Skip to main content
Log in

MEAD: a Mask-guidEd Anchor-free Detector for oriented aerial object detection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Object detection in aerial images is a challenging task due to various orientations of objects and the lack of discriminative features. Existing methods are usually in a dilemma between accuracy and speed. While one-stage anchor-free detectors inference more quickly than two-stage frameworks, their predictions are not as accurate as that of the opposite. This paper proposes a quick and accurate detector, Mask-guidEd Anchor-free Detector (MEAD). It can rapidly locate oriented objects in aerial images by means of per-pixel prediction. Furthermore, it embeds a cascade architecture to locate targets more precisely. To enhance feature discrimination, the mask-guided branch is employed to force features to attend the foreground regions. Comparative experiments are conducted on DOTA and HRSC2016 datasets. The results show that MEAD is better than current state-of-the-art anchor-free detectors, that is, mAP 74.33 on DOTA and 89.83 on HRSC2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://github.com/CAPTAIN-WHU/DOTA_devkit

References

  1. Yang X, Liu Q, Yan J, Li A (2019) R3det: Refined single-stage detector with feature refinement for rotating object. arXiv:1908.05612

  2. Yang X, chi Yan J (2020) Arbitrary-oriented object detection with circular smooth label. arXiv:2003.05597

  3. Qian W, Yang X, Peng S, Guo Y, Yan C (2019) Learning modulated loss for rotated object detection. arXiv:1911.08299

  4. Ding J, Xue N, Long Y, Xia G, Lu Q (2019) Learning roi transformer for oriented object detection in aerial images. Proceedings of IEEE ICCV, pp 2844–2853

  5. Lin Y, Pengming F, Jian G (2019) Ienet: Interacting embranchment one stage anchor free detector for orientation aerial object detection. arXiv:1912.00969

  6. Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of NIPS, pp 91–99

  7. Ma J, Shao W, Ye H, Wang L, Wang H, Zheng Y, Xue X (2018) Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans Multimed 20:3111–3122

    Article  Google Scholar 

  8. Liu Z, Hu J, Weng L, Yang Y (2017) Rotated region based cnn for ship detection. Proceedings of IEEE ICIP, pp 900–904

  9. Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of IEEE ICCV, pp 2999–3007

  10. Tian Z, Shen C, Chen H, He T (2019) Fcos: Fully convolutional one-stage object detection. In: Proceedings of IEEE ICCV

  11. Yang Z, Liu S, Hu H, Wang L, Lin S (2019) Reppoints: Point set representation for object detection. In: The IEEE International Conference on Computer Vision (ICCV)

  12. Xia G-S, Bai X, Ding J, Zhu Z, Belongie S J, Luo J, Datcu M, Pelillo M, Zhang L (2018) Dota: A large-scale dataset for object detection in aerial images, pp 3974–3983

  13. Liu Z, Yuan L, Weng L, Yang Y (2017) A high resolution optical satellite image dataset for ship recognition and some new baselines. In: ICPRAM

  14. Azimi S M, Vig E, Bahmanyar R, Körner M, Reinartz P (2018) Towards multi-class object detection in unconstrained remote sensing imagery. In: ACCV

  15. Zhang Z, Guo W, Zhu S, Yu W (2018) Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks. IEEE Geosci Remote Sens Lett 15:1745–1749

    Article  Google Scholar 

  16. Ke W, Zhang T, Huang Z, Ye Q, Liu J, Huang D (2020) Multiple anchor learning for visual object detection, pp Proceedings of IEEE CVPR, pp 10203–10212

  17. Lu X, Li B, Yue Y, Li Q, Yan J (2019) Grid r-cnn, pp Proceedings of IEEE CVPR

  18. Cao J, Cholakkal H, Anwer R M, Khan F S, Pang Y, Shao L (2020) D2det: Towards high quality object detection and instance segmentation. In: Proceedings of IEEE CVPR, pp 11482–11491

  19. Qiao S, Chen L-C, Yuille A (2020) Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. arXiv:2006.02334

  20. Huang L, Yang Y, Deng Y, Yu Y (2015) Densebox: Unifying landmark localization with end to end object detection. arXiv:1509.04874

  21. Zhang S, Chi C, Yao Y, Lei Z, Li S Z (2020) Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of IEEE CVPR

  22. Dai J, Qi H, Xiong Y, Li Y, Zhang G, Hu H, Wei Y (2017) Deformable convolutional networks. In: Proceedings of IEEE ICCV, pp 764–773

  23. Viola P, Jones M J (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE CVPR, pp I–I

  24. Li W, Wang Z, Yin B, Peng Q, Du Y, Xiao T, Yu G, Lu H, Wei Y, Sun J (2019) Rethinking on multi-stage networks for human pose estimation. arXiv:1901.00148

  25. Pang J, Chen K, Shi J, Feng H, Ouyang W, Lin D (2019) Libra r-cnn: Towards balanced learning for object detection. In: Proceedings of IEEE CVPR

  26. Cai Z, Vasconcelos N (2019) Cascade r-cnn: High quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence

  27. Chen K, Pang J, Wang J, Xiong Y, Li X, Sun S, Feng W, Liu Z, Shi J, Ouyang W, Loy C C, Lin D (2019) Hybrid task cascade for instance segmentation, pp 4969–4978

  28. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L , Polosukhin I (2017) Attention is all you need. In: Advances in Neural Information Processing Systems, vol 30

  29. Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object detection with transformers. arXiv:2005.12872

  30. Hu J, Shen L, Albanie S, Sun G, Wu E (2020) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023

    Article  Google Scholar 

  31. Park J, Woo S, Lee J-Y, Kweon I-S (2018) Bam: Bottleneck attention module. In: BMVC

  32. Woo S, Park J, Lee J-Y, Kweon I S (2018) Cbam: Convolutional block attention module. In: Proceedings of the ECCV

  33. Yang X, Yang J, Yan J, Zhang Y, Zhang T, Guo Z, Sun X, Fu K (2019) Scrdet: Towards more robust detection for small, cluttered and rotated objects, pp 8231–8240

  34. Pang Y, Xie J-C, Khan M H, Anwer R, Khan F, Shao L (2019) Mask-guided attention network for occluded pedestrian detection, pp 4966–4974

  35. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of IEEE CVPR, pp 770–778

  36. Girshick R (2015) Fast R-CNN. In: Proceedings of IEEE ICCV, pp 1440–1448

  37. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. In: Proceedings of IEEE ICCV, pp 2980–2988

  38. Chen K (2019) MMDetection: Open mmlab detection toolbox and benchmark. arXiv:1906.07155

  39. Zhang H, Chang H, Ma B, Naiyan W, Chen X (2020) Dynamic r-cnn: Towards high quality object detection via dynamic training. arXiv:2004.06002

  40. Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv:1804.02767

Download references

Acknowledgements

The authors are thankful for the financial support from the National Key Research and Development Program of China (2018YFB1404400), and the National Natural Science Foundation of China (Grant No. 61906190, U1936206, 61976213 and 61976212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Ren, Z., Yang, X. et al. MEAD: a Mask-guidEd Anchor-free Detector for oriented aerial object detection. Appl Intell 52, 4382–4397 (2022). https://doi.org/10.1007/s10489-021-02570-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02570-5

Keywords

Navigation