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Abstract: Infrared target tracking plays an important role in both civil and military 

fields. The main challenges in designing a robust and high-precision tracker for infrared 

sequences include overlap, occlusion and appearance change. To this end, this paper 

proposes an infrared target tracker based on proximal robust principal component 

analysis method. Firstly, the observation matrix is decomposed into a sparse occlusion 

matrix and a low-rank target matrix, and the constraint optimization is carried out with 

an approaching proximal norm which is better than 𝑙1  norm. To solve this convex 

optimization problem, Alternating Direction Method of Multipliers (ADMM) is 

employed to estimate the variables alternately. Finally, the framework of particle filter 

with model update strategy is exploited to locate the target. Through a series of 

experiments on real infrared target sequences, the effectiveness and robustness of our 

algorithm are proved.  
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1. Introduction 

Target tracking has been a very important part in many areas, such as traffic 

monitoring, detecting of approaching targets, video surveillance and activity control. 

Compared to the target tracking using visible camera, which has been deeply 

investigated in the past several decades, infrared target tracking is a more suitable and 

effective method to work in the lightless environment. Besides，infrared system is more 
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robust in various environments, whether in dark or light condition. Thus, infrared target 

tracking has been applied more and more widely in military and civil applications [1]. 

On this basis, we hold the opinion that it is necessary to invest a high-precision infrared 

target tracking algorithm in different occasions. 

Although the infrared system can work continuously, regardless of day or night, 

the image information obtained from infrared imaging devices is not as sufficient as 

that from visible devices due to the imaging principle and technical bottleneck [2]. For 

example, infrared image is lack of color and texture information. What is more, there 

are sensor noises and occlusion clutters in infrared images. Thus, the loss of image 

details and low signal-to-noise ratio limit the development of infrared target tracking 

technology. In addition, partial occlusion or total occlusion are also technical problems 

in the process of tracking. In brief, it is vital to establish a precise and credible model 

for infrared target tracking. 

Based on the review of the existing target tracking algorithms, we divide them into 

two kinds: generative approaches and discriminant approaches. The generative model 

first extracts the feature of the target and learn the feature model. Through matching the 

whole picture, the target that the most similar area can be found. In recent years, target 

detection algorithms based on Bayesian model have been extensively studied and 

achieved satisfactory performance. The kernel-based tracker is widely investigated, 

including Mean-shift (MS) tracker [3], which is one of the mainstream target tracking 

methods. This method uses the steepest descent algorithm to solve iteratively in the 

direction of gradient descent, the core of which is to iterate over the solution until the 

optimal value is reached. This process is also to find the candidate which is the most 

similar to the template. However, MS algorithm cannot track target with changeable 

size adaptively. To solve this problem, Allen [4] proposed a Cam-shift tracker, which is 

an improved strategy of MS. It adds scale adaptive mechanism on the original MS to 

make it adaptively change the size of the tracking box according to the size of the target. 

Isard et al. [5] firstly investigated a condensation algorithm which applied particle filter 

framework to target tracking problem for the first time. Nevertheless, due to the lack of 

observation information at the current moment, the tracking performance turns to be 

poor in complex scenes. To work out the problems in the target tracking, such as poor 

tracking accuracy, large computation and poor real-time performance, researchers have 

proposed many improved particle filter-based tracking algorithms During the past 

decades. Guo et al. [6] used the particle filter algorithm to predict the initial target 
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position, in which whether the real-time model of the target is changed or not is decided 

according to the similarity between the real target model and the predicted target model. 

In order to overcome the difficulty caused by the change of appearance, incremental 

visual tracking (IVT) [7] were proposed, which uses incremental algorithm based on 

principal component analysis.  

Discriminant approaches consider both the background and the target, and extract 

the target model by comparing the differences between the two parts, so that the position 

of the current frame can be predicted. Zhang et al. [8] applied the theory of compressed 

sensing (CS) to the target tracking and proposed a fast compression tracking (FCT) [9] 

method. Babenko et al. [10] proposed an online learning tracker, which conducts online 

training for the classifier, and put positive samples and negative samples into two 

different parts. Furthermore, a weight multiple instance learning (WMIL) tracker was 

developed [11] by adding sample weights into the learning process. Zhang et al.[12] 

proposed a simple and effective algorithm for online feature selection (ODFS). The 

objective function is optimized iteratively along the steepest ascending gradient of the 

positive sample and the steepest descending gradient of the negative sample to 

maximize the output of the weak classifier. A new online visual tracking method based 

on probability continuous outlier model (PCOM) was presented by Wang et al. [13], 

and achieves very good performance in both accuracy and speed. 

As deep learning emerges in more and more areas, researchers have started to 

employ it to target tracking. At present, most of the target tracking using deep learning 

belong to the discriminant approaches. Different from the significant role of deep 

learning in fields like object detection and recognition, the development of deep 

learning in the field of target tracking is not smooth, mainly due to the lack of training 

data. One of the core strengths of deep learning is the effective training of a large 

number of samples, whereas, target tracking only uses the first frame for sample 

training before starting. Wang et al. [14] proposed a deep learning tracker (DLT), which 

applies the methods of offline pre-training and online fine-tuning to neural network 

training, largely solving the problem of lack of samples. Zhang et al. [15] proposed a 

convolutional network (CNT) tracker. Compared with the traditional method based on 

deep learning, CNT does not require a large sum of data for pre-training. 

Although the existing target tracking methods have made great progress, the 

interferences of target overlap, pose change; and environmental occlusion still need to 

be further studied and overcome [16]. Xue et al. [17] introduced sparse representation 



 4 / 23 
 

into the field of target tracking for the first time, and transformed the tracking into 

solving an l1 minimization problem, which can adapt to the interferences such as pose 

change, severe occlusion and illumination change. Since then, generative models based 

on low rank and sparse representation have been proposed. Its basic principle is that the 

target matrix composed of multiple similar groups of target images possess low-rank 

property. Besides, the occlusion matrix representing partial occlusion is sparse since its 

entries only occupy a small number of the image. On this basis, this paper proposes a 

tracker based on proximal robust principal component analysis-based tracker. Firstly, 

the observation matrix is decomposed into a sparse occlusion matrix and a low-rank 

target matrix, and the constraint optimization is carried out with an approaching 

proximal norm. In order to solve this convex optimization problem, ADMM [18] 

algorithm is introduced to solve the variables. Finally, this paper uses the Bayesian state 

inference and model update mechanism under the particle filter framework for long-

term tracking. Through a series of experiments on real infrared target sequences, the 

effectiveness and robustness of our algorithm are proved. 

In conclusion, the main contributions of this paper can be summarized as follows:  

(1) An appearance model based on sparse representation and low-rank is proposed to 

solve the tracking problem by transforming into a convex optimization problem; 

(2) Proximal p-norms which declines to zero rapidly when the entry of the sparse matrix 

approaches zero is utilized to constrain occlusion matrix; 

(3) A dynamic template update strategy is designed so that the appearance change can 

be well addressed. 

The rest of the article is divided into five sections. Section 2 mainly introduces the 

related work of particle filter. In Section 3, we introduce the establishment of the model 

in detail. Section 4 demonstrates the reliability of the proposed algorithm through 

quantitative and qualitative experiments. The last section is a summary of the article. 

2. Related Work 

Particle filter is one of the most widely used methods based on random sampling 

in the field of target tracking. The tracking framework of particle filter can be regarded 

as a Bayesian inference problem, which contains two main steps: state update and state 

prediction. In the tracking process, the target state at time t  can be represented by the 

a 6-dimensional affine component 
T( , , , , , )t t t t t t th w s r  =X   which is related to the 

initial time, where th  and tw  represent the spatial position at time t , ,  ,  t t ts r   and 

t  represent the scaling scale, rotation angle, aspect ratio and tilt angle. Assuming that 
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1: 1 1 2 1{ , ,..., }t t− −=Y Y Y Y  is the target observation from the initial time to the current time 

t  , we can use the iterative equation shown below to predict the prior probability 

distribution of the current target state tX : 

 
1: 1 1 1 1: 1 1p( | )= p( | )p( | ) ,t t t t t t td− − − − −X Y X Y X Y X   (1) 

where, 1: 1p( | )t t−X Y  is the transfer probability of the target state, and obeys the Gaussian 

distribution: 

 
2

1: 1 1p( | )~N( ; ),t t t− −X X X Σ   (2) 

where, 
2 2 2 2 2 2 2diag( , , , , , )w h s r        =   is the diagonal covariance matrix, and its 

element is the variance of the affine component 
T( , , , , , )t t t t t t th w s r  =X  

corresponding to the element parameter. 

Since the observed tY  is known at time t , the posterior probability density can 

be given by the Bayes rule: 

 
1:

1:

1: 1

p( | )p( | )
p( | )= ,

p( | )

t t t t
t t

t t−

Y X X Y
X Y

Y Y
 (3) 

where, 1:p(X |Y )t t  is the likelihood probability to measure the similarity between the 

observed quantity tY  and the actual target. Considering 1:p(X |Y )t t  is a constant, we 

can get 

 1: 1: 1p(X |Y ) p(Y |X )p(X |Y ),−t t t t t t   (4) 

At the current time t, the target state can be gotten by solving the maximum 

likelihood probability 1:p(X |Y )t t  as Eq. (5). 

 
* arg max ( | ),

t

t t t
X

p=X X Y   (5) 

3. Model Establishment 

In this section, we mainly introduce the infrared target tracking model based on the 

approach to proximal principal component analysis. The main symbol meanings used 

in the model are explained in Section 3.1; the appearance model is established in 

Section 3.2; and the calculation algorithm is given in Section 3.3. In view of the change 

of target shape and attitude, a template update strategy is proposed in Section 3.4. in 

Section 3.5, the algorithms in this section are summarized. 

3.1 Definitions 

Before the start of tracking, target region of the image is manually selected, and 

perturbations are added to the target region to form i  region of objects image. Their 

columns are vectorized, thus forming the template matrix 1 2={f ,f ,...f }i j i j iF （ ） , 
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where fi  represents the i -th column vector of the template matrix and j w h=  . The 

candidate target 
1j

km R , which is normalized from w h , and the template matrix 

F  together form the observation matrix 
( 1)

1 2{ ,m }={f ,f ,...f ,m } j i

k i k R  += M F . L  is 

the target matrix and has the same dimension as M . In other words, each column of 

L   represents an estimate of the corresponding target pixel in M  . In this paper, 

1 2 1{ , ,..., , }i is s s s +=S  is used as the occlusion matrix, where each column is  represents 

the estimation of the occlusion pixel in iM . 

3.2 Appearance Model 

The observation matrix M  is broken down into sparse occlusion matrix S  and 

low-rank target matrix L . Then the target appearance model of the algorithm in this 

paper can be expressed as 

 ,= +M L S   (6) 

For the purpose of reconstructing target observation matrix M , the function is 

used to calculate the minimum reconstruction error, as follows 

 2

F
,

1
min || || ,

2
− −

L S
M L S    (7) 

For a general infrared image sequence, the objects of adjacent frames have little 

difference in shape and gray scale and strong linear correlation, so these vectorized 

similar image regions, which are vectorized, can constitute a low-rank matrix [19]. 

Therefore, we can get the following constraint applied to the target matrix L: 

 ( ) ,rank L  (8) 

where, ( )rank  is the rank operator and is a small constant. Since the nuclear norm 

can replace the rank operator [20], the target apparent model can be expressed as 

 2

F *
,

1
min || || || || ,

2
− − +

L S
M L S L   (9) 

where,    is the weight factor. According to robust principal component analysis 

(RPCA) [21], we set (1/10) max( , 1)j i = +  in this paper.  

In the practical infrared target tracking process, the change of illumination, partial 

occlusion or total occlusion, may lead to unpredictable positioning error. According to 

the prior hypothesis information, the occlusion area only occupies a small part of the 

selected image block, so the occlusion matrix is sparse and the proximal p-norm can be 

incorporated into the model [22]. 

Next, the proximal p-norm of the matrix is defined as follows. 

 , , ,

,

( ) ( ), =p p m n

m n

G g sS   (10) 
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where,   is the parameter and , pg  is implicitly determined by 

 
2 2 *

, ,| | /2 ( ) (| | /2 ) ( ),p ps g s h s  + =  −   (11) 

where, the operator *  is the Legendre-Fenchel transformation to the function [23], and 

the ,u ph  is defined as 

 

1

2 2

1

2

,

1

2

|t| / 2                 | |

( ) |t| /             | | , 0,

ln 1
ln |t|-       | | , 0

2 2



 

 




−

−

−







= −  

 +  =



p

p p

p

p

if t

h t p if t p

if t p

  (12) 

where, 
/(2 )(1/ 1/ 2) p pp  −= − . When p = 0, ,0( )h t  can be defined as the limit as p 

approaches 0. 

 

Figure 1. Curves of , pg  with 0.1 =  and different p . 

As shown in the figure 1, the function , pg   and pl  -norm have similar 

characteristics. When p < 1, , pg  rapidly drops to 0 at x = 0, showing that the curve 

has a sharp edge at x = 0. Then, the matrix element is 0, the penalty function value is 0. 

What’s more, if a matrix element deviates from x = 0, the value of the penalty function 

increases rapidly. At last, the value of the function is nearly unchanged, when the value 

of the matrix element is far from 0. Therefore, the proximal p-norm can well constrain 

the sparsity of the matrix. Finally, the target apparent model of the algorithm in this 

paper can be expressed as 

 2

, , F

1
( , , ; ) [ ( )] ( ) || + || ,

2
p pG G   


= + + − −L S I L S M L S I  (13) 

where, the kernel norm of matrix L  is changed to proximal p-norm of its singular 
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value matrix ( ) L . I  is the Lagrange multiplier,   is the scale factor, and , pG  

is changed to , pG  for the convenience of subsequent solutions. 

For each frame of image, N corresponding candidate targets can be obtained from 

modeling the state transition probability 1p( | )t t−X X  with gaussian distribution. The 

reconstruction error matrix t  of each candidate target can be calculated by 

 1: 1 1: 1 1: 1,t i i i + + += − −M L S   (14) 

where, 1: 1i+M , 1: 1i+L , 1: 1i+S  respectively represent the observation matrix, target matrix 

and occlusion of the current candidate target km . 

    The likelihood probability ( )p |t tY X   can be calculated according to the 

reconstruction error: 

 
2

2

( , )1
p( | ) exp( ),

22

t
t t

x y

x y






= −Y X   (15) 

Eq. (15) shows that ( ) 2p | ( ( , );0, )tt t N x y  Y X   follows the gaussian 

distribution with the mean value of zero and the variance of 
2

 . 

3.3 Solution 

    Eq. (13) is a multivariable optimization problem, which can be calculated by 

ADMM algorithm [24]. The ADMM algorithm solves one of the variables alternately 

and constantly updates the Lagrange multiplier, and the convergence of the Lagrange 

algorithm can be referred to [18]. The specific update step of ADMM algorithm is as 

follows 

 

1

1 1

1 1 1

1

arg min ( , , ; )

arg min ( , , ; )

,1
( )

,   0 1

t t t t

t t t t

t t t t

t

t t







  

+

+ +

+ + +

+

=


=



= + − −

 =  

S

L

S L S I

L L S I

I I M L S

  (16) 

The above equation can be decomposed into several univariate programming 

problems. 

1) Estimation of the occlusion matrix S . Eq. (13) is simplified to 

 
2

, F

1
min ( ) || + || ,

2t p t t

t

G


+ − −
S

S M L S I   (17) 

The analytic solution of Eq. (17) is given through the p  contraction operator 

[18]: 

 +1 ( + ; ),t P t t t= −S M L I   (18) 
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2) Estimation of the target matrix L  .Similarly, Eq. (13) is simplified to:

 
2

, +1 F

t

1
min ( ( )) || + || ,

2t p t tG 


+ − −
L

L M L S I   (19) 

    The analytical solution of Eq. (19) is given by SVD decomposition method: 

 
T

+1 ( , ) ,t P t=L U Σ V   (20) 

where, Σ  is the singular value matrix of +1+t t−M S I , namely 
T

+1+t t− =M S I UΣV

[19]. 

3) Update of Lagrange multiplier I  and scale factor  . According to Eq. (13), 

the decay factor    is multiplied in each iteration, and    is geometrically 

attenuated. When the convergence condition F|| || / || || < 1e 5t− − −M L S M   is 

satisfied, the iteration terminates and the detection result is obtained. The convergence 

and stability of the algorithm can be referred to [19] and [23]. 

3.4 Template Update Strategy 

In the tracking process, both the tracking environment (such as occlusion, 

illumination, etc.) and the appearance of the target (such as scale, shape, etc.) may 

change, resulting in some templates being not applicable. Therefore, in case of 

significant deformation or occlusion mutation of the target, the elements in the template 

matrix T must be updated in time. However, the templates should not be updated too 

frequently. Otherwise the cumulative tracking error will be exacerbated. On the other 

hand, it also cannot be too slow in order to avoid the drifting from ground truth. It is 

worth mentioning that the template matrix cannot be updated when the target is 

occluded [25]. 

We use the reconstruction error 
~

k   of the current frame tracking results 
~

y   to 

calculate the importance weight kw  , and give the weights to each element of the 

template matrix 1:iF . Specifically, the iteration strategy as 
~

Fexp( || (:, )|| ）=  −k k kw w k  

is adopted, where kw  is initialized to =1/kw i  in the first frame. In addition, the sum 

of the ( 1)-thi +   column vector 1sum( )i+S   in the current occlusion matrix S   is 

applied to measure the occlusion. If 1sum( )i+S   is above the threshold 
* j   , 

(
* [0,1]  ), we argue that there are obvious occlusion in the current frame, thus the 

template matrix T cannot be updated. In summary, the template update steps are 

summarized in Algorithm 1. 

In this paper, cosine similarity, the included angle between vectors, is applied to 

express the similarity between two vectors. Obviously, the greater the cosine similarity, 



 10 / 23 
 

the greater the difference between the current frame tracking result and the elements in 

the template matrix. According to the template update strategy, we replace the template 

of the minimum weight in with the current tracking result when the difference between 

the tracking result and the template matrix template is larger than a certain value. Of 

course, there is also the premise that occlusion is not too serious. In addition, the weight 

of the newly added template is established to the median value within all the templates, 

to prevent it from occupying the absolute dominance and affecting the tracking ability. 

Algorithm 1. Template update strategy 

Input: the template matrix T, the pre-defined thresholds ψ

and 

* . 

1.  Initialize: 
1

( 1,2,..., )kw k i
i

= = , where i  is the number of templates. 

2.  For t = 2, 3, … 

3.    Calculate the current tracking result ky  , the corresponding target matrix L  , the 

occlusion matrix S , and then calculated the reconstruction error 
~

k  based on Eq.(14). 

4.    Update the template weight as 
~

Fexp( || (:, )||k k iw w k=  − ）. 

5.    Calculate the cosine similarity as ψ arccos , f
k k

m=   . 

6.    Select the minimum value minψ  in cosine similarity. 

7.    If 
min
ψ ψ



  and 
*

1
sum( ) ( )

n
s m

+
    

8.      Replace the least weighted template in F with m , i.e. f
c

m= , where 
1

arg min k
k i

c w
 

= . 

9.      The new template is assigned a new weight median( )
k

w w= , where median( )  repre-

sents the median value. 

10.   End If 

11.   Normalized template weight / sum( )w w w
k k
= . 

12.   Adjust w  to insure that max =0.3w（ ） . 

13.   Output: updated template matrix F and corresponding weight kw . 

14. End for 

3.5 Summary of the Proposed Tracker 

In this section, we summarize the proposed infrared target tracking algorithm 

based on proximal robust principal component analysis method. 
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Algorithm 2. The target tracking with complete steps 

1.  Input: the target box selected manually at the first frame. 

2.  Initialize: target state vector X
1 , template matrix ={f ,f ,...f }1 2

j iRi
F . 

3.  For 2t =  to the last frame 

4.    For 1k =  to the last particle do 

5.      Collect candidate sample 
j 1Rmk
 , forming observation matrix 

( 1)
={f ,f ,...f ,m }

1 2

j i
R

i k

 +
M . 

6.      Initialize: (1 / 10) max( , 1)j i = + . 

7.      Loop 

8.      L-step: arg min ( , , ; )
1 1t t t t

=
+ +

L L S I
L

. 

9.      S-step: arg min ( , , ; )
1t t t t

=
+

S L S I
S

. 

10.     Y-step: 
1

( )
1 1 1t t t tt
= + − −

+ + +
I I M L S . 

11.     Until converge 

12.   End For 

12.   Utilize the likelihood probability ( )P |t tY X  to resample. 

13.   Output: *
arg max p( | )

t t t
t

=X X Y
X

. 

14. End for 

4. Experimental Results  

In this section, 6 groups of typical infrared sequences are utilized to test the the 

proposed infrared target tracking algorithm on the MATLAB 2018b software platform. 

Then, the algorithm is compared quantitatively and qualitatively with other typical 

tracking algorithms. 

4.1 Datasets 

The interference in 6 test sequence include pose variation, scale change, occlusion 

and so on. The sequences can be downloaded from [26,27]. Details of each sequence 

are shown in Table 1, and the target of the first frame is manually selected (marked with 

red rectangle), as shown in Figure 2. 
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Table 1. Information of test sequence 

Database Target Background Image Size Challenge Frame Number 

Seq.1 man trees+ground 640×480 occlusion 665 

Seq.2 rhino trees+ground 320×256 occlusion+pose change 619 

Seq.3 man trees 640×480 overlap 301 

Seq.4 horse ground 608×480 pose change 348 

Seq.5 man ground 640×480 scale change+ overlap 322 

Seq.6 man trees+ground 320×240 overlap 449 

(a) (c)(b)

(d) (e) (f)  

Figure 2. First frame of each sequence (the target is marked in red): (a) man; (b) rhino; 

(c) man; (d) horse; (e) man; (f) man 

4.2 Parameter setting 

Table 2 lists all the parameter values involved in this algorithm, as well as their 

corresponding meanings and default values. 

Table 2. List of parameter values 

Parameter Meaning Default Value 

n template number 10 

p particle number 500 

*  Occlusion discrimination threshold 0.1 

ψ
 cosine similarity threshold 30 

4.3 Results 

In our proposed tracking algorithm, the number of templates and the number of 

particles are set to 10 and 500. Five results of each sequence images are shown in Figure 

3.  
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(a) (b) (e)(d) (f)(c)  

Figure 3. The tracking results of our algorithm: (a) man; (b) rhino; (c) man; (d) horse; (e) man; 

(f) man 

In Figure 3 (a), the target does not change significantly in appearance, nor does 

the template. The difficulty of this sequence is that around 245-th frame, the target is 

partially or completely obscured by trees. This problem is easy to solve because of the 

occlusion matrix in our algorithm. The size and posture of the rhino in Seq.2 are 

constantly changing, and there is also partial occlusion. Owing to the occlusion matrix 

and template update strategy, it has good tracking result. In Seq.3, the difficulty lies in 

the encounter with another person when the man is moving, which causes the 

remarkable overlap. Considering the low-rank property of the target matrix and the 

sparsity of the occlusion matrix, this kind of tracking performance is well. In addition, 

Seq.4 and Seq.5 are similar to Seq.2, with scale change and pose change. Seq.6 is 

similar to Seq.3 in which there is target overlap. 

4.4 Qualitative Comparisons 

This section presents the algorithm compared with 9 kinds of conventional 

algorithms, these algorithms including FCT [9], CNT [16], DLT [12], IVT [7], 

Meanshift (MS) [3], ODFS [12], L1APG [17], PCOM [13], and WMIL [11]. The 

parameter values of all comparison algorithms are selected as their default parameters, 

and the particle numbers of DLT, CNT, IVT and L1APG based on particle filter 
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framework are uniformly set to 500. Figure 3 shows part of the tracking results. 

FCT, ODFS and WMIL use haar-like features to represent the local information of 

the target. As shown in figure 3 (c, f). the algorithms do not track well when there is 

target aliasing in Seq.3 and Seq.6. 

(a)  

(b)  

(c)  
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(d)  

(e)  

(f)  

FCT CNT MS ODFS L1APG PCOMDLT IVT WMIL Ours

 

Figure 4. Tracking results of the 10 tracking algorithms over datasets: (a) man; (b) rhino; (c) 

man; (d) horse; (e) man; (f) man 

MS and FCT can only achieve good tracking effect when the change of target’s 

appearance is not drastic and there is not too much shielding. Because these two 

algorithms only take pixel gray level as the feature of the object appearance modeling, 

it is obvious that they cannot deal with relatively complex tracking scenes. 

PCOM can utilize PCA subspace to estimate the change of target’s appearance. As 
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the figure shows that the algorithm achieves satisfactory tracking effect in Seq.3 and 

Seq4. If the adjacent occlusion pixel is misjudged as the main component while the 

target pixel is identified as a singular value, the algorithm will drift seriously.  

The L1APG uses the fragment template to represent the interferences such as 

occlusion and noise, so it performs stably in most test sequences (such as Seq.1, Seq.2, 

Seq.3 and Seq.6). Due to the random distribution of non-zero elements in the fragment 

template, the optimization equation based on 𝑙1  norm may converge to the wrong 

value, resulting in tracking failure in some scenarios, such as Seq.4 and Seq.5. 

DLT and CNT are convolutional network-based tracking algorithms which need 

to train the dataset before tracking. Compared with other comparison algorithms, the 

tracking results of these two algorithms are more accurate in general. However, DLT 

drifts on Seq. 3 and Seq.5, indicating that it is not stable for the overlap and appearance 

variation. CNT performs well except for Seq.5 and Seq.6. when the target size changes 

greatly, and the target aliasing is unstable. 

On the contrary, the performance of the proposed tracker is stable, and it can track 

the target accurately in all the selected sequences. Experimental results shown above 

demonstrate that it is robust to occlusion, deformation, scale change and target overlap 

when compared to other traditional methods. 

4.5 Quantitative Comparisons 

In this section, we take two metrics to quantify the tracking results normalized. 

There are normalized center position error and average overlap score (AOS) [28,29]. 

The normalized center position error 0  is defined as: 

 
2 2

0 0

0

0

( ) ( )

L

t tx x y y


− + −
=   (21) 

where, ( )t tx y，   is the central coordinate of the tracking result, 0 0( )x y，   is the 

central coordinate of the ground truth, and L0 is the diagonal length of the truth 

rectangular box. 

The average normalized center position error 0  is listed in Table 3. At the same 

time, the precision plot introduced in Figure 5 intuitively describes the tracking 

precision, which is defined as the percentage of image frames in which the center 

position error is less than a specific value. 
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Table 3. The average normalized center position error 0  

 FCT CNT DLT IVT MS ODFS WMIL L1APG PCOM Ours 

Seq.1 0.0749 0.0324 0.1436 1.7798 1.6545 0.1415 0.1531 0.0638 0.1069 0.0564 

Seq.2 0.0757 0.2371 0.1338 0.1785 0.1506 0.2605 0.2434 0.0637 0.1792 0.1099 

Seq.3 0.1314 0.0320 0.0655 0.0207 0.1252 0.2480 0.1770 0.0210 0.0629 0.0236 

Seq.4 0.10583 0.0599 0.0558 0.0341 0.2152 0.0885 0.1427 0.5369 0.0846 0.0772 

Seq.5 0.3295 0.8714 0.7897 0.8657 0.6845 0.1957 0.1806 0.1381 0.8103 0.0432 

Seq.6 2.0589 2.0386 0.0579 1.9819 0.1045 2.0852 0.2206 0.0401 2.1962 0.0286 

Ave. 0.4627 0.5452 0.2077 0.8101 0.4890 0.5032 0.1862 0.1439 0.5733 0.0564 

As shown in Table 3 and Figure 5, the algorithm in this paper has the smallest 

overall center error in the six test sequences and is more ahead of other algorithms. The 

IVT and MS tracking results deviate from the truth value due to the severe occlusion in 

Seq.1. In Seq.2, all algorithms performed well and no targets were lost. In Seq.3, some 

tracking algorithms based on haar-like characteristics show different degrees of 

deviation after target overlap. The reason why L1APG did not perform well in Seq.4 is 

that the posture of this group of sequences changed too much. In Seq.5, except the 

algorithm in this paper, all other algorithms lose targets to varying degrees, which is 

causing by scale changes and target overlap in this group of sequences at the same time, 

but this is what our algorithm is good at. In the last set of sequences, FCT, CNT, IVT, 

ODFS and PCOM algorithms all cause target loss after target overlap [30]. 

Unlike 0  , AOS further introduces the consideration of target scale when 

evaluating algorithm tracking progress. Assuming that the target boundary box obtained 

from the algorithm is R p , and the boundary box of the target truth box is R p , then 

AOS is defined as 

 
| R R |

AOS=
| R R |

p q

p q

  (22) 

Table 4 lists the average values of AOS on each sequence. At the same time，figure 

6 shows the success plot of each algorithm on the test sequence. The abscissa is the 

AOS value between [0,1], and the ordinate is the percentage of image frames 

corresponding to AOS. As AOS increases from 0 to 1, the success rate decreases to 0. 
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Table 4. The average values of AOS 

 FCT CNT DLT IVT MS ODFS WMIL L1APG PCOM Ours 

Seq.1 0.7026 0.5676 0.2120 0.0721 0.2427 0.6173 0.6008 0.7004 0.3228 0.7217 

Seq.2 0.7267 0.4792 0.4071 0.5772 0.6079 0.3799 0.3812 0.7635 0.5518 0.5311 

Seq.3 0.5942 0.8499 0.5181 0.8965 0.5184 0.5139 0.5445 0.8843 0.6902 0.8819 

Seq.4 0.5572 0.7738 0.5519 0.7076 0.4182 0.5570 0.5204 0.3817 0.5834 0.7338 

Seq.5 0.3980 0.2197 0.1944 0.2179 0.3039 0.5259 0.4587 0.5145 0.2281 0.7664 

Seq.6 0.3245 0.4275 0.6437 0.2281 0.5814 0.3434 0.5299 0.7367 0.322. 0.8451 

Ave. 0.5505 0.5530 0.4212 0.4498 0.4454 0.4896 0.5059 0.6635 0.4497 0.7467 

The algorithm in this paper has achieved an excellent success rate in each test 

sequence and is obviously superior to other algorithms on the whole. In Seq.1, the CNT 

and DLT performed poorly in terms of success rate compared to excellent performance 

in accuracy, because such algorithms track local information about the target rather than 

the whole. ODFS and WMIL have a low success rate on Seq.2 due to the change of 

target pose and partial occlusion. All algorithms can track the target on Seq.3, but the 

success rate of DLT and MS is low. There is target pose change in Seq.4, and the poor 

performance of MS and L1APG lies in that these two algorithms cannot deal with such 

problems as pose change. In Seq.5, scale change and target overlap occur 

simultaneously, and only the algorithm in this paper achieves excellent results. Other 

algorithms offset the target to different degrees. In the last sequence, FCT, CNT, IVT, 

and ODFS track the wrong targets with poor success rates due to target overlap. 



 19 / 23 
 

(a) (b)

(c) (d)

(e) (f)

Figure 5. Precision plots: (a) man; (b) rhino; (c) man; (d) horse; (e) man; (f) man 
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(a) (b)

(c) (d)

(f)(e)  

Figure 6. Success plots: (a) man; (b) rhino; (c) man; (d) horse; (e) man; (f) man 

5. Conclusions 

A target tracker based on approximate robust principal component analysis is 

proposed in this paper. Firstly, the observation matrix is decomposed into a sparse 

occlusion matrix and a low-rank target matrix, and the constraint optimization is carried 

out with an approximate norm that is closer than the approximation. In order to solve 

this convex optimization problem, ADMM algorithm is used to solve one variable 
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alternately. For long-term tracking, this algorithm uses the Bayesian state inference and 

model update mechanism under the particle filter framework. Through a series of 

experiments on real infrared target sequences, the effectiveness and robustness of the 

algorithm are verified, and it is better than other advanced algorithms. 

Although the algorithm has achieved excellent results in testing infrared sequences, 

there are still some interferences, such as non-rigid motion and long-term occlusion, 

which deserve further study. To cope with these disturbances, we plan to take other 

measures, such as improving appearance model and introducing motion estimation. At 

the same time, we hope to port MATLAB code to GPU or FPGA, to achieve real-time 

tracking. 
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