Skip to main content

Advertisement

Log in

An experimental study of objective pain measurement using pupillary response based on genetic algorithm and artificial neural network

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Obtaining an objective measurement of the pain level of a patient has always been challenging for health care providers. The most common method of pain assessment in the hospital setting is asking the patients’ verbal ratings, which is considered to be a subjective approach. In order to get an objective pain level of a patient, we propose measuring pain level objectively using the pupillary response and machine learning algorithms. Thirty-two healthy subjects were enrolled in this study at Northeastern University. A painful stimulus was applied to healthy subjects by asking them to place their hands inside a bucket filled with iced water. We extracted 11 features from the pupil diameter data. To get the optimal subset of the features, a genetic algorithm (GA) was used to select features for the artificial neural network (ANN) classifier. Before feature selection, the f1-score of ANN was 54.0 ± 0.25% with all 11 features. After feature selection, ANN had the best performance with an accuracy of 81.0% using the selected feature subset, namely the Mean, the Root Mean Square (RMS), and the Pupillary Area Under Curve (PAUC). The experimental results suggested that pupillary response together with machine learning algorithms could be a promising method of objective pain level assessment. The outcomes of this study could improve patients’ experience of pain measurement in telehealthcare, especially during a pandemic when most people had to stay at home.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Loeser J. D., et al. (2001) Bonica’s management of pain, vol 3. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Scott J., Huskisson E. (1976) Graphic representation of pain. Pain 2(2):175

    Article  Google Scholar 

  3. Downie W., Leatham P., Rhind V., Wright V., Branco J., Anderson J. (1978) Studies with pain rating scales. Ann. Rheum. Dis. 37(4):378

    Article  Google Scholar 

  4. Breivik H., Borchgrevink P., Allen S., Rosseland L., Romundstad L., Breivik Hals E., Kvarstein G., Stubhaug A. (2008) Assessment of pain. BJA:, British Journal of Anaesthesia 101(1):17

    Article  Google Scholar 

  5. Ekblom A., Hansson P. (1988) Pain intensity measurements in patients with acute pain receiving afferent stimulation. J. Neurol. Neurosurg. Psychiatry 51(4):481

    Article  Google Scholar 

  6. Bergh I., Sjöström B, Odén A, Steen B (2000) An application of pain rating scales in geriatric patients. Aging Clin. Exp. Res. 12(5):380

    Article  Google Scholar 

  7. Carpenter J. S., Brockopp D. (1995) Comparison of patients’ ratings and examination of nurses’ responses to pain intensity rating scales. Cancer Nursing 18(4):292

    Article  Google Scholar 

  8. Wang L., Xiao Y., Urman R. D., Lin Y. (2020) Cold pressor pain assessment based on EEG power spectrum. SN Applied Sciences 2(12):1

    Google Scholar 

  9. Lin Y., Wang L., Xiao Y., Urman R.D., Dutton R., Ramsay M. (2018) Objective pain measurement based on physiological signals. In: Proceedings of the international symposium on human factors and ergonomics in health care, vol 7. SAGE Publications Sage, Los Angeles, pp 240–247

  10. Yu M., Sun Y., Zhu B., Zhu L., Lin Y., Tang X., Guo Y., Sun G., Dong M. (2020) Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using EEG. Neurocomputing 378:270

    Article  Google Scholar 

  11. Lin Y., Zhang W., Watson L. G. (2003) Using eye movement parameters for evaluating human–machine interface frameworks under normal control operation and fault detection situations. Int. J. Hum. Comput. Stud 59(6):837

    Article  Google Scholar 

  12. Lin Y., Zhang W. J., Wu C., Yang G., Dy J. (2009) A fuzzy logics clustering approach to computing human attention allocation using eyegaze movement cue. Int. J. Hum. Comput. Stud 67(5):455

    Article  Google Scholar 

  13. Cheng B., Zhang W., Lin Y., Feng R., Zhang X. (2012) Driver drowsiness detection based on multisource information. Human Factors and Ergonomics in Manufacturing & Service Industries 22(5):450

    Article  Google Scholar 

  14. Rubin L. S., Barbero G. J., Sibinga M. S. (1967) Pupillary reactivity in children with recurrent abdominal pain. Psychosom. Med. 29(2):111

    Article  Google Scholar 

  15. Constant I., Nghe M. C., Boudet L., Berniere J., Schrayer S., Seeman R., Murat I. (2006) Reflex pupillary dilatation in response to skin incision and alfentanil in children anaesthetized with sevoflurane: a more sensitive measure of noxious stimulation than the commonly used variables. BJA:, British Journal of Anaesthesia 96(5):614

    Article  Google Scholar 

  16. Aissou M., Snauwaert A., Dupuis C., Atchabahian A., Aubrun F., Beaussier M. (2012) Objective assessment of the immediate postoperative analgesia using pupillary reflex measurement: a prospective and observational study. Anesthesiology: J Am Soc Anesthesiologists 116(5):1006

    Article  Google Scholar 

  17. Charier D. J., Zantour D., Pichot V., Chouchou F., Barthelemy J. C. M., Roche F., Molliex S. B. (2017) Assessing pain using the variation coefficient of pupillary diameter. J. Pain 18(11):1346

    Article  Google Scholar 

  18. Charier D., Vogler M. C., Zantour D., Pichot V., Martins-Baltar A., Courbon M., Roche F., Vassal F., Molliex S. (2019) Assessing pain in the postoperative period: Analgesia Nociception IndexTM vs pupillometry. British Journal of Anaesthesia

  19. Holland J. H. (1992) Genetic algorithms. Sci. Am 267(1):66

    Article  Google Scholar 

  20. Nakisa B., Rastgoo M. N., Tjondronegoro D., Chandran V. (2018) Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 93:143

    Article  Google Scholar 

  21. Goswami S., Chakrabarti A., Chakraborty B. (2018) An empirical study of feature selection for classification using genetic algorithm. Int J Adv Intell Paradigms 10(3):305

    Article  Google Scholar 

  22. Brahnam S., Chuang C. F., Sexton R. S., Shih F. Y. (2007) Machine assessment of neonatal facial expressions of acute pain. Decis. Support. Syst. 43(4):1242

    Article  Google Scholar 

  23. Mantzaris D., Anastassopoulos G., Adamopoulos A., Stephanakis I., Kambouri K., Gardikis S. (2007) Selective clinical estimation of childhood abdominal pain based on pruned artificial neural networks. In: Proceedings of the 3rd WSEAS international conference on cellular and molecular biology, biophysics and bioengineering, pp 50–55

  24. Sanders N. W., Mann III N. H. (2000) Automated scoring of patient pain drawings using artificial neural networks: efforts toward a low back pain triage application. Comput Biology Med 30(5):287

    Article  Google Scholar 

  25. Wood D. L., Sheps S. G., Elveback L. R., Schirger A. (1984) Cold pressor test as a predictor of hypertension. Hypertension 6(3):301

    Article  Google Scholar 

  26. Walsh N. E., Schoenfeld L., Ramamurthy S., Hoffman J. (1989) Normative model for cold pressor test. Am J Phys Med Rehabil 68(1):6

    Article  Google Scholar 

  27. Littlewort G.C., Bartlett M.S., Lee K. (2007) Faces of pain: automated measurement of spontaneousallfacial expressions of genuine and posed pain. In: Proceedings of the 9th international conference on Multimodal interfaces. ACM, pp 15–21

  28. Bergamin O., Schoetzau A., Sugimoto K., Zulauf M. (1998) The influence of iris color on the pupillary light reflex. Graefe’s Archive for Clinical and Experimental Ophthalmology 236(8):567

    Article  Google Scholar 

  29. Jones E., Oliphant T., Peterson P., et al. (2001) SciPy: Open source scientific tools for Python. http://www.scipy.org/. Online Accessed 2018-11-20

  30. MacLachlan C., Howland H. C. (2002) Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 month to 19 years. Ophthalmic Physiol Opt 22(3):175

    Article  Google Scholar 

  31. Jackson I., Sirois S. (2009) Infant cognition: going full factorial with pupil dilation. Developmental Science 12(4):670

    Article  Google Scholar 

  32. Kret M. E., Sjak-Shie E. E. (2019) Preprocessing pupil size data: Guidelines and code. Behav. Res. Methods 51(3):1336

    Article  Google Scholar 

  33. Thomson D. J. (1982) Spectrum estimation and harmonic analysis. Proc. IEEE 70(9):1055

    Article  Google Scholar 

  34. Neice A. E., Behrends M., Bokoch M. P., Seligman K. M., Conrad N. M., Larson M. D. (2017) Prediction of opioid analgesic efficacy by measurement of pupillary unrest. Anesthesia & Analgesia 124 (3):915

    Article  Google Scholar 

  35. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge

    Book  Google Scholar 

  36. McCulloch W. S., Pitts W. (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115

    Article  MathSciNet  Google Scholar 

  37. Hilgard E. R. (1967) A quantitative study of pain and its reduction through hypnotic suggestion. Proc. Natl. Acad. Sci. 57(6): 1581

    Article  Google Scholar 

  38. Nayak S., Shiflett S. C., Eshun S., Levine F. M. (2000) Culture and gender effects in pain beliefs and the prediction of pain tolerance. Cross-cultural Research 34(2):135

    Article  Google Scholar 

  39. Ferreira-Valente M. A., Pais-Ribeiro J. L., Jensen M. P. (2011) Validity of four pain intensity rating scales. Pain®; 152(10): 2399

    Article  Google Scholar 

  40. Bokoch M. P., Behrends M., Neice A., Larson M. D. (2015) Fentanyl, an agonist at the mu opioid receptor, depresses pupillary unrest. Auton. Neurosci. 189:68

    Article  Google Scholar 

  41. Kunkle E. C. (1949) Phasic pains induced by cold. J. Appl. Physiol. 1(12):811

    Article  Google Scholar 

  42. Dowman R., Rissacher D., Schuckers S. (2008) EEG indices of tonic pain-related activity in the somatosensory cortices. Clin. Neurophysiol. 119(5):1201

    Article  Google Scholar 

  43. Maas A.L., Hannun A.Y., Ng A.Y. (2013) Rectifier nonlinearities improve neural network acoustic models. In: Proc. icml, vol 30, p 3

  44. Naeini E.K., Shahhosseini S., Subramanian A., Yin T., Rahmani A.M., Dutt N. (2019) An edge-assisted and smart system for real-time pain monitoring. In: 2019 IEEE/ACM International conference on connected health: applications, systems and engineering technologies (CHASE). IEEE, pp 47– 52

  45. Lopez-Martinez D., Picard R. (2017) Multi-task neural networks for personalized pain recognition from physiological signals. In: 2017 Seventh international conference on affective computing and intelligent interaction workshops and demos (ACIIW). IEEE, pp 181–184

  46. Brown J. E., Chatterjee N., Younger J., Mackey S. (2011) Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation. PloS one 6 (9):e24124

    Article  Google Scholar 

  47. Wildemeersch D., Peeters N., Saldien V., Vercauteren M., Hans G. (2018) Pain assessment by pupil dilation reflex in response to noxious stimulation in anaesthetized adults. Acta Anaesthesiol. Scand. 62 (8):1050

    Article  Google Scholar 

  48. Connelly M. A., Brown J. T., Kearns G. L., Anderson R. A., St Peter S. D., Neville K. A. (2014) Pupillometry: a non-invasive technique for pain assessment in paediatric patients. Archives of Disease in Childhood 99(12):1125

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by a National Science Foundation project entitled “Collaborative: Novel Computational Methods for Continuous Objective Multimodal Pain Assessment Sensing System (COMPASS)” under the awards #1838796, 1838650 and, 1838621. The opinions are those of the authors and do not necessarily reflect the official positions of the sponsor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzi Lin.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been financially supported by a collaborative National Science Foundation project entitled “Novel Computational Methods for Continuous Objective Multimodal Pain Assessment Sensing System (COMPASS)” under the award #1838796, 1838650 and 1838621.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Guo, Y., Dalip, B. et al. An experimental study of objective pain measurement using pupillary response based on genetic algorithm and artificial neural network. Appl Intell 52, 1145–1156 (2022). https://doi.org/10.1007/s10489-021-02458-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02458-4

Keywords

Navigation