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Abstract
In multi-agent systems, goal achievement is challenging when agents operate in ever-changing environments and face unseen
situations, where not all the goals are known or predefined. In such cases, agents need to identify the changes and adapt their
behaviour, by evolving their goals or even generating new goals to address the emerging requirements. Learning and practical
reasoning techniques have been used to enable agents with limited knowledge to adapt to new circumstances. However, they
depend on the availability of large amounts of data, require long exploration periods, and cannot help agents to set new goals.
Furthermore, the accuracy of agents’ actions is improved by introducing added intelligence through integrating conceptual
features extracted from ontologies. However, the concerns related to taking suitable actions when unseen situations occur
are not addressed. This paper proposes a new Automatic Goal Generation Model (AGGM) that enables agents to create
new goals to handle unseen situations and to adapt to their ever-changing environment on a real-time basis. AGGM is
compared to Q-learning, SARSA, and Deep Q Network in a Traffic Signal Control System case study. The results show that
AGGM outperforms the baseline algorithms in unseen situations while handling the seen situations as well as the baseline
algorithms.

Keywords Multi-agent Systems (MAS) · Goal generation · Autonomy · Reinforcement learning (RL) · Ontology ·
Traffic signal control system

1 Introduction

Multiple agents that interact in an environment and
coordinate their behaviour to solve a complex task or
achieve a goal are known as Multi-agent Systems (MAS).
In dynamic environments, agents should be able to adapt
to changes and self-generate goals based on the changing
requirements autonomously. For example, in intelligent
traffic signal control systems, traffic signals are controlled
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by autonomous and adaptive agents, and their goal is to
minimise waiting time for all the vehicles. When an incident
happens, it is expected that the system manages the traffic in
a way that the ambulance could get to that location as soon
as possible. In this situation, the traffic signal agents change
their goals from “minimising the waiting time for all the
vehicles” to “minimise the ambulance’s waiting time”. To
do so, they need to identify the change in the environment,
create a new goal, and take suitable actions accordingly.

Agents use several techniques to behave appropriately
in an ever-changing environment [36]. Learning techniques
are used to enrich agents’ knowledge using big data or a
long exploration period [12]. However, these techniques are
not useful when real-time decision-making is desirable and
not enough data is available. In the discussed example, if
the current goal is defined as “minimising total waiting
time”, learning techniques cannot figure out how the goal
should change when a new/unseen emergency situation
happens unless they have a predefined goal to “minimise the
ambulance waiting time”.
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Practical reasoning is also used to enable agents to
infer knowledge from their environment and interaction
with other agents [1]. Although reasoning allows agents
to understand their environment, update their perceptions,
and make decisions in real-time, they cannot help with
setting new goals. In the example discussed earlier, the
reasoning engine must have a predefined rule (e.g., context:
emergency situation, action-specification: minimise the
ambulance waiting time).

Goal generation approaches allow agents to choose a
new goal from a pre-defined goal-set when the current
goal should be changed [26]. Using Goal Reasoning (GR)
techniques, agents continuously reason about the goals they
are pursuing and if necessary, they adjust them according
to their preferences [1]. There are two models of GR,
Goal-Driven Autonomy (GDA) and Goal Refinement. In
GDA, agents nominate a set of potentially suitable goals for
the current situation. In Goal Refinement, agents generate
one or more plans to achieve a given goal. When an
unexpected event occurs, agents evaluate the goal and
decide whether to pursue the goal, drop it, or resolve the
detected event through one of the predefined strategies.
Although GR agents can operate in complex systems with
limited communications and adapt intelligently to changing
conditions [21], they do not perform as well when they
encounter an unseen situation.

The main research question this paper will address is
how agents can adapt their behaviour when they experience
an unseen situation. We propose an Automatic Goal
Generation Model (AGGM) that allows agents to adapt
their behaviour according to the changes in the environment
by generating new goals to handle an unseen situation
autonomously. In this model, agents continuously observe
the state of their environment and evaluate the feedback
they receive to decide whether there is a significant change
in the environment and consequently if the current goal
should be changed. A significant change can be interpreted
either when there is a discrepancy with an expected reward,
or in anticipation that a goal must be changed because of
an unseen situation. To react to an identified significant
change, the agent can replace the current goal with one of
the predefined goals in its goal-set, and if there are not any
suitable predefined goals, agents take actions that plausibly
result in experiencing a previously known state. A traffic
signal control system scenario is chosen as a case study
for this paper, where AGGM’s performance is compared to
Q-learning, SARSA (State–Action–Reward–State–Action),
and Deep Q Network (DQN). The results show that AGGM
outperforms the baselines when handling unseen situations
such as emergency and congestion cases.

The remainder of the paper is organised as follows.
Section 2 presents a review of the relevant literature.
Section 3 briefly presents the background knowledge,

Section 4 presents AGGM. In Section 5, the case study is
described and in Section 6 the experimental scenarios are
defined. In Section 7 the results are analysed. Finally, our
conclusion and future works are discussed in Section 8.

2 Related work

In an ever-changing environment, agents need to be adaptive
and autonomously revise their understanding of their
environment and other agents’ behaviour to take suitable
actions. Goal formation, goal generation, and goal reasoning
techniques are used by an adaptive agent to handle their
environments’ unpredictability. Goal formation is a process
of reaching from unachievable goals through instrumental
beliefs to concrete ones [8]. In the goal generation process,
goals are generated from conditional beliefs, obligations,
intentions, and desires or motivations based on agent’s
preferences [5, 22], and [26]. Additionally, goals can be
generated when an agent detects discrepancies between its
sensory inputs and its expectations [27]. Goal reasoning is a
case-based system that uses active and interactive learning
to automatically select goals from a set of predefined goals
[35]. In these works, a new goal is generated when an
agent’s belief is changed. However, the goal generation
process when the environment’s state is inconsistent with
the agent’s beliefs is not discussed.

In practical reasoning, agents’ desires and preferences
are used during goal generation [22] and [20]. Social reason-
ing is also used to enhance agents’ understanding of others’
goals and their dependencies [15]. Although reasoning is an
effective approach for real-time decision-making, it requires
predefined reasoning rules to handle unseen situations.

Learning techniques are also used to enhance agents’
performance when having access to limited knowledge. In
[12], a reverse method for gradual learning from a set of
start states nearby the goal is described. In [11], agents
learn the forward task and reset policy together, which resets
the environment for a subsequent attempt. In [16], agents
learn a world model and a self model simultaneously. The
world model is used to predict the dynamic consequences of
the agent’s actions, and the self model estimates the world
model’s errors to be explored in the future.

When the reward function is unknown, agents face a
difficult challenge [33]. Imitation Learning (IL) enables
agents to reach any goal without any need for reward. This
approach extracts additional information from the demon-
strations, so it can leverage demonstrations that do not
include expert actions [9]. Moreover, the Inverse Reinforce-
ment Learning (IRL) agents can infer a reward function
from the expert demonstrations and assume that the expert
policy is optimal regarding the unknown reward function
[17].
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Although learning strategies can guide agents toward
their goals using reward or fitness functions, they perform
poorly when such functions are not available.

3 Background

This section briefly presents the required background
information.

3.1 Reinforcement learning

In this paper, agents use RL as a learning method, however,
AGGM does not depend on RL and other learning methods
can be used instead. RL is a trial-and-error method in which
the agents learn through interaction with the environment in
such a way that an agent chooses the action according to its
policy, which is subsequently sent to the environment, then
the environment moves to a new state and an immediate
reward will be sent to the agent. The agents use the action
with the most positive reward repeatedly [10]. We use Q-
learning, SARSA, and DQN as RL approaches with which
AGGM’s performance is compared.

Q-learning Q-learning is a fundamental RL method in
which an agent computes the Q-value that estimates
discounted cumulative reward of actions as displayed in (1).
RΠ

t (see Appendix for description of symbols) is discounted
cumulative reward at time step t under policy Π . γ is
a discount rate that shows how much the future rewards
contribute to the total reward, and rτ is the reward at a time
step τ . The agent becomes farsighted if γ values are closer
to 1 and the agent becomes shortsighted if γ values are
closer to 0 [40].

RΠ
t =

∞∑

τ=t

γ τ−t rτ , γ ∈ [0, 1) (1)

Q-value for state s and action a is represented as Q(s, a),
and its value is calculated as shown in (2):

Q(s, a) = Q(s, a) + ρ[R(s, a, s′)
+γ max Q′(s′, a′) − Q(s, a)] (2)

Q(s, a) is current stored Q-value for applying action a

in state s. R(s, a, s ′) is the reward value the agent gets
from the environment after doing action a in state s which
takes the environment to the new state s′. max Q′(s′, a′) is
the maximum expected future reward. The learning rate ρ

determines in which degree the new information overrides
the old one [14]. The Q-learning algorithm uses Q-table to
store Q-values, then uses this data structure to calculate the
maximum expected future rewards.

SARSA To compute Q-value, Q-learning computes the
difference between Q(s, a) and the maximum action value
Q′(s′, a′), while on-policy SARSA algorithm learns action
values relative to the policy it follows [40] as shown in (3):

Q(s, a) = Q(s, a)+ ρ[R(s, a, s′)+ γQ′(s′, a′)−Q(s, a)]
(3)

Deep Q Network The DQN algorithm uses a deep neural
network and the input of the neural network would be
the state that the agent is in and the targets would be the
Q-values of each of the actions [37].

The RL algorithm applies an exploration (i.e., exploring
action space) and exploitation (i.e., performing the best
action) scheme to compute a policy that maximises the
payoff. The Epsilon-Greedy algorithm is used to balance the
exploration and exploitation in choosing actions, and ε is
the percentage dedicated to the exploration [40].

3.2 Traffic signal control systems

Traffic signal control is an important technical means using
computer and information technology to adjust the signal
timing parameters to improve the traffic flow [43]. In [24],
the authors categorise traffic signal control methods based
on artificial intelligence into the following categories: fuzzy
control technology, Artificial Neural Networks (ANN),
evolutionary algorithms (e.g., genetic algorithm, ant colony
algorithm, and particle swarm optimisation), and RL
methods.

Automatic traffic signal control can be managed by
agents with learning capabilities controlling traffic signals
[36] and [4]. Agents use interaction and communication
protocols and ontologies to negotiate and make decisions
[36, 42], and [4]. This system is particularly chosen as a case
study for this paper as in traffic systems it is not possible
to predict all the events and consequently facing unseen
situations is inevitable.

3.3 Ontology

Ontology provides user-contributed, augmented intelli-
gence, and machine-understandable semantics of data [13].
Ontologies are used to enhance agents’ learning process by
providing semantic models [31], augmented feedback loop
to optimise their overall accuracy [6], and as a way to share
knowledge between agents [41]. Additionally, agents can
generate their own ontologies by observing others’ actions
and automatically derive logical rules that represent the
observed behaviour [29] and [18].

We propose each agent represents its observation
using a schema described by an ontology. The ontology
development 101 strategy [34] and the ontology editing
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environment Protégé [32] can be used to develop an
ontology. Also, ontology Verification & Validation (V&V)
following the SABiO guidelines are used to evaluate an
ontology (i.e., to identify missing or irrelevant concepts)
[3]. In [18], Semantic Sensor Network (SSN) ontology is
proposed to describe sensor resources, and the data they
collect as observations. It bridges the gap between low-level
data streams coming from sensors in real-time and high-
level concepts used by agents to interpret an observation
(i.e., high-level semantic representations). The ontology-
based schema is used when a semantic description is needed
and is composed of surrounding concepts and relations
between concepts perceived by agents, which are modelled
as observations. These relations enable inheritance between
concepts and automated reasoning. We define Lt

gi
as the

schema describing the data observed by agent gi at time step
t . C represents the set of concepts, and M represents the set
of relations over these concepts (see (4)). The domain and
range of a relation determine what kind of instances it can
be used for (i.e., domain) and what kind of values it can have
(i.e., range).

Lt
gi

= {Ct
gi

, Mt
gi

} (4)

A graph representation of our ontology is generated using
OntoGraf plug-in in Protégé, and the inference rules are
expressed using Semantic Web Rule Language (SWRL)
[19]. There are two methods of reasoning when using
inference rules [38]:

– Forward reasoning: It starts from state observation
and applies inference rules to extract more facts until
reaches the goal. For example, we can conclude from
“A” and “A implies B” to “B”.

– Backward reasoning: It starts from the goal and
chaining through inference rules to find the required
facts that support the goal. For example, we can
conclude from “not B” and “A implies B” to “not A”.

To model the concepts in traffic signal control context,
we use the ontology proposed in [30] (see Fig. 1).

4 Automatic goal generationmodel

In this paper we assume our agents to be adaptive and
use the RL algorithm. When unseen situations occur, the
agents continuously observe their environment, identify the
changes, and have access to a mechanism that enables them
to decide whether to continue with their RL process, change
their current goal to a pre-defined goal, or generate a new
goal. AGGM enables agents to make such decisions in the
following stages: in the Observe stage, agents continuously
observe the environment state, update their own state, and
the reward associated with their previous action. The agents
then evaluate these states and the received rewards in the
Evaluate stage, and in the Significant Change Identification
stage agents decide whether or not the current goal needs

Fig. 1 Ontology for traffic
signal control, as represented by
OntoGraf

Using ontology to guide reinforcement... 1811



to be revised. If so, in the Reasoning stage the current goal
is changed to a predefined goal, or a new goal will be
generated. The output from this stage results in a new reward
function that will be sent to the Generate Action stage to
generate suitable actions accordingly. Then these actions
will be executed in the Execute Action stage. This process

continues by sending the next state and reward of current
action back to the agents until the environment sends a
terminal state or a specific number of iterations happens (see
AGGM in Fig. 2 and algorithmic procedure in Algorithm
1). The details of the model components are explained
below.

4.1 Observe

The agents constantly observe the environment to identify
new changes and update their perception of the environ-
ment, the states, and the reward they received for their
previous actions. St is the individual states of all n agents
in the system at time step t . For example, st

gi
is the state of

agent gi at time step t .

St = {st
g1

, st
g2

, . . . , st
gi

, . . . , st
gn

} (5)

Agent gi’s observation ot
gi

is a tuple including its state
st
gi

and the reward rt
gi

received from the environment at time
step t . When an observation is received, it will be sent to the
Evaluate stage.

ot
gi

=
(
st
gi

, rt
gi

)
(6)

4.2 Evaluate

Agent gi evaluates its observation using the Q-value, the
state distance, and the importance of the observation.

Q-value Using the reward rt
gi

received from the environ-
ment, the agent calculates the Q-value, Qt

gi
(line 3 of

Algorithm 1).

The state distance The agent computes Dt
gi

the absolute
difference between the current state st

gi
and the previous

state st−1
gi

. To do so, we define Vst
gi

to be a quantifying value

that describes st
gi

(line 4 of Algorithm 1).

The importance of observation Each agent gi observes the
environment at time step t based on its ontology Lt

gi
, so

the importance of each observation st
gi

is determined based
on the importance of the concepts Ct

gi
involved (line 5

of Algorithm 1). A concept weighting function is used to
quantify the degree of importance of each concept x ∈ Ct

gi

in a domain using an iweighting indicator [28] (see (7)):

iwc(x) = 1/|M(x)|
|M(x)|∑

m∈M(x)

iw
(x,y)
Mm

(7)

The iweighting indicator, denoted by iwc(x) is a
numerical value derived from weighting the local context
of concept x based on its outgoing edges (i.e., relations to
other concepts). To compute concepts’ weight, the relations
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Fig. 2 Automatic Goal
Generation Model

are initially weighted manually by ontology engineers
during the ontology development process, and iwc(x) is
calculated based on the average importance weights of the
relations m ∈ Mt

gi
of domain concept x constrained by

their particular range y. For example, in traffic context,
“Vehicle” (i.e., domain) “has type” (i.e., relation) and
can be an “Emergency” one (i.e., range), and a “Highest

Importance” value (i.e., importance weight) can be assigned
to a vehicle of emergency type (i.e., relation and its
domain/range combination). There are five degrees of
importance weights, which can be converted to numerical
values using predefined mappings (see Table 4): “Lowest
Importance”, “Low Importance”, “Middle Importance”,
“High Importance”, and “Highest Importance”.
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4.3 Significant change identification

Based on the output from the Evaluate stage an agent
decides whether there is a need to change its current goal
or create a new one (see the algorithmic procedure in
Algorithm 2), so three cases are possible:

– Case 1. When Qt
gi

is out of the predefined range
(Qt

gi
< Discrepancy-Low-Threshold or Qt

gi
>

Discrepancy-High-Threshold) (line 2 of Algorithm 2).
Discrepancy-Low-Threshold and Discrepancy-High-
Threshold define the minimum and maximum values of
Q-values that can be received.

– Case 2. When Dt
gi

is bigger than the predefined State-
Difference-Threshold which is the maximum difference
between successive environment states (line 4 of
Algorithm 2).

– Case 3. When a concept x with a high importance
weight iwc(x) appears in an environment or the
importance of observation iwt

gi
becomes higher than a

predefined Importance-Weight-Threshold which is the
maximum importance weight that has been experienced
for the current goal (line 6 of Algorithm 2).

4.4 Reasoning

Using the Reasoning Engine, agent gi continuously reasons
about the goals it is pursuing, when it is required to change
or generate a new goal, two cases are possible:

• Choosing a predefined goal. An agent uses inference
rules to deduce a predefined goal from a goal-set
through the forward reasoning (line 8 of Algorithm 1).
The goal-set specifies tuples of (S, G) where G is a goal
that can be adopted when observation S is observed.
When more than one goal in the goal-set is consistent
with st

gi
, agent’s preferences and constraints Pgi

or the
concepts’ weight {iwt

gi
} will be used as decision criteria

(line 10 of Algorithm 1). Finally, the problem-specific
reward function Bt

gi
is updated with the selected goal G

(line 11 of Algorithm 1). For example, consider the two
following alternatives rules in the goal-set:

– rule 1: c1 = k1, c2 = k2, ...c5 = k5, ..., cn = kn− >
g1

– rule 2: c1 = k1, c2 = k2, ...c6 = k6, ..., cn = kn− >
g2

ci is a concept and ki is its value in observation
S. The agent’s observation st

gi
is consistent with both

rules. If iweighting indicator iwc(c6) is higher than
iweighting indicator iwc(c5) then g2 will be selected.

• Creating a new goal. When agent gi cannot find a
suitable goal, a state similarity reward function J t

gi

which is the inverse of the difference between st
gi

and

st−1
gi

is defined (line 13 of Algorithm 1). Reducing the

difference between st
gi

and st−1
gi

leads to an increase in
the state similarity reward (see (8)).

J t
gi

= 1/|V
st−1
gi

− Vst
gi

| (8)

Agent gi uses backward reasoning to maximise J t
gi

.
Suppose an unseen situation occurs when ambulance a
enters intersection s monitored by agent gi , according
to the inference rules shown in Table 1, the agent
maximises the position coordinates of ambulance a
until it passes through the intersection, thereby, the
environment will be reverted to a known previous
state. Table 2 shows another example of using
backward reasoning to reduce congestion in road r1 by
maximising the position coordinates of all instances of
vehicle b on the road r1 (i.e., hasPosition(?b, Moving)).
A schematic overview of the backward reasoning
process is shown in Fig. 3.

Finally, agent gi selects an action based on the
recommendation of the function that combines the two
reward functions Bt

gi
and J t

gi
(line 16 of Algorithm 1).

Depending on the problem, various combinations can
be defined for these two reward functions. In this
paper, we define a priority function which prioritises J t

gi

over Bt
gi

. Therefore, agent gi prioritises maximising the
state similarity reward over the problem-specific reward
optimisation, and takes actions that can contribute to
experiencing its previous known state (see Fig. 4). To do
so, agent gi selects actions that minimise the difference
between st

gi
and st−1

gi
.

4.5 Generate and execute action

Using the function F(Bt
gi

, J t
gi

), based on the current state st
gi

,
agent gi selects the appropriate action a from action space
A and executes it (lines 16 and 17 of Algorithm 1).
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Table 1 An example of
inference rules, inferring
maximising the position
coordinates of the ambulance a
as a parameter in the state
similarity reward function J t

gi

Inference rules

TrafficSignalControl(?i), Intersection(?s), Road(?r1), Lane(?l1), Vehicle(?a),

isOn(?a, ?l1), consistOf(?r1, ?l1), atIntersection(?i, ?s), isRegulatedBy(?r1, ?i),

hasPosition(?a, Stopped)

− >

atIntersection(?a, ?s)

In Semantic Web Rule Language (SWRL), variables are indicated using the standard convention of prefixing
them with a question mark

5 Traffic signal control case study

In the multi-agent traffic signal control systems, the traffic
signal at each intersection is controlled by an independent
agent. Agents observe and analyse the traffic collected data
and decide their actions accordingly. In the remainder of
this section, we present how our model is tested using a
traffic micro-simulator, Simulation of Urban MObility (SUMO)
which provides a microscopic real-time traffic simulation [25].

5.1 Simulation setting

SUMO is employed to evaluate the performance of AGGM
in a traffic signal control case study. The whole simulated
traffic network is a 750m×750m area. Each intersection is a
300m×300m area. Thus, the total number of intersections is
16 (see Fig. 5). At each intersection, we have two incoming
roads and two exit roads. Each road is marked with a name
such as 0to1 and includes two lanes, for example, road
0to1 includes two lanes 0to1 0 and 0to1 1. So, we have
eight lanes at each intersection in which vehicles drive.
The lane length is 120 meters. The vehicles in incoming
roads from west-to-east are allowed to take right-turn and
pass through traffic. The vehicles in incoming roads from
north-to-south are allowed to take left-turn and pass through
traffic. The minimal gap between the two vehicles is 2.5
meters. We have four types of vehicles in the simulation:
default, ambulance, fuel truck, and trailer truck. The length
of default and ambulance vehicles is 5 meters and the

length of the fuel truck and trailer truck is 10 meters.
The default vehicles arrive in the environment following a
random process, and the arrival rate of every lane is the
same, one per second. The arrival rate of other types of
vehicles is according to scenarios discussed in Section 6.
Vehicles are discarded if they could not be inserted. For all
types of vehicles, the max speed is 55.55 m/s, which is
equal to 200 km/h. Also, the max accelerating acceleration
is 2.6 m/s2 and the decelerating acceleration is 4.5 m/s2.
SUMO uses the Krauss Following Model [23], which
guarantees safe driving on the road. The duration of yellow
phase is set to 2 seconds. The minimum duration of green
phase is set to 5 seconds and the maximum one is set to
100 seconds (Max-Green-Time). The number of simulation
seconds ran before learning begins is set to 300 seconds.
The number of simulated seconds on SUMO is set to
1,000 seconds. The simulation seconds between actions
are set to 5 seconds. We used the interface to instantiate
RL environments with SUMO for traffic signal control
provided by [2] to interact with the traffic signal-controlled
intersections.

We perform the simulation through 10 runs for each
scenario. One run is an episode of 1,000 seconds. The
reward is accumulated in an episode. The goal in our
network is to maximize the reward in each 1,000 seconds
episode by modifying the traffic signals’ phases. The
simulation results show the average values obtained from
10 runs and are compared to the baseline algorithms. The
parameters of the network are shown in Table 3.

Table 2 An example of
inference rules, inferring
maximising the position
coordinates of all instances of
vehicle b as a parameter in the
state similarity reward function
J t

gi

Inference rules

TrafficSignalControl(?i), Intersection(?s), Road(?r1), Lane(?l1), Vehicle(?b),

isOn(?b, ?l1), consistOf(?r1, ?l1), atIntersection(?i, ?s), isRegulatedBy(?r1, ?i),

hasPosition(?b, Stopped)

− >

hasCongestion(?r1)
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Fig. 3 An example of the backward reasoning process, Z shows
the fact atIntersection(?a, ?s) and F shows the inferred fact
hasPosition(?a, Moving). B shows the other facts in Table 1 such as
consistOf(?r1, ?l1), atIntersection(?i, ?s), and isRegulatedBy(?r1, ?i)

5.2 Baseline algorithms

To build the traffic signal control system using RL, we need
to define the states, actions, and rewards. The three elements
are defined in the following:

• States: We model information of each state st
gi

for
traffic signal gi at time step t as follows:

st
gi

= {Φt
gi

, et
gi

, qt
li
, zt

li
, yt

vi
, bt

vi
, wt

vi
} (9)

– Yellow, red and green phase indicators are
shown as Φt

gi
for the intersection monitored by

gi at time step t .
– Current phase elapsed time, is shown as et

gi
for

the intersection monitored by gi at time step t

and is computed by (10). u is the time duration
from start of the current phase up to now.

et
gi

= u/Max-Green-Time (10)

– Current lane queue, the number of vehicles
waiting in each lane divided by the lane
capacity, is shown as qt

li
for lane l at the

intersection monitored by gi at time step t and
is computed using (11). hl is the total number

Fig. 4 Handling an unseen situation in the Automatic Goal Generation
Model, the functionality of state similarity reward

of halting vehicles for the last time step on lane
l (a speed of less than 0.1 m/s is considered a
halt), el is the length of lane l in meters and f is
the sum of the vehicle length and the minimum
gap.

qt
li

= min(1, (hl/(el/f ))) (11)

– Current lane density, the number of vehicles
in each lane divided by the lane capacity, is
shown as zt

li
for lane l at the intersection

monitored by gi at time step t and is computed
using (12). nl is the number of vehicles on lane
l within the last time step.

zt
li

= min(1, (nl/(el/f ))) (12)

– The type of vehicle is shown as yt
vi

for vehicle
v at the intersection monitored by gi at time
step t .

– The position coordinates of vehicle along the
lane (the distance from the front bumper to the
start of the lane) is shown as bt

vi
for vehicle v at

the intersection monitored by gi at time step t .
– The waiting time of a vehicle counts the

number of seconds a vehicle has a speed of less
than 0.1 m/s and is shown as wt

vi
for vehicle v

at the intersection monitored by gi at time step
t .

• Action Space: Traffic signal phases in the action space
include green, yellow, and red phases (i.e., 1, 2,
and 3 indicating green, yellow, and red respectively).
The green phase is the period during which vehicles
are permitted to cross. The yellow phase is required
between two neighbouring phases to guarantee safety.
The red phase is the period during which vehicles are
not allowed to cross.

• Rewards: The main goal here is to increase the
efficiency of the intersection, by minimising the
vehicles’ waiting time. Therefore, the reward will be
the amount of change in the cumulative waiting time
between two consecutive cycles (see (13)). During the
training period, the RL algorithm tries different signal
control schemes and eventually converges to an optimal
scheme which yields a minimum average waiting
time.

Bt
gi

=
∑

wt−1
vi

−
∑

wt
vi

(13)

Unseen situations We define the arrival of ambulances, fuel
trucks, and trailer trucks and a line of more than 10 vehicles
at an intersection as unseen situations.
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Fig. 5 Simulated traffic network
in SUMO

5.3 AGGM in SUMO

The stages of AGGM in the traffic signal control system are
as follows:

• Observe: We model each traffic signal’s observation
as a tuple which includes the traffic signal’s state st

gi

(see (9)) and the traffic signal’s reward rt
gi

received
from the environment at time step t . The reward
functions include the problem-specific reward Bt

gi

which is explained in (13) and the state similarity
reward J t

gi
as displayed in (14). Agent gi uses backward

reasoning over its ontology’s inference rules (see
Tables 1 and 2) and deduces the state similarity reward
as maximising the position coordinates of vehicles.

J t
gi

=
∑

(bt
vi

− bt−1
vi

) (14)

So, the traffic signal’s reward is a set which includes
reward computed using Bt

gi
and J t

gi
(15).

rt
gi

= {Bt
gi

, J t
gi

} (15)

We defined a combination of the two reward
functions Bt

gi
and J t

gi
in the form of the priority function

by giving more priority to the output of the state
similarity reward function.

• Evaluate and Significant Change Identification: The
traffic ontology includes the importance weights of
the relations and their domain/range combination
(see Table 4). Traffic signal agent gi computes
the importance weight iwc(ri) of the road ri by∑

vi∈ri
iwc(vi), to identify whether there has been

a significant change in the environment (see line 6
of Algorithm 2). When congestion happens or an
important vehicle (e.g., an ambulance, a fuel truck,

Table 3 Parameter settings of
the baseline algorithms Parameter Value

ε 0.05 (Q-learning, SARSA, Deep Q Network)

γ 0.99 (Q-learning), 0.95 (SARSA), 0.99 (Deep Q Network)

ρ 1e−1 (Q-learning), 1e−9 (SARSA), 1e−3 (Deep Q Network)
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Table 4 Relations between concepts in traffic signal control ontology

Relation Domain Range Importance weight Numerical value

hasPosition Vehicle Moving Lowest Importance 0
hasPosition Vehicle Stopped Low Importance 1
hasType Vehicle Default Lowest Importance 0
hasType Vehicle Emergency Highest Importance (e.g., ambulance) 10

High Importance (e.g., fuel truck) 5
hasLength Vehicle Short Lowest Importance 0
hasLength Vehicle Medium Lowest Importance 0
hasLength Vehicle Long Middle Importance (e.g., trailer truck) 2

or a trailer truck) enters the intersection on road ri
in the current state at time step t , the iwc(ri) value
becomes larger than Importance-Weight-Threshold,
and the Reasoning Engine will be triggered.

• Reasoning and Execute Action: The state similarity
reward J t

gi
is defined as the sum of the relocation of

the vehicles in two consecutive states (see (14)). The
greater the state similarity reward is the closer the
vehicles that have led to the significant change get to
the intersection. AGGM along with the RL algorithm
are used to generate the traffic signal’s action (see
Algorithm 3):

– AGGM: When there is a significant change,
agent gi will select an action a which
maximises the value of the state similarity
reward, and discards the action suggested by
the RL algorithm (line 5 of Algorithm 3).

– RL: Action a will be suggested based on the
problem-specific reward function (line 7 of
Algorithm 3).

6 Experimental scenarios

Vehicles’ average waiting time, is used to measure the
efficiency of AGGM and baseline algorithms (i.e., Q-
learning, SARSA, and DQN), and it is calculated as follows:

wt
gi

= 1/|vi |
∑

wt
vi

(16)

The evaluation scenarios used to test the performance
of AGGM are listed in Table 5. Scenarios 1, 2, and 3
generate important vehicles (i.e., ambulances, fuel trucks,
and trailer trucks) in specified or random roads in Low and
High frequencies. In Low frequency setting, 3 important
vehicles are generated per 2 minutes, and in High frequency,
5 important vehicles are generated per 2 minutes. Scenario
4 creates congestion at specific roads per 3 minutes.

7 Results and discussion

The results report the average waiting time for all types of
vehicles in 10 runs in each scenario. As shown in Fig. 6,
AGGM performs almost as well as the baseline algorithms
when the average waiting time of default vehicles is
compared in scenarios 1, 2, and 3, and outperforms the
baseline algorithms in scenario 4. As shown in Figs. 7, 8,
and 9, AGGM significantly decreases the average waiting
time of ambulances, fuel trucks, and trailer trucks compared
to the baseline algorithms.

As shown in Table 6, the decrease in average waiting
when AGGM is applied is significant compared to the
baseline algorithms, however, AGGM is more effective
in low-frequency settings in more complex scenario (i.e.,
scenario 3).

As reported in Table 6, we observe that the improvement
of AGGM compared to the baseline algorithms in scenario
1 where ambulances, fuel trucks, and trailer trucks are
generated in parallel roads is more than scenario 2 where
they are generated in intersecting roads. This is because the
important vehicles entering in intersecting roads creates a
more complex situation. Also, our approach shows a better
performance in more complex scenarios where unseen
situations can happen simultaneously in multiple parallel or
intersecting roads (i.e., scenario 3) and it does not perform
as well in simple scenarios where congestion happens with
a line of more than 10 vehicles at an intersection (i.e.,
scenario 4).

From Table 6, we observe that AGGM decreases the
waiting time of ambulances more than the other types of

S. Ghanadbashi and F. Golpayegani1818



Table 5 Evaluation scenarios
Scenario Description Freq.

1 Generates important vehicles in four parallel roads: Low

0to1, 4to5, 9to10, 14to15. High

2 Generates important vehicles in three pairs of intersecting roads: Low

(0to4, 21to4), (5to9, 8to9), (10to14, 13to14). High

3 Generates important vehicles at random roads. Low

High

4 Creates traffic congestion at even-numbered intersections (e.g., 0, 2, ...).

Fig. 6 The average waiting time
of default vehicles –AGGM and
the three baselines

Fig. 7 The average waiting time
of important vehicles – AGGM
and Q-learning
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Fig. 8 The average waiting time
of important vehicles – AGGM
and SARSA

vehicles in scenario 3. Also, in scenario 2, the improvement
for fuel trucks is higher than the other types of important
vehicles. Since in scenarios 2 and 3, important vehicles
can enter the environment in intersecting roads, the higher
priority is given to the road that has the most important
vehicles. Therefore, when an ambulance or a fuel truck
is observed on one road and a trailer truck on another
road, the road with the ambulance or fuel truck will
have a higher priority and AGGM reverts the road to a

familiar previous state using the state similarity reward
function.

Finally, from waiting time results for all types of vehicles
in the system, we can conclude that the performance of the
default vehicles is not compromised to increase the performance
of ambulances, fuel trucks, and trailer trucks in the first
three scenarios (see Fig. 6). This is particularly an impor-
tant result as AGGM can handle unseen situations while
keeping the performance of the system for seen situations.

Fig. 9 The average waiting time
of important vehicles – AGGM
and DQN
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Table 6 Decrease in average waiting time – AGGM and baseline algorithms

Typeofvehicle Scenario Freq. Q-learning SARSA DQN Avg.

Ambulance 1 Low 1% 96% 98% 65%

High 45% 60% 79% 61%

2 Low –12% 82% 52% 41%

High 53% 78% -37% 31%

3 Low 67% 92% 95% 85%

High 35% 91% 91% 72%

Fuel truck 1 Low 24% 95% 99% 73%

High 49% 98% 97% 81%

2 Low 34% 69% 66% 56%

High -20% 58% 70% 36%

3 Low 87% 58% 84% 76%

High 63% 63% 67% 64%

Trailer truck 1 Low 11% 94% 96% 67%

High 42% 99% 97% 79%

2 Low -9% 56% 69% 39%

High 40% 48% 33% 40%

3 Low 76% 74% 59% 70%

High -82% 53% 70% 14%

Avg. Ambulance, Fuel truck, and Trailer truck 1 Low 12% 95% 98% 68%

High 46% 85% 91% 74%

2 Low 6% 69% 59% 45%

High 35% 60% 26% 40%

3 Low 75% 77% 85% 79%

High 30% 71% 75% 59%

Default 4 – 33% 26% 23% 27%

8 Conclusion

In real-world environments, it is not possible to predict
all possible events in advance, therefore when an agent
faces unseen situations or events it will not be able to
efficiently show suitable behaviour. In this paper, we
attempted to address such environments where agents might
face unseen situations. We proposed an Automatic Goal
Generation Model in which agents are enabled to detect
unseen situations and handle them automatically. In such
situations, agents either replace their current goal with
another predefined goal or generate a new goal. AGGM is
evaluated in a traffic signal control system case study with
varying levels of frequency of unseen situation occurrence.
The results are compared to several baseline algorithms
including Q-learning, SARSA, and DQN and the results
show that our method performs significantly better in
detecting and handling unseen situations (e.g., emergency
and congestion situations).

This paper can be extended in several directions. The state
similarity reward was defined particularly for the signal

control system case study using the position coordinates of
vehicles as a primary parameter. However, defining the state
similarity reward might be more complicated when multiple
types of unseen events are possible in an environment. To
address this issue, we used ontology models to formulate
states and their distinguishing parameters. So, AGGM’s
performance depends on the accuracy and completeness
of the used ontology. Additionally, operating in dynamic
environments requires the ontology to evolve and update
frequently. Ontology evolution techniques [39] can be
used to address this issue. The new goal generation
model only concerns about reverting the environment to a
familiar state that has been experienced before, however,
this might be more challenging when there exist multiple
states including familiar and inexperienced states that can
contribute to addressing an unseen situation. To address
this issue ontology evolution techniques can be used. High-
level policies help agents adapt their goals according to
different situations of the environment. Generative Policy-
based Models (GPM) can be used to enable agents to
observe, learn, and adapt high-level policy models [7].
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Appendix Symbols description

Symbol Description

RΠ
t Discounted cumulative reward at time step t under policy Π .

γ Discount rate.
rτ Reward at time step τ .
Q(s, a) Q-value for applying action a in state s.
R(s, a, s′) Reward value the agent gets from the environment after doing action a in state

s which takes the environment to the new state s′.
max Q′(s′, a′) Maximum expected future reward.
ρ Learning rate.
A Action space.
s Environment state.
ε Probability to choose random action in Epsilon-Greedy algorithm.
Lt

gi
Ontology used by agent gi at time step t .

Ct
gi

The set of concepts observed by agent gi at time step t .
Mt

gi
The set of relations used by agent gi at time step t .

St Individual states of all the agents in the system at time step t .
st
gi

State of agent gi at time step t .
rt
gi

Reward received from the environment by agent gi at time step t .
ot
gi

Observation of agent gi at time step t .
Qt

gi
Q-value for applying action a in state st

gi
.

Dt
gi

Absolute difference between the current state st
gi

and the previous state st−1
gi

.
Vst

gi
Quantifying value that describes st

gi
.

iwt
gi

The importance of observation st
gi

.
{iwt

gi
} The importance of concepts Ct

gi
involved in st

gi
.

I The goals in goal-set which are consistent with the agent’s observation st
gi

.
G A selected goal in goal-set.
Pgi

Preferences and constraints of agent gi to select goal.
ci A concept in observation S.
ki A concept’s value in observation S.
Bt

gi
Problem-specific reward for agent gi at time step t .

J t
gi

State similarity reward for agent gi at time step t .
F(Bt

gi
, J t

gi
) Combination of the two reward functions Bt

gi
and J t

gi
.

Φt
gi

Phase indicator for the intersection monitored by agent gi at time step t .
et
gi

Phase elapsed time for the intersection monitored by agent gi at time step t .
u Time duration from start of current phase up to now.
qt
li

Lane queue for lane l at the intersection monitored by agent gi at time step t .
hl Total number of halting vehicles for the last time step on lane l.
el Length of lane l in meters.
f Sum of the vehicle length and the minimal gap.
zt
li

Lane density for lane l at the intersection monitored by gi at time step t .
nl Number of vehicles on lane l within the last time step.
yt
vi

Type of vehicle v at the intersection monitored by agent gi at time step t .
bt
vi

Position coordinates of vehicle v at the intersection monitored by agent gi at time step t .
wt

vi
Waiting time of vehicle v at the intersection monitored by agent gi at time step t .

wt
gi

Average waiting time of vehicles at the intersection monitored by agent gi at time step t .
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