Skip to main content
Log in

A generalized soft likelihood function in combining multi-source belief distribution functions

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Likelihood function has significant advantages in the fields of statistical inference. Based on this theory, Yager proposed a soft likelihood function to make it more widely used. However, Yager’s method can only deal with probabilities expressed by crisp values, and has strict restrictions on the form of data. Due to human subjectivity and lack of effective information, it is inevitable that data uncertainty will be involved. In order to deal with the uncertain data more flexibly and intuitively and solve the complex problems faced in real-world applications, a generalized soft likelihood function in combining multi-source belief distribution functions is proposed in this paper. Different from other existing methods, this paper uses a distribution function to represent uncertain information, which can retain more original information and improve the credibility of the results. The expectation and variance are used to rank the obtained evidences, and the evidence that contributes more to the results is ranked higher. Finally, the reliable likelihood results are obtained. The proposed method extends the method of Yager and can work well in more uncertain environment. Several numerical examples and comparative experimental simulation are used to illustrate the efficiency of the proposed soft likelihood function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Whitley BE, Kite ME (2013) Principles of research in behavioral science. Routledge, Milton Park

    Google Scholar 

  2. Åström KJ (2012) Introduction to stochastic control theory. Courier Corporation, Chelmsford

    MATH  Google Scholar 

  3. Jaiswal NK (2012) Military operations research: quantitative decision making, vol 5. Springer Science & Business Media, Berlin

    Google Scholar 

  4. Ahmad MA, Tvoroshenko I, Baker JH, Lyashenko V (2019) Modeling the structure of intellectual means of decision-making using a system-oriented nfo approach

  5. Xu H, Deng Y (2019) Dependent evidence combination based on decision-making trial and evaluation laboratory method. Int J Intell Syst 34(7):1555–1571

    Article  Google Scholar 

  6. Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematics and Statistics 38(2):325–339

    Article  MathSciNet  Google Scholar 

  7. Shafer G (1992) Dempster-shafer theory. Encyclopedia of artificial intelligence 1:330–331

    Google Scholar 

  8. Yager RR (1987) On the dempster-shafer framework and new combination rules. Inf Sci 41 (2):93–137

    Article  MathSciNet  Google Scholar 

  9. Petry F, Elmore P, Yager R (2015) Combining uncertain information of differing modalities. Inf Sci 322:237–256

    Article  MathSciNet  Google Scholar 

  10. Yager RR, Petry F (2016) An intelligent quality-based approach to fusing multi-source probabilistic information. Information Fusion 31:127–136

    Article  Google Scholar 

  11. Edwards AWF (1984) Likelihood. CUP Archive, Cambridge

    MATH  Google Scholar 

  12. Yager RR, Elmore P, Petry F (2017) Soft likelihood functions in combining evidence. Information Fusion 36:185–190

    Article  Google Scholar 

  13. Jiang W, Hu W (2018) An improved soft likelihood function for dempster–shafer belief structures. Int J Intell Syst 33(6):1264–1282

    Article  Google Scholar 

  14. Song Y, Deng Y (2019) A new soft likelihood function based on power ordered weighted average operator. Int J Intell Syst 34(11):2988–2999

    Article  Google Scholar 

  15. Mi X, Tian Y, Kang B (2020) A modified soft-likelihood function based on powa operator. Int J Intell Syst 35(5):869–890

    Article  Google Scholar 

  16. Ma T, Xiao F (2019) An improved method to transform triangular fuzzy number into basic belief assignment in evidence theory. IEEE Access 7:25308–25322

    Article  Google Scholar 

  17. Fei L, Feng Y, Liu L, Mao W (2019) On intuitionistic fuzzy decision-making using soft likelihood functions. Int J Intell Syst 34(9):2225–2242

    Article  Google Scholar 

  18. Fei L (2019) On interval-valued fuzzy decision-making using soft likelihood functions. Int J Intell Syst

  19. Fei L, Feng Y, Liu L (2019) Evidence combination using owa-based soft likelihood functions. Int J Intell Syst 34(9):2269–2290

    Article  Google Scholar 

  20. Li Y, Deng Y (2018) Generalized ordered propositions fusion based on belief entropy. International Journal of Computers Communications & Control 13(5):792–807

    Article  Google Scholar 

  21. Tian Y, Mi X, Liu L, Kang B (2020) A new soft likelihood function based on d numbers in handling uncertain information. International Journal of Fuzzy Systems 22(7):1–17

    Article  Google Scholar 

  22. Tian Y, Liu L, Mi X, Kang B (2020) Zslf: A new soft likelihood function based on z-numbers and its application in expert decision system. IEEE Trans Fuzzy Syst

  23. Zhang H, Deng Y (2018) Engine fault diagnosis based on sensor data fusion considering information quality and evidence theory. Adv Mech Eng 10(11):1687814018809184

    Google Scholar 

  24. Deng X, Jiang W (2019) Evaluating green supply chain management practices under fuzzy environment: a novel method based on D number theory. International Journal of Fuzzy Systems, https://doi.org/10.1007/s40815-019-00639-5

  25. Fei L, Feng Y, Liu L (2019) On pythagorean fuzzy decision making using soft likelihood functions. Int J Intell Syst 34(12):3317–3335

    Article  Google Scholar 

  26. Li P, Fei L (2019) On combination rule in dempster–shafer theory using owa-based soft likelihood functions and its applications in environmental impact assessment. Int J Intell Syst 34(12):3168–3189

    Article  Google Scholar 

  27. Umar R, Riadi I, Zamroni GM, et al. (2018) Mobile forensic tools evaluation for digital crime investigation. Int J Adv Sci Eng Inf Technol 8(3):949

    Article  Google Scholar 

  28. Spitz WU, Diaz FJ (2020) Spitz and fisher’s medicolegal investigation of death: guidelines for the application of pathology to crime investigation

  29. Khan MSA, Abdullah S, Ali A, Rahman K (2018) Pythagorean hesitant fuzzy information aggregation and their application to multi-attribute group decision-making problems. J Intell Syst 29(1):154–171

    Article  Google Scholar 

  30. Ni P, Li J, Hao H, Yan W, Du X, Zhou H (2020) Reliability analysis and design optimization of nonlinear structures. Reliability Engineering & System Safety 198:106860

    Article  Google Scholar 

  31. Tirkolaee EB, Mardani A, Dashtian Z, Soltani M, Weber G-W (2020) A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. J Clean Prod 250:119517

    Article  Google Scholar 

  32. Yager RR, Kacprzyk J (2012) The ordered weighted averaging operators: theory and applications. Springer Science & Business Media, Berlin

    Google Scholar 

  33. Chen L, Yu H (2019) Emergency alternative selection based on an e-ifwa approach. IEEE Access 7:44431–44440

    Article  MathSciNet  Google Scholar 

  34. Song Y, Deng Y (2019) A new method to measure the divergence in evidential sensor data fusion. International Journal of Distributed Sensor Networks 15(4):1550147719841295

    Article  Google Scholar 

  35. Su X, Li L, Shi F, Qian H (2018) Research on the fusion of dependent evidence based on mutual information. IEEE Access 6:71839–71845

    Article  Google Scholar 

  36. Liu Y, Liu Q, Xie C, Wei F (2019) Reliability assessment for multi-state systems with state transition dependency. Reliability Engineering & System Safety 188:276–288

    Article  Google Scholar 

  37. Wang J, Qiao K, Zhang Z (2019) An improvement for combination rule in evidence theory. Futur Gener Comput Syst 91:1–9

    Article  Google Scholar 

  38. Bromiley P (2003) Products and convolutions of gaussian probability density functions. Tina-Vision Memo 3(4):1

    Google Scholar 

  39. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Annals of eugenics 7(2):179–188

    Article  Google Scholar 

  40. Jiang W, Zhuang M, Xie C, Wu J (2017) Sensing attribute weights: A novel basic belief assignment method. Sensors 17(4):721

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially supported by the Fund of the National Natural Science Foundation of China (Grant No.61903307), China Postdoctoral Science Foundation (Grant No. 2020M683575),the Startup Fund from Northwest A&F University (Grant No. 2452018066), and the National College Students Innovation and Entrepreneurship Training Program (Grant No. S202010712135, No. S202010712019,No. X202010712364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyi Kang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The derivation process of likelihood results based on distribution function

Appendix A: The derivation process of likelihood results based on distribution function

Suppose there are m pieces of belief value that have been arranged in descending order and obey the distribution function. They are F1,F2,F3, ⋯ , Fm. The weights obtained based on OWA operator are w1, w2, w3 ⋯, wm, here \({w_{i}} \in [0,1],{\sum }_{i} {{w_{i}} = 1} \).

(1) Assuming that the function F is a gaussian distribution function with mean μ and standard deviation δ, here δ > 0,μ ∈ [0, 1]. We can get the likelihood result L is

$$ \begin{array}{@{}rcl@{}} \sum\limits_{k = 1}^{m} \frac{\frac{1}{(2\pi )^{\frac{k - 1}{2}}}\sqrt{\frac{1}{\prod\limits_{i = 1}^{k} \delta_{i}^{2}}} \exp \left[ - \frac{1}{2}(\sum\limits_{i = 1}^{k} \frac{\mu_{i}^{2}}{\delta_{i}^{2}} - \frac{(\sum\limits_{i = 1}^{k} \frac{\mu_{i}}{\delta_{i}^{2}})^{2}}{\sum\limits_{i = 1}^{k} \frac{1}{\delta_{i}^{2}}}) \right]}{\sqrt{2}{\pi}}\\ \exp \left[ - (x - \frac{\sum\limits_{i = 1}^{k} \frac{\mu_{i}}{\delta_{i}^{2}}^{2}} {\sum\limits_{i = 1}^{k} \frac{1}{\delta_{i}^{2}}})*\sum\limits_{i = 1}^{k} \frac{1}{\delta_{i}^{2}} \right] \text{*} (\frac{k}{m} - (\frac{k - 1}{m})^{\frac{1 - \alpha}{\alpha}}). \end{array} $$

The specific proof process is as follows.

$$ \begin{array}{l} {\text{L}} = {{\text{F}}_{1}}*{{\text{w}}_{1}} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}*{{\text{w}}_{2}} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}{\text{*}}{{\text{F}}_{3}}*{{\text{w}}_{3}} + {\cdots} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}{\text{*}}{{\text{F}}_{3}}{\text{*}} {\cdots} {^{\ast}}{{\text{F}}_{\text{m}}}*{{\text{w}}_{\text{m}}} \\ {\text{ = }}\frac{1}{{\sqrt {2\pi } {\delta_{1}}}}{\text{exp - }}\left[ { - \frac{{{{(x - {\mu_{1}})}^{2}}}}{{2{\delta_{1}}^{2}}}} \right]{\text{*}}{(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}} + \frac{{{{\text{S}}_{12}}}}{{\sqrt {2\pi {\delta_{12}}^{2}} }}\exp \left[ { - \frac{{{{(x - {\mu_{12}})}^{2}}}}{{2{\delta_{12}}^{2}}}} \right]{\text{*}}({(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ + \frac{{{{\text{S}}_{123}}}}{{\sqrt {2\pi {\delta_{123}}^{2}} }}\exp \left[ { - \frac{{{{(x - {\mu_{123}})}^{2}}}}{{2{\delta_{123}}^{2}}}} \right]{\text{*}}({(\frac{3}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}}) + {\cdots} \\ + \frac{{{{\text{S}}_{1 {\ldots} m}}}}{{\sqrt {2\pi {\delta_{1 {\ldots} m}}^{2}} }}\exp \left[ { - \frac{{{{(x - {\mu_{1 {\ldots} m}})}^{2}}}}{{2{\delta_{1 {\ldots} m}}^{2}}}} \right]{\text{*1}}(- {(\frac{{m - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ = \frac{1}{{\sqrt {2\pi } {\delta_{1}}}}{\text{exp - }}\left[ { - \frac{{{{(x - {\mu_{1}})}^{2}}}}{{2{\delta_{1}}^{2}}}} \right]{\text{*}}({(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{{1 - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ + \frac{{\exp \left[ { - \frac{1}{2}(\sum\limits_{i = 1}^{2} \frac{{{\mu_{i}^{2}}}}{{{\delta_{i}^{2}}}} - \sum\limits_{i = 1}^{2} {\frac{{{\mu_{i}}}}{{{\delta_{i}}^{2}}}} )} \right]}}{{\sqrt {2\pi \prod\limits_{i = 1}^{2} {{\delta_{i}^{2}}} } }}\exp \left[ { - \frac{{{{(x - \left[ {\sum\limits_{i = 1}^{2} {\frac{{{\mu_{i}}}}{{{\delta_{i}}^{2}}}} } \right]\frac{{{\delta_{1}^{2}}{\delta_{2}^{2}}}}{{{\delta_{1}^{2}} + {\delta_{2}^{2}}}})}^{2}}}}{{2\frac{{{\delta_{1}^{2}}{\delta_{2}^{2}}}}{{{\delta_{1}^{2}} + {\delta_{2}^{2}}}}}}} \right]{\text{*}}({(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ + \frac{{\sqrt {\frac{1}{{\prod\limits_{i = 1}^{3} {{\delta_{i}^{2}}} }}} \exp \left[ { - \frac{1}{2}(\sum\limits_{i = 1}^{3} \frac{{{\mu_{i}^{2}}}}{{{\delta_{i}^{2}}}} - \sum\limits_{i = 1}^{3} {\frac{{{\mu_{i}}}}{{{\delta_{i}}^{2}}}} )} \right]}}{{2{\pi^{\frac{2}{3}}}}}\exp \left[ { - \frac{{{{(x - \left[ {\sum\limits_{i = 1}^{3} {\frac{{{\mu_{i}}}}{{{\delta_{i}}^{2}}}} } \right]\frac{{{\delta_{1}^{2}}{\delta_{2}^{2}}{\delta_{3}^{2}}}}{{{\delta_{3}^{2}}({\delta_{1}^{2}}{\text{ + }}{\delta_{2}^{2}}) + {\delta_{1}^{2}}{\delta_{2}^{2}}}})}^{2}}}}{2}} \right]{\text{*}}({(\frac{3}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}}) + {\cdots} \\ + \frac{{\frac{1}{{{{(2\pi )}^{\frac{{m - 1}}{2}}}}}\sqrt {\frac{1}{{\prod\limits_{i = 1}^{m} {{\delta_{i}^{2}}} }}} \exp \left[ - \frac{1}{2}(\sum\limits_{i = 1}^{m} \frac{{{\mu_{i}^{2}}}}{{{\delta_{i}^{2}}}} - \frac{{{{(\sum\limits_{i = 1}^{m} {\frac{{{\mu_{i}}}}{{{\delta_{i}}^{2}}}} )}^{2}}}}{{\sum\limits_{i = 1}^{m} {\frac{1}{{{\delta_{i}^{2}}}}} }}) \right]}}{{\sqrt {2\pi } }}\exp \left[ { - {{(x - \frac{{\sum\limits_{i = 1}^{m} {\frac{{{\mu_{i}}}}{{{\delta_{i}}^{2}}}} }}{{\sum\limits_{i = 1}^{m} {\frac{1}{{{\delta_{i}^{2}}}}} }})}^{2}}*\sum\limits_{i = 1}^{m} {\frac{1}{{{\delta_{i}^{2}}}}} } \right]{\text{*1}}(- {(\frac{{m - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\text{ = }}\sum\limits_{k = 1}^{m} {\frac{{\frac{1}{{{{(2\pi )}^{\frac{{k - 1}}{2}}}}}\sqrt {\frac{1}{{\prod\limits_{i = 1}^{k} {{\delta_{i}^{2}}} }}} \exp \left[ { - \frac{1}{2}(\sum\limits_{i = 1}^{k} \frac{{{\mu_{i}^{2}}}}{{{\delta_{i}^{2}}}} - \frac{{{{(\sum\limits_{i = 1}^{k} {\frac{{{\mu_{i}}}}{{{\delta_{i}}^{2}}}} )}^{2}}}}{{\sum\limits_{i = 1}^{k} {\frac{1}{{{\delta_{i}^{2}}}}} }})} \right]}}{{\sqrt {2\pi } }}\exp \left[ { - {{(x - \frac{{\sum\limits_{i = 1}^{k} {\frac{{{\mu_{i}}}}{{{\delta_{i}}^{2}}}} }}{{\sum\limits_{i = 1}^{k} {\frac{1}{{{\delta_{i}^{2}}}}} }})}^{2}}*\sum\limits_{i = 1}^{k} {\frac{1}{{{\delta_{i}^{2}}}}} } \right]{\text{*}}({\frac{k}{m}^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{{k - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}){\text{\ } }} \end{array}$$

(2) Assuming that the function F is a exponential distribution function with expection \(\frac {1}{\lambda }\) and deviation \(\frac {1}{{{\lambda ^{2}}}}\), here x ∈ (0, 1], λi ∈ (0, 1]. We can get the likelihood result L is

$${\text{L}} = \sum\limits_{k = 1}^{m} (\prod\limits_{i = 1}^{k} {{\lambda_{i}}} ){e^{- (\sum\limits_{i = 1}^{k} {{\lambda_{i}}} )x}}{\text{*}}({\frac{k}{m}^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{{k - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}})$$

The specific proof process is as follows.

$$\begin{array}{l} {\text{L}} = {{\text{F}}_{1}}*{{\text{w}}_{1}} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}*{{\text{w}}_{2}} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}{\text{*}}{{\text{F}}_{3}}*{{\text{w}}_{3}} + {\cdots} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}{\text{*}}{{\text{F}}_{3}}{\text{*}} \cdots {\text{*}}{{\text{F}}_{\text{m}}}*{{\text{w}}_{\text{m}}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\lambda_{1}}{e^{- {\lambda_{1}}x}}*{(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}} + {\lambda_{12}}{e^{- ({\lambda_{1}} + {\lambda_{2}})x}}{\text{*}}({(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + {\lambda_{123}}{e^{- ({\lambda_{1}} + {\lambda_{2}} + {\lambda_{3}})x}}{\text{*}}({(\frac{3}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + {\lambda_{1 {\cdots} m}}{e^{- ({\lambda_{1}} + {\lambda_{2}} + {\cdots} + {\lambda_{m}})x}}{\text{*}}(1 - {(\frac{{m - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\lambda_{1}}{e^{- {\lambda_{1}}x}}*{(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}} + ({\lambda_{1}} \cdot {\lambda_{2}}){e^{- ({\lambda_{1}} + {\lambda_{2}})x}}{\text{*}}({(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + ({\lambda_{1}} \cdot {\lambda_{2}} \cdot {\lambda_{3}}){e^{- ({\lambda_{1}} + {\lambda_{2}} + {\lambda_{3}})x}}{\text{*}}({(\frac{3}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + (\prod\limits_{i = 1}^{m} {{\lambda_{i}}} ){e^{- (\sum\limits_{i = 1}^{m} {{\lambda_{i}}} )x}}{\text{*}}(1 - {(\frac{{m - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \sum\limits_{k = 1}^{m} (\prod\limits_{i = 1}^{k} {{\lambda_{i}}} ){e^{- (\sum\limits_{i = 1}^{k} {{\lambda_{i}}} )x}}{\text{*}}({\frac{k}{m}^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{{k - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \end{array} $$

(3) Assuming that the function F is a poisson distribution function with expection λ and deviation λ, here \(x \in N + ,{\kern 1pt} {\kern 1pt} {\lambda _{i}} \in N + \). We can get the likelihood result L is

$${\text{L}}{\kern 1pt} = \sum\limits_{k = 1}^{m} {\frac{{{{(\prod\limits_{i = 1}^{k} {{\lambda_{i}}} )}^{x}}}}{{{{(x!)}^{k}}}}{e^{- (\sum\limits_{i = 1}^{m} {{\lambda_{i}}} )x}}} {\text{*}}({\frac{k}{m}^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{{k - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}})$$

The specific proof process is as follows.

$$\begin{array}{l} {\text{L}} = {{\text{F}}_{1}}*{{\text{w}}_{1}} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}*{{\text{w}}_{2}} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}{\text{*}}{{\text{F}}_{3}}*{{\text{w}}_{3}} + {\cdots} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}{\text{*}}{{\text{F}}_{3}}{\text{*}} \cdots {\text{*}}{{\text{F}}_{\text{m}}}*{{\text{w}}_{\text{m}}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{{\lambda_{1}}^{x}}}{{x!}}{e^{- {\lambda_{1}}x}}*{(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}} + \frac{{{\lambda_{12}}^{x}}}{{{{(x!)}^{2}}}}{e^{- ({\lambda_{1}} + {\lambda_{2}})x}}{\text{*}}({(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{{{\lambda_{123}}^{x}}}{{{{(x!)}^{3}}}}{e^{- ({\lambda_{1}} + {\lambda_{2}} + {\lambda_{3}})x}}{\text{*}}({(\frac{3}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{{{{({\lambda_{1 {\cdots} m}})}^{x}}}}{{{{(x!)}^{m}}}}{e^{- ({\lambda_{1}} + {\lambda_{2}} + {\cdots} + {\lambda_{m}})x}}{\text{*}}(1 - {(\frac{{m - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{{\lambda_{1}}^{x}}}{{x!}}{e^{- {\lambda_{1}}x}}*{(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}} + \frac{{{{({\lambda_{1}} \cdot {\lambda_{2}})}^{x}}}}{{{{(x!)}^{2}}}}{e^{- ({\lambda_{1}} + {\lambda_{2}})x}}{\text{*}}({(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{{{{({\lambda_{1}} \cdot {\lambda_{2}} \cdot {\lambda_{3}})}^{x}}}}{{{{(x!)}^{3}}}}{e^{- ({\lambda_{1}} + {\lambda_{2}} + {\lambda_{3}})x}}{\text{*}}({(\frac{3}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{{{{(\prod\limits_{i = 1}^{k} {{\lambda_{i}}} )}^{x}}}}{{{{(x!)}^{m}}}}{e^{- (\sum\limits_{i = 1}^{m} {{\lambda_{i}}} )x}}{\text{*}}(1 - {(\frac{{m - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \sum\limits_{k = 1}^{m} {\frac{{{{(\prod\limits_{i = 1}^{k} {{\lambda_{i}}} )}^{x}}}}{{{{(x!)}^{k}}}}{e^{- (\sum\limits_{i = 1}^{m} {{\lambda_{i}}} )x}}} {\text{*}}({\frac{k}{m}^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{{k - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \end{array} $$

(4) Assuming that the function F is a Chi-square distribution function with expection k and standard deviation 2k, here x ∈ [0, 1], kiN +. We can get the likelihood result L is

$$ {\kern 1pt} {\text{L}} = {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{k = 1}^{m} {\frac{1}{{{2^{\sum\limits_{i = 1}^{k} {\frac{{{k_{i}}}}{2}} }}\prod\limits_{i = 1}^{k} {{\varGamma} (\frac{{{k_{i}}}}{2})} }}{x^{\sum\limits_{i = 1}^{k} {\frac{{{k_{i}}}}{2}} - k}}{e^{- \frac{x}{2}}}} {\text{*}}({\frac{k}{m}^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{{k - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) $$

The specific proof process is as follows.

$$\begin{array}{l} {\text{L}} = {{\text{F}}_{1}}*{{\text{w}}_{1}} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}*{{\text{w}}_{2}} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}{\text{*}}{{\text{F}}_{3}}*{{\text{w}}_{3}} + {\cdots} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}{\text{*}}{{\text{F}}_{3}}{\text{*}} \cdots {\text{*}}{{\text{F}}_{\text{m}}}*{{\text{w}}_{\text{m}}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \!\!\!\!\ = \frac{1}{{{2^{{{\text{k}}_{1}}}}{{\varGamma}_{1}}(\frac{k}{2})}}{x^{{{\text{k}}_{1}} - 1}}{e^{- \frac{x}{2}}}*{(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}} + \frac{1}{{{2^{{{\text{k}}_{12}}}}{{\varGamma}_{12}}(\frac{k}{2})}}{x^{{{\text{k}}_{12}} - 2}}{e^{- \frac{x}{2}}}{\text{*}}({(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{1}{{{2^{{{\text{k}}_{123}}}}{{\varGamma}_{123}}(\frac{k}{2})}}{x^{{{\text{k}}_{123}} - 3}}{e^{- \frac{x}{2}}}{\text{*}}({(\frac{3}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{1}{{{2^{{{\text{k}}_{1 {\cdots} m}}}}{{\varGamma}_{1 \cdots m}}(\frac{k}{2})}}{x^{{{\text{k}}_{1 {\cdots} m}} - m}}{e^{- \frac{x}{2}}}{\text{*}}(1 - {(\frac{{m - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{1}{{{2^{\frac{{{k_{1}}}}{2}}}{\varGamma} (\frac{{{k_{1}}}}{2})}}{x^{\frac{{{k_{1}}}}{2} - 1}}{e^{- \frac{x}{2}}}*{(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}} + \frac{1}{{{2^{\frac{{{k_{1}} + {k_{2}}}}{2}}}{\varGamma} (\frac{{{k_{1}}}}{2}) \cdot {\varGamma} (\frac{{{k_{2}}}}{2})}}{x^{\frac{{{k_{1}} + {k_{2}}}}{2} - 2}}{e^{- \frac{x}{2}}}\\{\text{*}} ({(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{1}{{{2^{\frac{{{k_{1}} + {k_{2}} + {k_{3}}}}{2}}}{\varGamma} (\frac{{{k_{1}}}}{2}) \cdot {\varGamma} (\frac{{{k_{2}}}}{2}) \cdot {\varGamma} (\frac{{{k_{3}}}}{2})}}{x^{\frac{{{k_{1}} + {k_{2}} + {k_{3}}}}{2} - 3}}{e^{- \frac{x}{2}}}{\text{*}}({(\frac{3}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{1}{{{2^{\sum\limits_{i = 1}^{m} {\frac{{{k_{i}}}}{2}} }}\prod\limits_{i = 1}^{m} {{\varGamma} (\frac{{{k_{i}}}}{2})} }}{x^{\sum\limits_{i = 1}^{m} {\frac{{{k_{i}}}}{2}} - m}}{e^{- \frac{x}{2}}}{\text{*}}(1 - {(\frac{{m - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{k = 1}^{m} {\frac{1}{{{2^{\sum\limits_{i = 1}^{k} {\frac{{{k_{i}}}}{2}} }}\prod\limits_{i = 1}^{k} {{\varGamma} (\frac{{{k_{i}}}}{2})} }}{x^{\sum\limits_{i = 1}^{k} {\frac{{{k_{i}}}}{2}} - k}}{e^{- \frac{x}{2}}}} {\text{*}}({\frac{k}{m}^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{{k - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \end{array} $$

(5) Assuming that the function F is a F distribution function with expection \(\frac {{{n_{2}}}}{{{n_{2}} - 2}}\) and deviation \(\frac {{2{n_{2}}^{2}({n_{1}} + {n_{2}} - 2)}}{{{n_{1}}{{({n_{2}} - 2)}^{2}}({n_{2}} - 4)}}\), here x ∈ [0, 1], \({n_{1i}} \in N + ,{\kern 1pt} {\kern 1pt} {n_{2i}} \in N + \). We can get the likelihood result L is

$$ \begin{array}{@{}rcl@{}} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\text{L}} &=& \sum\limits_{k = 1}^{m} \left( \prod\limits_{i = 1}^{k} {\frac{{{\varGamma} (\frac{{{n_{1i}}}}{2} + \frac{{{n_{2i}}}}{2}) \cdot {{(\frac{{{n_{1i}}}}{{{n_{2i}}}})}^{\frac{{{n_{1i}}}}{2}}}}}{{{\varGamma} (\frac{{{n_{1i}}}}{2}){\varGamma} (\frac{{{n_{2i}}}}{2})}}} {x^{\frac{{\sum\limits_{i = 1}^{k} {{n_{1i}}} }}{2} - k}}\right.\\ &&\left.{\vphantom{\prod\limits_{i = 1}^{k}}} \cdot \prod\limits_{i = 1}^{k} {{{(1 + \frac{{{n_{1i}}}}{{{n_{2i}}}}x)}^{- \frac{{{n_{1i}} + {n_{2i}}}}{2}}}} {\text{*}}({{\frac{k}{m}}^{\frac{{1 - \alpha }}{\alpha }}} - {{(\frac{{k - 1}}{m})}^{\frac{{1 - \alpha }}{\alpha }}}) \right) \end{array} $$

The specific proof process is as follows.

$$\begin{array}{l} {\text{L}} = {{\text{F}}_{1}}*{{\text{w}}_{1}} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}*{{\text{w}}_{2}} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}{\text{*}}{{\text{F}}_{3}}*{{\text{w}}_{3}} + {\cdots} + {{\text{F}}_{1}}{\text{*}}{{\text{F}}_{2}}{\text{*}}{{\text{F}}_{3}}{\text{*}} \cdots {\text{*}}{{\text{F}}_{\text{m}}}*{{\text{w}}_{\text{m}}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{{N_{1}}}}{{{B_{1}}(\frac{{{n_{1i}}}}{2},\frac{{{n_{2i}}}}{2})}}{x^{\frac{{{n_{11}}}}{2} - 1}}{C_{1}}*{(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}} + \frac{{{N_{12}}}}{{{B_{12}}(\frac{{{n_{1i}}}}{2},\frac{{{n_{2i}}}}{2})}}{x^{\frac{{{n_{11}} + {n_{12}}}}{2} - 2}}{C_{12}}{\text{*}}({(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{{{N_{123}}}}{{{B_{123}}(\frac{{{n_{1i}}}}{2},\frac{{{n_{2i}}}}{2})}}{x^{\frac{{{n_{11}} + {n_{12}} + {n_{13}}}}{2} - 3}}{C_{123}}{\text{*}}({(\frac{3}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{{{N_{1 {\cdots} m}}}}{{{B_{1 \cdots m}}(\frac{{{n_{1i}}}}{2},\frac{{{n_{2i}}}}{2})}}{x^{\frac{{{n_{11}} + {n_{12}} + {n_{13}}}}{2} - m}}{C_{1 {\cdots} m}}{\text{*}}(1 - {(\frac{{m - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{{\varGamma} (\frac{{{n_{11}}}}{2} + \frac{{{n_{21}}}}{2})}}{{{\varGamma} (\frac{{{n_{11}}}}{2}){\varGamma} (\frac{{{n_{21}}}}{2})}} \cdot {(\frac{{{n_{11}}}}{{{n_{21}}}})^{\frac{{{n_{11}}}}{2}}}{x^{\frac{{{n_{11}}}}{2} - 1}} \cdot {(1 + \frac{{{n_{11}}}}{{{n_{21}}}}x)^{- \frac{{{n_{11}} + {n_{21}}}}{2}}}*{(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{{{\varGamma} (\frac{{{n_{11}}}}{2} + \frac{{{n_{21}}}}{2})}}{{{\varGamma} (\frac{{{n_{11}}}}{2}){\varGamma} (\frac{{{n_{21}}}}{2})}} \cdot \frac{{{\varGamma} (\frac{{{n_{12}}}}{2} + \frac{{{n_{22}}}}{2})}}{{{\varGamma} (\frac{{{n_{12}}}}{2}){\varGamma} (\frac{{{n_{22}}}}{2})}} \cdot {(\frac{{{n_{11}}}}{{{n_{21}}}})^{\frac{{{n_{11}}}}{2}}}\cdot{(\frac{{{n_{12}}}}{{{n_{22}}}})^{\frac{{{n_{12}}}}{2}}}{x^{\frac{{{n_{11}} + {n_{12}}}}{2} - 2}} \cdot \left[ {{{(1 + \frac{{{n_{11}}}}{{{n_{21}}}}x)}^{- \frac{{{n_{11}} + {n_{21}}}}{2}}} \cdot {{(1 + \frac{{{n_{12}}}}{{{n_{22}}}}x)}^{- \frac{{{n_{12}} + {n_{22}}}}{2}}}} \right]\\{\text{*}}({(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{1}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{{{\varGamma} (\frac{{{n_{11}}}}{2} + \frac{{{n_{21}}}}{2})}}{{{\varGamma} (\frac{{{n_{11}}}}{2}){\varGamma} (\frac{{{n_{21}}}}{2})}} \cdot \frac{{{\varGamma} (\frac{{{n_{12}}}}{2} + \frac{{{n_{22}}}}{2})}}{{{\varGamma} (\frac{{{n_{12}}}}{2}){\varGamma} (\frac{{{n_{22}}}}{2})}} \cdot \frac{{{\varGamma} (\frac{{{n_{13}}}}{2} + \frac{{{n_{23}}}}{2})}}{{{\varGamma} (\frac{{{n_{13}}}}{2}){\varGamma} (\frac{{{n_{23}}}}{2})}} \cdot {(\frac{{{n_{11}}}}{{{n_{21}}}})^{\frac{{{n_{11}}}}{2}}}\cdot{(\frac{{{n_{12}}}}{{{n_{22}}}})^{\frac{{{n_{12}}}}{2}}}\cdot{(\frac{{{n_{13}}}}{{{n_{23}}}})^{\frac{{{n_{13}}}}{2}}}{x^{\frac{{{n_{11}} + {n_{12}} + {n_{13}}}}{2} - 3}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdot {\kern 1pt} {\kern 1pt} \left[ {{{(1 + \frac{{{n_{11}}}}{{{n_{21}}}}x)}^{- \frac{{{n_{11}} + {n_{21}}}}{2}}} \cdot {{(1 + \frac{{{n_{12}}}}{{{n_{22}}}}x)}^{- \frac{{{n_{12}} + {n_{22}}}}{2}}} \cdot {{(1 + \frac{{{n_{13}}}}{{{n_{23}}}}x)}^{- \frac{{{n_{13}} + {n_{23}}}}{2}}}} \right]{\text{*}}({(\frac{3}{m})^{\frac{{1 - \alpha }}{\alpha }}} - {(\frac{2}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \prod\limits_{i = 1}^{m} {\frac{{{\varGamma} (\frac{{{n_{1i}}}}{2} + \frac{{{n_{2i}}}}{2}) \cdot {{(\frac{{{n_{1i}}}}{{{n_{2i}}}})}^{\frac{{{n_{1i}}}}{2}}}}}{{{\varGamma} (\frac{{{n_{1i}}}}{2}){\varGamma} (\frac{{{n_{2i}}}}{2})}}} {x^{\frac{{\sum\limits_{i = 1}^{m} {{n_{1i}}} }}{2} - m}} \cdot \prod\limits_{i = 1}^{m} {{{(1 + \frac{{{n_{1i}}}}{{{n_{2i}}}}x)}^{- \frac{{{n_{1i}} + {n_{2i}}}}{2}}}} {\text{*}}(1 - {(\frac{{m - 1}}{m})^{\frac{{1 - \alpha }}{\alpha }}}) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \sum\limits_{k = 1}^{m} {(\prod\limits_{i = 1}^{k} {\frac{{{\varGamma} (\frac{{{n_{1i}}}}{2} + \frac{{{n_{2i}}}}{2}) \cdot {{(\frac{{{n_{1i}}}}{{{n_{2i}}}})}^{\frac{{{n_{1i}}}}{2}}}}}{{{\varGamma} (\frac{{{n_{1i}}}}{2}){\varGamma} (\frac{{{n_{2i}}}}{2})}}} {x^{\frac{{\sum\limits_{i = 1}^{k} {{n_{1i}}} }}{2} - k}} \cdot \prod\limits_{i = 1}^{k} {{{(1 + \frac{{{n_{1i}}}}{{{n_{2i}}}}x)}^{- \frac{{{n_{1i}} + {n_{2i}}}}{2}}}} {\text{*}}({{\frac{k}{m}}^{\frac{{1 - \alpha }}{\alpha }}} - {{(\frac{{k - 1}}{m})}^{\frac{{1 - \alpha }}{\alpha }}})} ) \end{array}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhu, R., Chen, J. et al. A generalized soft likelihood function in combining multi-source belief distribution functions. Appl Intell 52, 3748–3765 (2022). https://doi.org/10.1007/s10489-021-02366-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02366-7

Keywords

Navigation