Skip to main content
Log in

Adaptive hierarchical update particle swarm optimization algorithm with a multi-choice comprehensive learning strategy

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Since many PSO variants are easily trapped in local optima from which they can barely break free, this paper proposes an adaptive hierarchical update particle swarm optimization (AHPSO) algorithm. The new term “local optimum early warning” is first defined to reflect the risk of being trapped in a local optimum. It plays a key role in the global coordinated control to determine the paradigm evolution direction and adjust the trajectory of particles in different risk environments. After that, the adaptive hierarchical update method generates two-layer and three-layer update formulas for the global exploration subpopulation and the local exploitation subpopulation, respectively, in order to improve the capability to resist the temptation of local optima. Consisting of the weighted synthesis sub-strategy and the mean evolution sub-strategy, the multi-choice comprehensive learning strategy is then employed to develop the most suitable learning paradigm to guide the motion path. Moreover, 18 benchmark functions and one real-world optimization problem are employed to evaluate the AHPSO against eight typical PSO variants. According to the experimental results, the AHPSO outperformed other methods in solving different types of functions by yielding high solution accuracy and high convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4. IEEE, pp 1942–1948

  2. van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176(8):937–971

    Article  MathSciNet  Google Scholar 

  3. Bai Q (2010) Analysis of particle swarm optimization algorithm. Comput Inf Sci 3(1):180

    Google Scholar 

  4. Mohammad RB (2019) A theoretical guideline for designing an effective adaptive particle swarm. IEEE Trans Evol Comput 24(1):57–68

    MathSciNet  Google Scholar 

  5. Chen Y-P, Jiang P (2010) Analysis of particle interaction in particle swarm optimization. Theor Comput Sci 411(21):2101–2115

    Article  MathSciNet  Google Scholar 

  6. Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22(2):387–408

    Article  Google Scholar 

  7. Tan TY, Li Z, Lim CP, Fielding B, Yu Y, Anderson E (2019) Evolving ensemble models for image segmentation using enhanced particle swarm optimization. IEEE Access 7:34004–34019

    Article  Google Scholar 

  8. Valle YD, Venayagamoorthy GK, Mohagheghi S, Hernandez J-C, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12 (2):171–195

    Article  Google Scholar 

  9. Alswaitti M, Albughdadi M, Isa NAM (2018) Density-based particle swarm optimization algorithm for data clustering. Expert Syst Appl 91:170–186

    Article  Google Scholar 

  10. Mapetu JPB, Chen Z, Kong L (2019) Low-time complexity and low-cost binary particle swarm optimization algorithm for task scheduling and load balancing in cloud computing. Appl Intell 49(9):3308–3330

    Article  Google Scholar 

  11. Yang L, Chen H (2019) Fault diagnosis of gearbox based on rbf-pf and particle swarm optimization wavelet neural network. Neural Comput Appl 31(9):4463–4478

    Article  Google Scholar 

  12. Wang D, Wang H, Liu L (2016) Unknown environment exploration of multi-robot system with the fordpso. Swarm Evol Comput 26:157–174

    Article  Google Scholar 

  13. Du B, Wei Q, Liu R (2019) An improved quantum-behaved particle swarm optimization for endmember extraction. IEEE Trans Geosci Remote Sens 57(8):6003–6017

    Article  Google Scholar 

  14. Ye Z. (2019) Coverage optimization and simulation of wireless sensor networks based on particle swarm optimization. Int J Wireless Inf Networks :1–10

  15. Liang J, Ge S, Qu B, Yu K, Liu F, Yang H, Wei P, Li Z (2020) Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models. Energy Convers Manag 203:112138

    Article  Google Scholar 

  16. Liang J-J, Suganthan PN (2005) Dynamic multi-swarm particle swarm optimizer. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., pages 124–129. IEEE

  17. Niu B, Zhu Y, He X, Wu H (2007) Mcpso: a multi-swarm cooperative particle swarm optimizer. Appl Math Comput 185(2):1050–1062

    MATH  Google Scholar 

  18. Zhang J, Ding X (2011) A multi-swarm self-adaptive and cooperative particle swarm optimization. Eng Appl Artif Intell 24(6):958–967

    Article  Google Scholar 

  19. Tanweer MR, Suresh S, Sundararajan N (2016) Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems. Inf Sci 326:1–24

    Article  Google Scholar 

  20. Ye W, Feng W, Fan S (2017) A novel multi-swarm particle swarm optimization with dynamic learning strategy. Appl Soft Comput 61:832–843

    Article  Google Scholar 

  21. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: 1998 IEEE International conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (cat. no. 98TH8360). IEEE, pp 69–73

  22. Lu J, Hu H, Bai Y (2015) Generalized radial basis function neural network based on an improved dynamic particle swarm optimization and adaboost algorithm. Neurocomputing 152:305–315

    Article  Google Scholar 

  23. Maurice C (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 3. IEEE, pp 1951–1957

  24. Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

    Article  Google Scholar 

  25. Zhan Z-H, Zhang J, Li Y, Chung HS-H (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern B (Cybern) 39(6):1362–1381

    Article  Google Scholar 

  26. Liang JJ, Kai Qin A, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  27. Li C, Yang S, Nguyen TT (2011) A self-learning particle swarm optimizer for global optimization problems. IEEE Trans Systems Man Cybern B (Cybern) 42(3):627–646

    Google Scholar 

  28. Zhou J, Fang W, Xiaojun W u, Sun J, Cheng S (2016) An opposition-based learning competitive particle swarm optimizer. In: 2016 IEEE Congress on evolutionary computation (CEC). IEEE, pp 515–521

  29. Zhang K, Huang Q, Zhang Y (2019) Enhancing comprehensive learning particle swarm optimization with local optima topology. Inf Sci 471:1–18

    Article  Google Scholar 

  30. Xu G, Cui Q, Shi X, Ge H, Zhan Z-H, Lee HP, Liang Y, Tai R, Chunguo W u (2019) Particle swarm optimization based on dimensional learning strategy. Swarm Evol Comput 45:33–51

    Article  Google Scholar 

  31. Li W, Meng X, Huang Y, Fu Z-H (2020) Multipopulation cooperative particle swarm optimization with a mixed mutation strategy. Inf Sci

  32. James K. (2003) Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706). IEEE, pp 80–87

  33. Richer TJ, Blackwell TM (2006) The lévy particle swarm. In: 2006 IEEE International conference on evolutionary computation. IEEE, pp808–815

  34. Peram T, Veeramachaneni K, Mohan CK (2003) Fitness-distance-ratio based particle swarm optimization. In: Proceedings of the 2003 IEEE swarm intelligence symposium. SIS’03 (Cat. No. 03EX706). IEEE, pp 174–181

  35. Ho SL, Yang S, Ni G, Wong H-CC (2006) A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices. IEEE Trans Magn 42(4):1107–1110

    Article  Google Scholar 

  36. Lu Y, Zeng N, Liu Y, Zhang N (2015) A hybrid wavelet neural network and switching particle swarm optimization algorithm for face direction recognition. Neurocomputing 155:219–224

    Article  Google Scholar 

  37. Ning Y, Peng Z, Dai Y, Bi D, Wang J (2019) Enhanced particle swarm optimization with multi-swarm and multi-velocity for optimizing high-dimensional problems. Appl Intell 49(2):335–351

    Article  Google Scholar 

  38. Olorunda O, Engelbrecht AP (2008) Measuring exploration/exploitation in particle swarms using swarm diversity. In: 2008 IEEE Congress on evolutionary computation (IEEE world congress on computational intelligence). IEEE, pp 1128–1134

  39. Dukic ML, Dobrosavljevic ZoS (1990) A method of a spread-spectrum radar polyphase code design. IEEE J Select Areas Commun 8(5):743–749

    Article  Google Scholar 

  40. Gil-López S, Del Ser J, Salcedo-Sanz S, Pérez-Bellido ÁM, Marı J, Portilla-Figueras JA et al (2012) A hybrid harmony search algorithm for the spread spectrum radar polyphase codes design problem. Expert Syst Appl 39(12):11089–11093

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by NSFC Grant Nos. 61701060 and 61801067, Guangxi Colleges and Universities Key Laboratory of Intelligent Processing of Computer Images and Graphics Project No. GIIP1806, and the Science and Technology Research Project of Higher Education of Hebei Province (Grant No. QN2019069), and Chongqing Key Lab of Computer Network and Communication Technology (CY-CNCL-2017-02), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission Grant No. KJQN201801905 & KJZD-K201901902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangbo Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Sha, L., Zhu, S. et al. Adaptive hierarchical update particle swarm optimization algorithm with a multi-choice comprehensive learning strategy. Appl Intell 52, 1853–1877 (2022). https://doi.org/10.1007/s10489-021-02413-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02413-3

Keywords

Navigation