
https://doi.org/10.1007/s10489-021-02411-5

Faster heuristics for graph burning

Rahul Kumar Gautam1 · Anjeneya Swami Kare1 ·Durga Bhavani S.1

Accepted: 3 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Graph burning is a process of information spreading through the network by an agent in discrete steps. The problem is to
find an optimal sequence of nodes that have to be given information so that the network is covered in least number of steps.
Graph burning problem is NP-Hard for which two approximation algorithms and a few heuristics have been proposed in the
literature. In this work, we propose three heuristics, namely, Backbone Based Greedy Heuristic (BBGH), Improved Cutting
Corners Heuristic (ICCH), and Component Based Recursive Heuristic (CBRH). These are mainly based on Eigenvector
centrality measure. BBGH finds a backbone of the network and picks vertex to be burned greedily from the vertices of the
backbone. ICCH is a shortest path based heuristic and picks vertex to burn greedily from best central nodes. The burning
number problem on disconnected graphs is harder than on the connected graphs. For example, burning number problem is
easy on a path where as it is NP-Hard on disjoint paths. In practice, large networks are generally disconnected and moreover
even if the input graph is connected, during the burning process the graph among the unburned vertices may be disconnected.
For disconnected graphs, ordering the components is crucial. Our CBRH works well on disconnected graphs as it prioritizes
the components. All the heuristics have been implemented and tested on several bench-mark networks including large
networks of size more than 50K nodes. The experimentation also includes comparison to the approximation algorithms. The
advantages of our algorithms are that they are much simpler to implement and also several orders faster than the heuristics
proposed in the literature.

Keywords Graph burning · Burning number · Heuristic

1 Introduction

An application of information spread can be seen in the
public health campaigns. For instance in the case of covid
pandemic, the health workers are struggling to get the
information reach every house in order to spread awareness
and prevent the spread of coronavirus. Consider the scenario
of one health-worker endeavour. She contacts a family in the

� Anjeneya Swami Kare
askcs@uohyd.ac.in

Rahul Kumar Gautam
19mcpc06@uohyd.ac.in

Durga Bhavani S.
sdbcs@uohyd.ernet.in

1 School of Computer and Information Sciences,
University of Hyderabad, Hyderabad, India

village and explains the precautions to be taken up to protect
oneself from the contagious infection and persuades that
family to help spread awareness among their acquaintances.
We assume that all the members who can be influenced
by a family are covered in one step of the awareness
campaign. In the burning number context, all those nodes
that are covered are called as the ‘burning’ nodes. Next,
she has to approach another new family outside this circle
of influence to spread the message. The whole process
happens in discrete steps. Hence it is important to detect
an optimal sequence of families to be approached by the
health worker that would ensure coverage of the entire
village for propagating the information in minimum time.
In paper [25], a similar application of passing information
in emergency situations is discussed. Suppose a piece
of information has to be sent to all the nodes in a
network by a satellite. The satellite informs nodes (hubs) in
discrete time steps. Once a node is informed it is deemed
to be in informed state. All the nodes that receive the
information communicate to each of their neighbours at
the next time instant. Assume that the communication is

/ Published online: 20 May 2021

Applied Intelligence (2022) 52:1351–1361

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02411-5&domain=pdf
mailto: askcs@uohyd.ac.in
mailto: 19mcpc06@uohyd.ac.in
mailto: sdbcs@uohyd.ernet.in

carried out in a parallel mode. Process stops when the nodes
in the entire network are informed.

Graphs are popular representations that model the social
networks of the real world. Let G(V, E) be a graph where
V is set of nodes depicting people, E denotes relationship
among the nodes. Initially all the nodes are in unburned
(uninformed) state. Given time steps t0, t1, t2 · · · tb−1, at t0
one node is set to fire from outside. It starts burning and
spreads the fire to its neighbours in a step wise fashion.
During the process of burning, it is assumed that either the
node is set on fire directly, called as source of fire, or node
is burning by catching fire from a neighbour or it is not
yet burnt. At ith time step, a new unburned node is set on
fire from outside and all those nodes which have caught fire
at ti−1, burn their neighbours. The process stops when the
entire graph is burning, that is, or all the nodes have received
information. Thus the task is to find the minimum sequence
of nodes that have to be chosen as sources of fire, that are
directly burned from outside. It is desirable to spread the
information through the network, or burn all the nodes of the
network quickly. So, the goal is to minimize the number of
sources. The minimum number of steps needed to burn the
entire graph or the length of the optimal burning sequence
is called the burning number of the graph. The burning
number of the graph G is denoted by bn(G). Let us consider
the graph in Fig. 1. The vertex sequences [7, 4, 2, 1],
[4, 7, 1] and [3, 6, 8] are valid burning sequences, where as
the sequence [7, 4, 1] is not a burning sequence. The burning
number of the graph is 3, as the graph does not have burning
sequence of length less than 3.

There are a few problems related to graph burning
proposed in the literature. K-centre problem [11], is one in
which the K centres are chosen simultaneously as sources
of fire. As a result the nodes burn in parallel and hence
very quickly. The K-centres problem is also NP-hard. The
Firefighter problem [10] is a complementary version of the
graph burning problem, in which a firefighter protects a
node to reduce spread of fire in the graph. At each time
step, the firefighter selects a node through which he can
protect maximum number of nodes. On the other hand,
in graph burning, a node is selected in such a way that
it can burn a maximum number of nodes. Therefore the
firefighter defends and in graph burning the source of fire
burns. Active influence spreading in social networks [7, 8,

Fig. 1 An example graph, The vertex sequence [4, 7, 1] is an optimal
burning sequence. The burning number of the graph is 3

15] is the problem of selection of seed sets that can influence
as many nodes as possible. In this paper, we propose three
heuristics for the GRAPH BURNING problem. The proposed
heuristics are tested on some real world data sets and their
performance is compared to the existing heuristics.

2 Related work

Bonato et al. [3] introduced the GRAPH BURNING problem
and the parameter burning number. They have studied the
properties of GRAPH BURNING and proposed bounds for
burning number. Bessy et al. [24] proved that the decision
version of the GRAPH BURNING problem is NP-Complete.
There has been lot of attention paid towards studying
the GRAPH BURNING problem from theoretical point of
view. The complexity and the algorithms for the GRAPH

BURNING problem for special graph classes was studied
in [4, 12, 21, 23, 24]. The characterization and bounds for
burning number was studied in [1, 3, 4, 6, 13, 17, 19, 20].
Approximation algorithms for the burning number problem
was studied in [5, 6, 13, 24]. Parameterized complexity
of the GRAPH BURNING problem was studied in [14, 16].
Refer to the survey paper by Bonato [2] for more details of
the state-of-the-art results on the burning number problem.

S̆imon et al. [25] proposed heuristics for the GRAPH

BURNING problem. They have studied the GRAPH BURN-
ING problem empirically using both real world data sets
as well as synthetic data sets. They proposed three heuris-
tics based on Eigenvector centrality, namely Maximum
Eigenvector Centrality Heuristic (MECH), Cutting Corners
Heuristic (CCH), and Greedy Algorithm with Forward-
Looking Search Strategy Heuristic (GFSSH). The MECH
is a greedy heuristic, at each iteration it selects a (central)
node with maximum eigenvector centrality. In CCH, at each
iteration, first it finds a set of corner nodes of the graph,
using these corner nodes, a set of central nodes are selected
based on eigenvector centrality. Among these central nodes
a best central node is selected using weighted aggregated
sum product assessment (WASPAS) algorithm. In GFSSH a
set of 20 central nodes are generated and at each iteration a
best central node is selected by combining greedy heuristic
and forward looking search.

S̆imon et al. [25] also implemented the 3-approximation
algorithm (3-APRX) of Bonato et al. [5] to compare
the performance of their heuristics. They have tested the
heuristics on some synthetic tree data sets also, however
they did not implement the 2-approximation algorithm (2-
APRX) for trees of Bonato et al. [5]. As stated in [5], the
2-approximation algorithm can also be used to compute
an upper bound on burning number of any graph. If G is
the original graph and T be any spanning tree of G then
bn(G) ≤ bn(T). So the 2-approximation algorithm for trees

1352 R. K. Gautam et al.

can also be used to compute an upper bound on the burning
number of the graph. However the computed upper bound
need not be a 2-approximation of the original graph.

In their extended work, S̆imon et al. [26] compared the
effectiveness of greedy heuristic of [25] with 31 different
centrality measures.

Recently, Farokh et al. [9] proposed six heuristics for
the GRAPH BURNING problem. Their heuristics are not
based on Eigenvector centrality. They call the vertices in the
burning sequence as activators. The first four heuristics are
based on different strategies to obtain the first activator and
the rest of the activators. First activator is either a central
node or it is selected randomly. The rest of the activators
are selected such that each vertex has a unique activator. In
other words reduce overlapping among the circle around the
activators. The other two heuristics are based on diameter,
DFS and BFS of the graph.

We propose three heuristics for the GRAPH BURNING

problem. The heuristics are based on eigenvector cen-
trality. We propose the following heuristics: Backbone
Based Greedy Heuristic (BBGH), Improved Cutting Cor-
ners Heuristic (ICCH) and Component Based Recursive
Heuristic (CBRH). We have also implemented both 3-
approximation and 2-approximation algorithms of Bonato
et al. [5]. We compare our implemented heuristics with
GFSSH, the best performing heuristic of S̆imon et al. [25].
We also compare performance of our algorithms with the
results of Farokh et al. [9].

Note that both [25] and [9] tested their heuristics on
smaller data sets. We test our heuristics on bigger data sets
as well. For example, some of the data sets we used are
DIMACS, BOSHLIB, Facebook blue verified pages friends
network, DBLP-citation network and huge graphs with size
more than 50,000 nodes like Gemsec-Deezer(HR) (music
friendship network in Europe). All the three heuristics are
performing equally well on all the data sets. Our heuristics
are faster than the GFSSH of S̆imon et al. [25] and efficient
compared to heuristics of Farokh et al. [9]. Moreover our
heuristics are easy to implement.

The rest of the paper is organized as follows: In Section 3,
we discuss greedy heuristics. The Backbone Based Greedy
Heuristic (BBGH) is discussed in Section 3.1. The
Improved Cutting Corners Heuristic (ICCH) is discussed
in Section 3.2. In Section 3.3, we discuss the Component
Based Recursive Heuristic (CBRH). In Section 4, we
discuss our results and some observations. We give
conclusions in Section 5.

3 Proposed heuristics

We consider the following decision version of the GRAPH

BURNING, which asks to check if the graph G can be

burned in at most b time steps. If we have an algorithm
for BURN-GRAPH(G, b), we can use binary search to
compute minimum b for which the BURN-GRAPH(G, b)

returns true. As the GRAPH BURNING is NP-hard,
we can not expect to have an exact polynomial time
algorithm for BURN-GRAPH(G, b). In this paper, we
propose heuristics for BURN-GRAPH(G, b). The heuristics
for BURN-GRAPH(G, b), if it returns true, it means that
the algorithm is successful in finding a burning sequence
of length at most b. If it returns f alse, it means that the
algorithm failed to find a burning sequence of length at most
b. Note that in the latter case, the graph can still be burned
in at most b steps.

We propose three heuristics for BURN-GRAPH(G, b).
First two are greedy in nature and the third one is a
component based recursive algorithm. First we discuss the
greedy algorithms and then the recursive algorithm.

At the outset, the process underlying the greedy
algorithms is as shown in Algorithm 1. At each iteration,
the function getBestCentralNode() extracts an unburned
vertex to burn next. The two heuristics differ in the
procedure getBestCentralNode().

1353Faster heuristics for graph burning

3.1 Backbone Based Greedy Heuristic (BBGH)

We call a longest path starting at a node with minimum
centrality value and containing nodes with high centrality
values as the backbone path. A node on the backbone path
can potentially burn more vertices. With this intuition we
propose the Backbone Based Greedy Heuristic (BBGH).
We extract the backbone path and for each vertex in the
backbone path, we see how many vertices the vertex can
burn, if we burn the vertex in the current time step. The
vertex which leads to maximum number of burned vertices
is chosen as the best central node. Here the crucial step is:
how to extract the backbone path?.

A backbone path is a longest path starting at a node
with minimum centrality and containing nodes with high
centrality values. To compute backbone path we use BFS

traversal. We compute BFS tree rooted at a node with
minimum centrality value. In this rooted tree we look at
the nodes at highest depth, there can be more than one
such node. For all these nodes we consider shortest path
from the root to the node and compute average centrality
of all the nodes in the path. A path with maximum average
centrality is considered as the backbone path. The procedure
getBackbonePath() returns a path.

Let us take backbone path as an array bbPath. For
each vertex v ∈ bbPath in decreasing order of centrality
values, compute S = Nr

G′ [v], set of all the vertices which
are at a distance at most r from v. Then whichever node
gives maximum |S| value, will become the best central
node. If the graph is disconnected, then backbone path of
each component is extracted and which ever vertex of these
backbone paths gives maximum |S| value, we return that
vertex as the best central node. The complete algorithm is
shown in Algorithm 2. Working of the BBGH is shown in
Table 1 with an example. Note that, for the graph given
in Table 1, GFSSH of S̆imon et al. [25] gives a burning
sequence of size 5, where as our BBGH burns the graph in
4 time steps.

3.2 Improved Cutting Corners Heuristic (ICCH)

S̆imon et al. [25], presented heuristic called Cutting
Corner Heuristic (CCH). Their algorithm has O(mn) time
complexity. We present a similar heuristic which also runs
in worst case O(mn) time. However our algorithm is
easy to implement and runs faster in practice as we avoid
computation of average path length and call to weighted
aggregated sum product assessment (WASPAS) method.

Let r be the number of time steps available to burn
the graph. We start by computing the centrality values.
Let u be the node with maximum centrality. We remove
the r neighborhood of u, that is, all the vertices in the
set Nr

G[u] from the graph G. If the resulting graph is
empty, then we return the vertex u as the best central node.
Otherwise, let the resulting graph have q components, say
C[0], C[1], · · · , C[q − 1]. For each component C[i], 0 ≤
i < q, we take the minimum centrality vertex (say vi) of
the component C[i] and compute shortest path from u to vi

and let the shortest path be denoted by P [i]. We visualize
P [0], P [1], · · · , P [q − 1] as a matrix (multi-list), where
each P [i] is treated as a row in the matrix. Now for each
column of the matrix, we pick r nodes in decreasing order
of degree. If c is the number of columns of the matrix, we
will get at most r ∗ c such nodes. For each of these nodes,
we compute S = Nr

G[.] value. Then whichever node gives
maximum |S| value, will become the best central node. The

1354 R. K. Gautam et al.

process is depicted in the Algorithm 3. Working of the ICCH
is shown in Table 2 with an example. From our results, we
observe that our ICCH performs better than the CCH of
S̆imon et al. [25].

3.3 Component Based Recursive Heuristic (CBRH)

If the graph is disconnected, choosing of a component to
burn a vertex can make a difference. Let us consider the
graphs in Figs. 2 and 3. These graphs have two components.
Let us see the following criterion to select the component to
burn a vertex.

1. Component with maximum size: If we choose
component with maximum number of vertices, we need
a burning sequence of length 4 to burn the graph in
Fig. 2 and we need a burning sequence of length 4 to
burn the graph in Fig. 3. However, the actual burning
number of the graph in Fig. 3 is 3.

2. Component with maximum path length: If we
choose component with maximum path length, we need
a burning sequence of length 5 to burn the graph in
Fig. 2 and we need a burning sequence of length 3 to
burn the graph in Fig. 3. However, the actual burning
number of the graph in Fig. 2 is 4.

For the graph given in Fig. 2, the Backbone Based
Greedy Heuristic will choose the component with vertex
set {1, 2, 3 · · · , 9} and vertex 5 is chosen as the best
central node. Now we can see that we require 5 time
steps to burn the graph. However, the burning number of
the graph is 4. The optimum burning sequence chooses
a vertex 20 from the second component. Note that even
if graph is connected in the beginning, in the subsequent
iterations the graph can be disconnected and this situation
can arise. Therefore choosing a component is very crucial.
Therefore the question is what is the criteria to select the
best component of the graph. Ideally we should choose a
component that has maximum burning number.

In the Component Based Recursive algorithm, we
recursively run the Backbone Based Greedy Heuristic and
which ever component leads to maximum burning number,
we choose such a component. For each component the
algorithm recursively estimates the burning number of the
component. During the recursive calls, burning number
computed for a component is stored in a dictionary to avoid
redundant recursive calls. The component with maximum
estimated burning number is selected and from which best
central node is selected. The process is described in the
Algorithm 4. For the example considered in Table 1, the
trace of the algorithm is very similar that of Algorithm 2.

Our BBGH and ICCH fail to compute optimal burning
sequence of either graph in Figs. 2 or 3. However, our
CBRH computes optimal burning sequence for both the
graphs. For the connected graph given in Fig. 4, our CBRH
computes the optimal burning number but our other two
heuristics, BBGH, ICCH, and GFSSH of S̆imon et al. [25]
fail to compute optimal burning sequence. This concludes
the significance of our ICCH.

4 Results and discussion

We tested our heuristics on the following data sets:

1. The Network Data Repository [22]

– Netscience
– Polblogs
– Reed98
– Mahindas
– Cite-DBLP

1355Faster heuristics for graph burning

1356 R. K. Gautam et al.

Table 1 Trace of BBGH, the Algorithms 1 and 2

Original Graph (G)

1st Iteration: Graph is connected and hence it has a single component. Backbone path bbpath = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6,
5, 4, 3, 2, 1] and best central node is 10 for radius 3. Here, by radius we mean the number of remaining steps in the burning sequence.

After 1st Iteration

2nd Iteration: Graph has two components and backbone path bbpath = [6, 5, 4, 3, 2, 1] and best central node is 3 for radius 2.

After 2nd Iteration

3rd Iteration: Graph has two components and backbone path bbpath = [16, 15, 14] and best central node is 15 for radius 1.

After 3rd Iteration

4th Iteration: Graph has one component and backbone path bbpath = [6] and best central node is 6 for radius 0.

After 4th Iteration

For each iteration vertices shown in red color are not part of the graph G. The estimated burning number of the graph is 4

2. Stanford large network dataset collection (SNAP
Datasets) [18]

– Chameleon
– TVshow
– Ego-Facebook
– Squirrel
– Politician
– Government

– Crocodile
– Gemsec-Deezer(HR)

We also generated 100 random trees and tested the
performance of the algorithms. All the heuristics are imple-
mented in Python programming language. The algorithms
have been implemented on a system with processor Intel
Core i5, processor speed of 2.7 GHz having dual core and
8GB RAM.

1357Faster heuristics for graph burning

Table 2 Trace of ICCH, the Algorithms 1 and 3

Original Graph (G)

1st Iteration: graph is connected and hence it has a single component. We get node 10 as the next node to burn for radius 4.

After 1st Iteration

2nd Iteration: We get node 15 as the next node to burn for radius 3.

After 2nd Iteration

3rd Iteration: We get node 3 as the next node to burn for radius 2.

After 3rd Iteration

For each iteration vertices shown in red color are not part of the graph G. The estimated burning number of the graph is 5

Fig. 2 An example disconnected graph. The burning number of the
graph is 4

Fig. 3 An example disconnected graph. The burning number of the
graph is 3

Fig. 4 An example graph, The vertex sequence [13, 21, 3, 7, 6] is an
optimal burning sequence. The burning number of the graph is 5

1358 R. K. Gautam et al.

We compare performance of our heuristics with those
of [25] and [9]. The Table 3 shows the estimated
values of the burning number for various algorithms. We
have compared our results with 3-approximation and 2-
approximation algorithms of Bonato et al. [5], GFSSH, the
best performing heuristic of [25].1 We have also listed the
number of recursive calls made by our Component Based
Recursive Heuristic. It can be observed that, at the outset
the algorithm looks like an exponential algorithm, but in
practice the number of recursive calls made is very less even
for bigger graphs. Note that for all the social networking
data sets and other data sets that have been considered in
this paper, the diameter (radius) of the graph is very small.
The burning number of a graph with radius r is at most
r + 1. As the radius of the graphs is very small, improving
the burning by even a small number is tough. From Table 3
we observe that our heuristics are competitive to the best
heuristic of S̆imon et al. [25]. Table 4 shows the running
time comparison of our heuristics with that of GFSSH, the
best performing heuristic of [25]. Our heuristics are faster
than that of [25]. Note that both S̆imon et al. [25] and
Farokh et al. [9] tested their heuristics on smaller data sets.
As our heuristics are faster, they take lesser time on even
bigger data sets.

While comparing with heuristics of Farokh et al. [9],
it can be seen that our heuristics give better results for
some of the graphs. The Table 5 shows the comparison of
performance of our heuristics with that of Farokh et al. [9].

In their extended work S̆imon et al. [26] studied the
effectiveness of 31 different centrality measures on the
greedy heuristic of [25]. They have run the experimentation
on only 3 data sets out of which 2 data sets are synthetic
and the only standard data set they have used is the
Netscience data set. Note that their experimentation is more
on comparing different centrality measures and no new
heuristics are proposed.

5 Conclusion

In this paper, we proposed three heuristics for GRAPH

BURNING problem, namely, Backbone Based Greedy
Heuristic (BBGH), Improved Cutting Corners Heuris-
tic (ICCH), and Component Based Recursive Heuristic
(CBRH). Firstly, we show a need for each heuristic by con-
structing the required example graphs. That is, we show a
graph for which BBGH finds a better burning number com-
pared to GFSSH, a graph on which ICCH finds a better
burning number than BBGH; and finally need for the recur-
sive algorithm of CBRH, where CBRH manages to find a
better burning number than the other heuristics.

1The code is obtained from the authors and executed on our machine.

Ta
bl
e
3

C
om

pa
ri

so
n

of
es

tim
at

ed
bu

rn
in

g
nu

m
be

r
of

ap
pr

ox
im

at
io

n
al

go
ri

th
m

s
[5

],
C

C
H

an
d

G
FS

SH
of

[2
5]

an
d

ou
r

he
ur

is
tic

s

N
et

w
or

k
so

ur
ce

N
am

e
|V

|
|E|

3-
A

PR
X

2-
A

PR
X

G
FS

SH
[2

5]
C

C
H

[2
5]

B
B

G
H

IC
C

H
C

B
R

H
C

B
R

H
C

al
ls

N
et

w
or

k
da

ta
re

po
si

to
ry

N
et

sc
ie

nc
e

37
9

91
4

12
10

7*
7*

7
7

7
23

Po
lb

lo
gs

64
3

2K
9

10
6

6
6

6
6

8
R

ee
d9

8
96

2
18

K
6

8
4

4
4

4
4

46
M

ah
in

da
s

12
58

75
13

9
8

5*
5*

5
5

5
68

C
ite

-D
B

L
P

12
.6

K
49

.7
K

12
0

82
41

41
41

41
41

14
6

SN
A

P
D

at
a

se
t

C
ha

m
el

eo
n

2.
2K

31
.4

K
9

10
6

6
6

6
6

43
T

V
sh

ow
3.

8K
17

.2
K

18
16

10
10

10
10

10
49

E
go

-F
ac

eb
oo

k
4K

88
K

9
6

4
4

4
4

4
11

0
Sq

ui
rr

el
5K

19
8K

9
10

6
6

6
6

6
19

Po
lit

ic
ia

n
5.

9K
41

.7
K

12
12

7
7

7
7

7
9

G
ov

er
nm

en
t

7K
89

.4
K

9
10

6
6

6
6

6
7

C
ro

co
di

le
11

K
17

0K
12

10
6

6
6

6
6

40
G

em
se

c-
D

ee
ze

r(
H

R
)

54
K

49
8K

12
12

7
7

7
7

7
92

R
an

do
m

ly
ge

ne
ra

te
d

B
ar

ab
as

i-
A

lb
er

t(
10

gr
ap

hs
)

1K
3K

6
8

4.
9

4.
9

4.
9

4.
9

4.
9

8
E

rd
os

-R
en

yi
(1

0
gr

ap
hs

)
1K

6K
6

8
5

5
5

5
5

1

T
he

la
st

co
lu

m
n

sh
ow

s
th

e
nu

m
be

r
of

re
cu

rs
iv

e
ca

lls
m

ad
e

by
C

B
R

H
.*

-F
or

N
et

sc
ie

nc
e

an
d

M
ah

in
da

s
da

ta
se

ts
,[

25
]

qu
ot

ed
bu

rn
in

g
nu

m
be

r
as

6,
ho

w
ev

er
w

he
n

w
e

ru
n

th
ei

r
pr

og
ra

m
on

ou
r

m
ac

hi
ne

w
e

go
t7

an
d

5
re

sp
ec

tiv
el

y

1359Faster heuristics for graph burning

Ta
bl
e
4

C
om

pa
ri

so
n

of
ru

nn
in

g
tim

es
of

ou
r

he
ur

is
tic

s
w

ith
C

C
H

an
d

G
FS

SH
of

[2
5]

N
et

w
or

k
So

ur
ce

N
am

e
|V

|
|E|

G
FS

SH
[2

5]
C

C
H

[2
5]

B
B

G
H

IC
C

H
C

B
R

H

N
et

w
or

k
da

ta
re

po
si

to
ry

N
et

sc
ie

nc
e

37
9

91
4

2m
3s

<
1s

<
1s

1s
Po

lb
lo

gs
64

3
2K

3s
3s

<
1s

1s
2s

R
ee

d9
8

96
2

18
K

5s
6s

3s
3s

5s
M

ah
in

da
s

12
58

75
13

6s
7s

<
1s

3s
23

s
C

ite
-D

B
L

P
12

.6
K

49
.7

K
3m

8s
3m

20
s

39
s

22
s

2m
SN

A
P

D
at

a
se

t
C

ha
m

el
eo

n
2.

2K
31

.4
K

25
s

27
s

20
s

16
s

16
s

T
V

sh
ow

3.
8K

17
.2

K
30

s
26

s
7s

22
s

15
s

E
go

-F
ac

eb
oo

k
4K

88
K

1m
1m

17
s

16
s

22
s

Sq
ui

rr
el

5K
19

8K
3m

5s
2m

40
s

34
s

1m
40

s
Po

lit
ic

ia
n

5.
9K

41
.7

K
1m

52
s

14
s

32
s

17
s

G
ov

er
nm

en
t

7K
89

.4
K

1m
13

s
1m

17
s

20
s

50
s

32
s

C
ro

co
di

le
11

K
17

0K
5m

3m
17

s
2m

36
s

42
s

4m
G

em
se

c-
D

ee
ze

r(
H

R
)

54
K

49
8K

1h
20

m
49

m
2m

36
s

7m
47

m
R

an
do

m
ly

ge
ne

ra
te

d
B

ar
ab

as
i-

A
lb

er
t(

10
gr

ap
hs

)
1K

3K
1m

10
s

1m
10

s
10

s
20

s
E

rd
os

-R
en

yi
(1

0
gr

ap
hs

)
1K

6K
1m

40
s

1m
30

s
10

s
5s

30
s

Ta
bl
e
5

C
om

pa
ri

so
n

of
es

tim
at

ed
bu

rn
in

g
nu

m
be

r
of

he
ur

is
tic

s
of

[9
]

an
d

ou
r

he
ur

is
tic

s

N
am

e
|V

|
|E|

M
ax

.d
eg

ct
r-

H
al

f
ct

r-
fa

r
R

an
d-

H
al

f
R

nd
-F

ar
D

FS
-p

at
h

D
-B

FS
-P

at
h

G
FS

SH
[2

5]
C

C
H

[2
5]

B
B

G
H

IC
C

H
C

B
R

H

c-
fa

t2
00

-1
20

0
1.

5k
17

11
8

9
7

8
8

7
7

7
7

7

c-
fa

t2
00

-2
20

0
3.

2k
34

6
6

6
5

5
6

5
5

5
5

5

c-
fa

t2
00

-5
20

0
8.

4k
86

4
4

4
4

4
3

3
3

3
3

3

c-
fa

t5
00

-1
50

0
4.

4k
20

12
11

12
10

15
17

9
9

9
10

9

c-
fa

t5
00

-1
0

50
0

46
k

18
8

4
4

4
4

4
4

3
3

3
3

3

c-
fa

t5
00

-2
50

0
9.

1k
38

9
8

9
8

11
8

7
7

7
7

7

c-
fa

t5
00

-5
50

0
23

k
95

6
6

6
6

5
6

5
5

5
5

5

1360 R. K. Gautam et al.

We show through extensive experimentation that BBGH
turns out to be the fastest among all the heuristics and
several orders faster than the heuristic GFSSH of S̆imon
et al., which is one of the latest heuristics proposed for this
problem as shown in Table 4. To give an example, on the
largest network of the benchmark data set with size 54K,
BBGH gave burning number of 7 in 2m 36s as compared to
1h 20m taken by GFSSH. ICCH follows as a close second
by delivering the result in 7 minutes. Lastly, the recursive
heuristic though is slower than our other heuristics it runs
faster than GFSSH on most of the large data sets. It shows
a way to prioritize the ordering of selection of components
in order to obtain optimal burning number. Further, we
also show the superior results obtained by our proposed
heuristics on other data sets experimented by Farokh et al.
in Table 5.

We feel that the techniques used in the paper can be
extended to active influence spreading problems like, Target
Set Selection, Perfect Seed Set, and Perfect Evangelic Set
problems.

References

1. Bessy S, Bonato A, Janssen J, Rautenbach D, Roshanbin E (2018)
Bounds on the burning number. Discret Appl Math 235:16–22

2. Bonato A (2020) A survey of graph burning
3. Bonato A, Janssen J, Roshanbin E (2014) Burning a graph as a

model of social contagion. In: Algorithms and models for the web
graph, WAW 2014, vol 8882. Springer, pp 13–22. Lecture Notes
in Computer Science

4. Bonato A, Janssen J, Roshanbin E (2016) How to burn a graph.
Internet Math 12(1-2):85–100

5. Bonato A, Kamali S (2019) Approximation algorithms for graph
burning. In: Theory and applications of models of computation.
TAMC 2019. Springer, pp 74–92. Lecture Notes in Computer
Science

6. Bonato A, Lidbetter T (2019) Bounds on the burning numbers of
spiders and path-forests. Theor Comput Sci 794:12–19

7. Cordasco G, Gargano L, Rescigno A, Vaccaro U (2016)
Evangelism in social networks: Algorithms and complexity.
Networks 71(4):346–357

8. Cordasco G, Gargano L, Rescigno AA (2019) Active influence
spreading in social networks. Theor Comput Sci 764:15–29

9. Farokh ZR, Tahmasbi M, Tehrani ZHRA, Buali Y (2020) New
heuristics for burning graphs. arXiv:2003.09314

10. Finbow S, Macgillivray G (2009) The firefighter problem: A
survey of results, directions and questions. Australas J Combin
[electronic only] 43:57–77

11. Garcia J, Menchaca R, Sanchez J, Menchaca R (2018) Local
search algorithms for the vertex k-center problem. IEEE Lat Am
Trans 16(6):1765–1771

12. Gupta AT, Lokhande S, Mondal K (2020) NP-completeness
results for graph burning on geometric graphs. arXiv:2003.07746

13. Kamali S, Miller A, Zhang K (2020) Burning two worlds:
Algorithms for burning dense and tree-like graphs. In: Theory and
practice of computer science, SOFSEM 2020. Springer, pp 113–
124. Lecture Notes in Computer Science

14. Kare AS, Reddy IV (2019) Parameterized algorithms for graph
burning problem. In: International workshop on combinatorial
algorithms. Springer, pp 304–314

15. Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of
influence through a social network. In: Proceedings of the ninth
ACM SIGKDD international conference on knowledge discovery
and data mining (KDD’03). pp 137–146

16. Kobayashi Y, Otachi Y (2020) Parameterized complexity of graph
burning. arXiv:2007.08811

17. Land MR, Lu L (2016) An upper bound on the burning number of
graphs. In: International workshop on algorithms and models for
the web-graph. Springer, pp. 1–8

18. Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large
network dataset collection. http://snap.stanford.edu/data

19. Liu H, Zhang R, Hu X (2019) Burning number of theta graphs.
Appl Math Comput 361:246–257

20. Mitsche D, Prałat P, Roshanbin E (2018) Burning number of graph
products. Theor Comput Sci 746:124–135

21. Mitsche D, Prałat P, Roshanbin E (2017) Burning graphs: A
probabilistic perspective. Graphs Combin 33(2):449–471

22. Rossi RA, Ahmed NK (2015) The network data repository with
interactive graph analytics and visualization. In: Proceedings
of the twenty-ninth AAAI conference on artificial intelligence.
AAAI Press, p. 4292–4293

23. Sim K, Tan TS, Wong K (2017) On the burning number
of generalized petersen graphs. Bull Malaysian Math Sci Soc
41:1657–1670

24. Stéphane Bessy S, Bonato A, Janssen J, Rautenbach DR,
Roshanbin E (2017) Burning a graph is hard. Discret Appl Math
232:73–87

25. S̆imon M., Huraj L, Luptáková I, Pospı́chal J (2019) Heuris-
tics for spreading alarm throughout a network. Appl Sci 9:
3269

26. S̆imon M., Huraj L, Luptáková I, Pospı́chal J (2019) How to burn
a network or spread alarm. MENDEL 25(2):11–18

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1361Faster heuristics for graph burning

http://arxiv.org/abs/2003.09314
http://arxiv.org/abs/2003.07746
http://arxiv.org/abs/2007.08811
http://snap.stanford.edu/data

	Faster heuristics for graph burning
	Abstract
	Introduction
	Related work
	Proposed heuristics
	Backbone Based Greedy Heuristic (BBGH)
	Improved Cutting Corners Heuristic (ICCH)
	Component Based Recursive Heuristic (CBRH)

	Results and discussion
	Conclusion
	References

