features. Secondly,
it may also be affected by the light environment

5.1.2 Analysis and comparison of offline classification
results

Taking the 50 coal flotation froth image samples under the
known dosing ratio used for feature selection in the previous
section as the known samples, and 800 froth image samples
under the unknown dosing ratio were collected. The two
kinds samples are mixed and preprocessed, and 10 froth
image sample features are extracted from them. The features
are sequentially input into the SSGMM classifier in the
order of selection. As shown in Fig. 8, it is an analysis
diagram of the number of froth image features and the
accuracy of the classifier. With the increase of the number of
features, the accuracy of the classifier becomes higher and
higher. When the number of features is 4, the accuracy of the
classifier reaches the highest (97.77%). As the number of
features continues to increase, the accuracy of the classifier
decreases instead. This is because when the number of
features is small, the classification accuracy is low due to
single information. However, when the number of features
is too large, the introduction of some irrelevant or redundant
features reduces the accuracy of the classification model.
Therefore, the best number of the froth image features
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Fig. 7 Selection result of froth image features

finally selected is 4, these features include: C, En, N, R.
A classification situation is discussed and analyzed based
on these 4 features, the classification results of the feature
samples of the mixed froth image by the SSGMM classifier
are shown in Fig. 9(1)(2)(3)(4). The feature samples of
five types of froth image with known dosage ratios were
marked, and those of a–e froth images were marked as �,
�, �, � and •, respectively. The feature samples of froth
images under unknown dosage ratios were not marked. The
mixed feature samples of the froth image were clustered
to obtain all types of clusters. Then different clusters are
dyed and different colours were used as markers of different
class clusters. Finally, the information of the marked feature
samples of the froth images in various clusters was mapped
to that of the unmarked feature samples. Because a 4D
spatial structure is difficult to represent, four 3D graphs
(each representing any three features) were used to represent
the classification results. The mapping information of the
froth image feature samples were marked as �, �, �, �
and • to five clusters of pink, blue, yellow, red, and green,
respectively. Then, five types of froth images of a-e were
obtained.

5.2 Discussion and analysis

5.2.1 Validity analysis of MRMR feature selection

To evaluate the classification accuracy of the above selected
features of the froth image, it is better applied to the coal
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Fig. 8 The relationship between the number of features and the
accuracy of the classifier
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Fig. 9 Classification results of
different froth images by feature
selection (The classification
results of the 4-dimensional
optimal froth image features (C,
En, N, R): (1) The three-
dimensional spatial structure of
N, En, C features; (2) The three-
dimensional spatial structure of
R, En, C features; (3) The
three-dimensional spatial
structure of R, N, C features; (4)
The three-dimensional spatial
structure of R, N, En features.
Class a (froth images obtained at
a reagent ratio of 1:3); Class b
(froth images obtained at a
reagent ratio of 2:3); Class c
(froth images obtained at a
reagent ratio of 0.5:3); Class d
(froth images obtained at a
reagent ratio of 1:4); Class e
(froth images obtained at a
reagent ratio of 1:2))

(1)  (2)  

(3)  (4)

flotation production process. We randomly choose any two
features from the 10 froth image features for classification
and compared the classification of the two cases. Using
the E and Re features as input, we performed classification
based on the SSGMM introduced in Sections 4.1–4.2. The
experimental results are shown in Fig. 10.

The data show that by classifying the unselected features,
there are more overlapping parts between classes, such
as the parts of the graph circle, which lead to some
features making it difficult to distinguish the classes.
There are misjudgements and a low classification accuracy
of ∼87.6% [9–11]. In contrast, the selected multi-
feature classification method has much higher classification
accuracy, irrespective of whether it is the classification
accuracy of different classes or the average accuracy of all
classes. In addition, the average accuracy of all classes is
98.4%. This is mainly because the selected optimal features
provide a useful contribution rate to the classes. More
importantly, the multiple feature classification increases the
sample dimension, reduces the interference of some similar
feature data in some dimensions, and then substantially
increases the classification accuracy. Our proposed method
can be effectively used for classification the reagent dosage
condition in the production process, and provides more

accurate guidance information for a timely adjustment of the
operation of the coal flotation process. Table 4 compares the
two classification cases.

5.2.2 Performance evaluation of SSGMM

In order to prove the efficiency of the proposed MRMR-
SSGMM over other published methods, its performance is
compared with other well-known and recently published
methods. The methods used in comparison are as follows:
Support Vector Machine (SVM), Artificial Neural Network
(ANN), Naive Bayes (NB), Latent Dirichlet Allocation
(LDA). As shown in Table 5, the data set is divided into
training set and test set according to the ratio of 8:2 for
the 1120 froth images obtained at the industrial site. The
two sets obtained contain 896 and 224 image samples
respectively. Using the above methods and the proposed
method in this paper for training and testing.

(1) Performance analysis of five methods

Table 6 shows the classification accuracy of SVM, ANN,
NB, LDA and our proposed MRMR-SSGMM method. The
overall accuracy and the accuracy of each type of froth
image are listed. The accuracy of each type of froth image
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Fig. 10 Classification results of different froth images without feature
selection (classification results of arbitrary froth image features (take
E, Re as examples): Class a (froth images obtained at a reagent ratio
of 1:3); Class b (froth images obtained at a reagent ratio of 2:3);
Class c (froth images obtained at a reagent ratio of 0.5:3); Class d
(froth images obtained at a reagent ratio of 1:4); Class e (froth images
obtained at a reagent ratio of 1:2))

equals the number of correctly classified images divided by
the total number of images of this type.

(2) Confusion matrix of five methods

Furthermore, the confusion matrix results are illustrated
in Figs. 11, 12, 13, 14 and 15. In a confusion matrix, the
first column contains the names of the true classes, and the
first row corresponds to the names of the predicted classes.
The diagonal cells correspond to items that are classified
correctly.

(3) Other evaluation indicators

We also provide other evaluation indicators for the five
methods, such as precision, recall rate and F1-score in
Table 7. Among them, the precision is for the prediction
result, which means the probability of actual positive
samples among all the predicted positive samples. The recall
rate is for the original sample, it indicates how many of the

Table 5 Image data quantity and distribution

Type Total Train Test

1120 896 224

a 270 216 54

b 254 203 51

c 206 165 41

d 222 178 44

e 168 134 34

actual positive samples are predicted correctly. The F1-score
can be regarded as a harmonic mean of the precision and
recall of the model. Its maximum value is 1 and its minimum
value is 0.

For the two-classification problem, the TP, FN, TN, and
FP represent the numbers of true positives, false negatives,
true negatives, and false positives, respectively. These
indicators reflect the quality of the hybrid classification
model and its generalization capabilities. The specific
formulas of the three evaluation indicators are as follows:

Precision = T P

T P + FP
(22)

Recall = T P

T P + FN
(23)

F1 − Score = 2 ∗ Precision ∗ Recall

P recision + Recall
(24)

For multi-classification problems, we can extend
the evaluation criterion of two-classification to multi-
classification problems. In the k-class classification matrix,
there will be k confusion matrices. The precision and recall
of each confusion matrix need to be obtained separately, and
then calculating their average value. The specific calculation
formula is as follows:

Paverage = 1

k

k∑
i=1

Pi (25)

Raverage = 1

k

k∑
i=1

Ri (26)

Faverage = 2
(
Paverage × Raverage

)
Paverage + Raverage

(27)

It can be seen from the table that our model has achieved
the best performance compared with other benchmark
networks.

Table 4 Classification accuracy of the different feature selection methods

Method Class a (%) Class b (%) Class c (%) Class d (%) Class e (%) Average (%)

Selected multi-feature classification 98 97 98 100 99 98.4

Unselected random tow feature
classification

85 82 88 100 83 87.6
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Table 6 Performance of five methods

Accuracy SVM ANN NB LDA MRMR-SSGMM

Overall 92.86% 88.84% 90.18% 84.82% 97.77%

Class a 94.44% 88.89% 92.59% 87.04% 98.15%

Class b 94.12% 90.20% 92.16% 88.24% 100%

Class c 87.80% 85.37% 85.37% 80.49% 95.12%

Class d 100% 95.45% 93.18% 90.91% 100%

Class e 85.29% 82.35% 85.29% 75.53% 94.12%

class a class b class c class d class e

class a

class b

class c

class d

class e

51 2 1 0 0

2 48 0 0 1

1 0 36 0 4

0 0 0 44 0

2 0 3 0 29

51 2 1 0 0

2 48 0 0 1

1 0 36 0 4

0 0 0 44 0

2 0 3 0 29

SVM 92.86 %

Fig. 11 Confusion matrix of SVM

class a class b class c class d class e

class a

class b

class c

class d

class e

48 4 1 0 1

3 46 1 0 1

1 2 35 0 3

2 0 0 42 0

1 1 4 0 28

48 4 1 0 1

3 46 1 0 1

1 2 35 0 3

2 0 0 42 0

1 1 4 0 28

ANN 88.84 %

48 4 1 0 1

3 46 1 0 1

1 2 35 0 3

2 0 0 42 0

1 1 4 0 28

Fig. 12 Confusion matrix of ANN

 NB 90.18%

class a class b class c class d class e

class a

class b

class c

class d

class e

50 3 0 0 1

1 47 2 0 1

2 0 35 0 4

1 2 0 41 0

1 1 3 0 29

50 3 0 0 1

1 47 2 0 1

2 0 35 0 4

1 2 0 41 0

1 1 3 0 29

Fig. 13 Confusion matrix of NB

class a class b class c class d class e

class a

class b

class c

class d

class e

47 2 3 0 2

2 45 2 0 2

1 3 33 0 4

2 1 0 40 1

1 2 5 1 25

47 2 3 0 2

2 45 2 0 2

1 3 33 0 4

2 1 0 40 1

1 2 5 1 25

 LDA 84.82 %

47 2 3 0 2

2 45 2 0 2

1 3 33 0 4

2 1 0 40 1

1 2 5 1 25

Fig. 14 Confusion matrix of LDA

class a class b class c class d class e

class a

class b

class c

class d

class e

53 0 1 0 0

0 51 0 0 0

1 0 39 0 1

0 0 0 44 0

0 0 2 0 32

53 0 1 0 0

0 51 0 0 0

1 0 39 0 1

0 0 0 44 0

0 0 2 0 32

Proposed method 97.77 %

53 0 1 0 0

0 51 0 0 0

1 0 39 0 1

0 0 0 44 0

0 0 2 0 32

Fig. 15 Confusion matrix of Proposed method

Table 7 Other evaluation indicators

SVM ANN NB LDA Proposed

method

Paverage 0.92472 0.88856 0.89989 0.84284 0.97596

Raverage 0.9233 0.88452 0.89718 0.84042 0.97478

Faverage 0.92401 0.88654 0.89853 0.84163 0.97537
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Fig. 16 The computation cost of five classification model

(4) The average computational time of five methods

The average computational time for froth image classi-
fication method is also depicted in Fig. 16. The results are
0.4 seconds for SVM, 0.37 seconds for ANN, 0.33 seconds
for NB, 0.28 seconds for LDA, and 0.3 seconds for our
proposed method. Obviously, our proposed method ranks
second in computation speed.

5.3 Analysis of application effect

5.3.1 Record of reagent dosage condition recognition

We apply our proposed method to a coal preparation
plant in China, and construct a reagent dosage condition
recognition system for the coal flotation. As shown in
Table 8, from 16:00 on 6 August 2019 to 16:00 on 7
August 2019, the three shifts of coal flotation production
were continuously tracked for the recognition of the dosage
condition. According to the table, during the 21:00–21:40
night shift, the reagent dosage condition was abnormal, the
amount of collector was excessive, and the ash content of
clean coal was too high. During the 2:51–3:20 morning
shift, the reagent dosage condition was abnormal, the
amount of collector was small, and the ash content of
clean coal was on the lower side. During the 4:32–
5:00 morning shift, the reagent dosage condition was
abnormal, the amount of collector was excessive, and the
ash content of clean coal was high. During the 10:31–
11:11 middle shift, the reagent dosage was abnormal, the
amount of frother was excessive, and the ash content of
clean coal was very high. The ash content of clean coal

predicted by the reagent dosage condition recognition was
consistent with the measured ash content of clean coal,
indicating that this recognition method is effective and
feasible. After a few days of observation, many faults
were detected in the morning shift, which may be because
some operators’ observations were not timely, owing to the
biological function and other factors, resulting in delay in
reagent dosage adjustment and the frequent occurrence of
production accidents. This shows that the rapid and accurate
recognitions of the reagent dosage conditions are critical for
the coal flotation process, and thus, the proposed method is
highly applicable.

5.3.2 Analysis of economic benefits

To compare the economic benefits of the proposed method
with those of the flotation production of the coal preparation
plant, this paper compares the annual number of reagents,
annual incidence of production accidents in 2019 and 2018,
and the index of ash content of clean coal in June 2019
and 2018. Through the online recognition of the current
reagent dosage condition, accurate and reliable guidance
information is provided in time to accurately and timely
adjust the reagent dosage. Figure 17(1) shows that after
using the proposed method, the monthly number of reagents
in 2019 decreased substantially compared to the same
period in 2018, in which the monthly savings of the frother
and collector were 1.25 ton and 0.37 ton, respectively. At the
same time, the number of production accidents caused by
abnormal reagent conditions clearly decreased, as shown in
Fig. 17(2). The average monthly production accident rate in
2019 was 12.7% lower than that in 2018. Thus, the stability
of ash content of clean coal improved visibly. As shown
in Fig. 17(3), the daily ash content in June 2018 fluctuated
within 9.628–11.815, and that in June 2019 fluctuated
within 10.125–10.779. The fluctuation range of the ash
content was small and the daily average ash content of clean
coal was reduced by 0.2 percentage points compared to the
case of June 2018. This indicates that the consumption of
the collector and frother, as well as the production accident
rate, was substantially reduced, and the clean coal product
index was more stable compared to the original reliance on
the flotation workers to visually adjust the dosage. Thus,
to a certain extent, the economic efficiency and primary
intelligence level of the coal preparation plant have been
improved.

6 Conclusion

In view of the low recognition accuracy of artificial
naked eye of coal flotation froth, and the subjectivity,
extensiveness and hysteresis in the process of reagent
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Fig. 17 Comparison of economic benefits. ((1)Comparison of the use
of two kinds of reagents in 2018 and 2019:the first and third curves are
the frother and collector used in each month of 2018, and the second
and fourth curve are the frother and collector used in each month of
2019; (2) Comparison of the incidence of production accidents in 2018
and 2019: the green curve is the incidence of production accidents in

each month of 2018, and the yellow curve is the incidence of pro-
duction accidents in each month of 2019; (3)Comparison of the daily
average ash content of clean coal in July 2018 and July 2019: the blue
curve is the daily average ash content of clean coal in July 2018, and
the purple curve is the daily average ash content of clean coal in July
2019)

release, this paper presents a new froth image classification
method based on the MRMR-SSGMM hybrid model for
recognition of reagent dosage condition in the coal flotation
process.

(1) Aiming at traditional research on single froth image
features, only a little feature information is available,
which may lead to inaccurate recognition results.
This paper begins with the multiple features of a
coal flotation froth image—-morphology, colour, and
texture—-to study their relevance to the ash content of

clean coal. It then screens out the optimal froth image
features with a high contribution rate to classification.

(2) In the process of coal flotation production, there are
many types of froth, each of which exhibits multi-
ple features simultaneously. GMM is very suitable
for this nonlinear, high-dimensional pattern recog-
nition. However, the traditional unsupervised GMM
clustering results are not visible, and human judg-
ment is required to achieve classification. This paper
proposes an improved GMM (SSGMM) froth image
classifier.

Table 8 Records of reagent dosage condition recognition

Shift Time Recognition
result of reagent
dosage

Predicted ash
content of clean
coal (%)

Measured ash
content of clean
coal ash (%)

night shift (16:01–24:00) 16:01-21:10 class a 10-11 10.64

21:11-21:40 class b 11-14 12.29

21:41-24:00 class a 10-11 10.57

morning shift (0:01–8:00) 0:01-2:50 class a 10-11 10.23

2:51-3:20 class c 8.5-10 9.41

3:21-4:30 class a 10-11 10.76

4:31-5:00 class b 11-14 12.83

5:01-8:00 class a 10-11 10.95

middle shift (8:01–16:00) 8:01-10:30 class a 10-11 10.61

10:31-11:11 class d 14-18 16.32

11:12-16:00 class a 10-11 10.93

The first column of the table is the production shift, there are three shifts (night shift, morning shift, and middle shift); The second column is
production time (normal production time and production accident time); The third column is the recognition condition of froth images; The fourth
column is the data interval of the predicted ash content of clean coal under a certain type of froth image (the empirical ash content is obtained
when the froth image is obtained); The fifth column is the ash content of clean coal by manual testing
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(3) A new hybrid classification model MRMR-SSGMM
is proposed, the optimal froth image feature that
contributes the highest to the SSGMM classifier is
screened out using MRMR. Conversely, the SSGMM
classifier is used as the evaluation criterion for
the features screened by MRMR. Through constant
search, the best number of froth image features and
the optimal froth image features are found, so that the
classifier achieves the maximum classifier accuracy.

(4) Using the marked feature samples of coal flotation
froth images to guide their unmarked feature samples.
The marked feature sample information of the coal
flotation images was mapped to the unmarked feature
sample, the classification of the froth images were
realised under different reagent dosage conditions,
and acts as a feedback information to guide the
abnormal reagent dosage conditions in the coal
flotation production process.

(5) Experimental and application results show, this hybrid
classification method, which selects the features,
merges multiple features, and guides learning through
tag information, has significant advantages for an intel-
ligent recognition and accurate classification of coal
flotation froth images. This technology is expected
to change the present situation of low-level intelli-
gent control of the coal flotation process, and plays
a key role in improving the monitoring level, opti-
mising operation, and processing intelligent control of
flotation production. The breakthrough of this tech-
nology can realise accurate and timely control of the
reagent dosage, stabilise the product quality, reduce
the reagent’s consumption, and promote an intelligent
development of coal flotation to a higher level.
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