Skip to main content
Log in

A novel CNN framework to extract multi-level modular features for the classification of brain networks

  • Original Submission
  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Brain disease diagnosis based on brain network classification has become a hot topic. Recently, classification methods based on convolutional neural networks (CNNs) have attracted much attention due to their ability to capture the basic topological structure of the brain network. However, they ignore abnormal structures within modules caused by brain disease, which limits the diagnostic accuracy. In this paper, we propose a novel brain network classification framework based on a CNN model capable of extracting modular features from brain networks at the node and whole-network levels. More specifically, we first develop a novel algorithm to obtain the modular structure of each node, which is then fed into a CNN model to extract the node-level modular features. Second, we minimize the harmonic modularity of the extracted node-level features to reveal the modular structure at the whole-brain network level. Finally, we employ a deep neural network to further extract high-level features for the classification of brain disease. The experimental results on a real-world autism spectrum disorder dataset show that our proposed method achieves the best accuracy of 68.55% and outperforms other common methods and demonstrates the discriminant power of the modular features at multiple levels. In addition, feature analysis based on the trained framework reveals the associations between modular structures and brain disease, which provides new insights into the pathological mechanism from the perspective of modular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alexander-Bloch A, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F, Lenroot R, Giedd J, Bullmore E (2010) Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci 4:147. https://doi.org/10.3389/fnsys.2010.00147. https://www.frontiersin.org/article/10.3389/fnsys.2010.00147

    Article  Google Scholar 

  2. Bai F, Shu N, Yuan Y, Shi Y, Yu H, Wu D, Wang J, Xia M, He Y, Zhang Z (2012) Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. J Neurosci 32(12):4307–4318. https://doi.org/10.1523/jneurosci.5061-11.2012

    Article  Google Scholar 

  3. Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M (2011) A big-world network in ASD: Dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia 49(2):254–263. https://doi.org/10.1016/j.neuropsychologia.2010.11.024

    Article  Google Scholar 

  4. Boddaert N, Zilbovicius M, Philipe A, Robel L, Bourgeois M, Barthélemy C, Seidenwurm D, Meresse I, Laurier L, Desguerre I, Bahi-Buisson N, Brunelle F, Munnich A, Samson Y, Mouren MC, Chabane N (2009) MRI Findings in 77 children with non-syndromic autistic disorder. PLoS ONE 4(2):e4415. https://doi.org/10.1371/journal.pone.0004415

    Article  Google Scholar 

  5. Cameron C, Yassine B, Carlton C, Francois C, Alan E, András J, Budhachandra K, John L, Qingyang L, Michael M, Chaogan Y, Pierre B (2013) The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Front Neuroinform 7 https://doi.org/10.3389/conf.fninf.2013.09.00041

  6. Challis E, Hurley P, Serra L, Bozzali M, Oliver S, Cercignani M (2015) Gaussian process classification of Alzheimer’s disease and mild cognitive impairment from resting-state fMRI. NeuroImage 112:232–243. https://doi.org/10.1016/j.neuroimage.2015.02.037

    Article  Google Scholar 

  7. He L, Lu CT, Ma J, Cao J, Shen L, Yu PS (2016) Joint community and structural hole spanner detection via harmonic modularity. In: Proceedings of the 22nd ACM SIGKDD International conference on knowledge discovery and data mining. https://doi.org/10.1145/2939672.2939807. ACM

  8. He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in alzheimer’s disease. J Neurosci 28(18):4756–4766. https://doi.org/10.1523/jneurosci.0141-08.2008

    Article  Google Scholar 

  9. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419. https://doi.org/10.1093/cercor/bhl149

    Article  Google Scholar 

  10. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F (2018) Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clinic 17:16–23. https://doi.org/10.1016/j.nicl.2017.08.017

    Article  Google Scholar 

  11. Itahashi T, Yamada T, Watanabe H, Nakamura M, Jimbo D, Shioda S, Toriizuka K, Kato N, Hashimoto R (2014) Altered network topologies and hub organization in adults with autism: a resting-state fMRI study. PLoS ONE 9(4):e94115. https://doi.org/10.1371/journal.pone.0094115

    Article  Google Scholar 

  12. Ji J, Xing X, Yao Y, Li J, Zhang X (2021) Convolutional kernels with an element-wise weighting mechanism for identifying abnormal brain connectivity patterns. Pattern Recogn 107570:109. https://doi.org/10.1016/j.patcog.2020.107570

    Google Scholar 

  13. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe. In: Proceedings of the ACM international conference on multimedia - MM ’14. https://doi.org/10.1145/2647868.2654889. ACM Press

  14. Jie B, Liu M, Lian C, Shi F, Shen D (2020) Designing weighted correlation kernels in convolutional neural networks for functional connectivity based brain disease diagnosis. Med Image Anal 63:101709. https://doi.org/10.1016/j.media.2020.101709. https://www.sciencedirect.com/science/article/pii/S1361841520300748

    Article  Google Scholar 

  15. Kambeitz J, Kambeitz-Ilankovic L, Cabral C, Dwyer DB, Calhoun VD, van den Heuvel MP, Falkai P, Koutsouleris N, Malchow B (2016) Aberrant functional whole-brain network architecture in patients with schizophrenia: A meta-analysis. Schizophr Bull 42(suppl 1):S13–S21. https://doi.org/10.1093/schbul/sbv174

    Article  Google Scholar 

  16. Kawahara J, Brown CJ, Miller SP, Booth BG, Chau V, Grunau RE, Zwicker JG, Hamarneh G (2017) BrainnetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146:1038–1049. https://doi.org/10.1016/j.neuroimage.2016.09.046

    Article  Google Scholar 

  17. Khazaee A, Ebrahimzadeh A, Babajani-Feremi A (2015) Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clin Neurophysiol 126(11):2132–2141. https://doi.org/10.1016/j.clinph.2015.02.060

    Article  Google Scholar 

  18. Kong Y, Gao J, Xu Y, Pan Y, Wang J, Liu J (2019) Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 324:63–68. https://doi.org/10.1016/j.neucom.2018.04.080

    Article  Google Scholar 

  19. Li H, Parikh NA, He L (2018) A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front Neurosci 12:491. https://doi.org/10.3389/fnins.2018.00491. https://www.frontiersin.org/article/10.3389/fnins.2018.00491

    Article  Google Scholar 

  20. Liang X, Wang J, He Y (2010) Human connectome: Structural and functional brain networks (in chinese). Chinese Sci Bull (Chinese Ver) 55(16):1565–1583

    Article  Google Scholar 

  21. Liao X, Vasilakos AV, He Y (2017) Small-world human brain networks: Perspectives and challenges. Neurosci Biobehav Rev 77:286–300. https://doi.org/10.1016/j.neubiorev.2017.03.018

    Article  Google Scholar 

  22. Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T (2008) Disrupted small-world networks in schizophrenia. Brain 131(4):945–961. https://doi.org/10.1093/brain/awn018

    Article  Google Scholar 

  23. Martino AD, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, Anderson JS, Assaf M, Bookheimer SY, Dapretto M, Deen B, Delmonte S, Dinstein I, Ertl-Wagner B, Fair DA, Gallagher L, Kennedy DP, Keown CL, Keysers C, Lainhart JE, Lord C, Luna B, Menon V, Minshew NJ, Monk CS, Mueller S, Müller RA, Nebel MB, Nigg JT, O’Hearn K, Pelphrey KA, Peltier SJ, Rudie JD, Sunaert S, Thioux M, Tyszka JM, Uddin LQ, Verhoeven JS, Wenderoth N, Wiggins JL, Mostofsky SH, Milham MP (2013) The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 19(6):659–667. https://doi.org/10.1038/mp.2013.78

    Article  Google Scholar 

  24. Meszlenyi R, Peska L, Gal V, Vidnyanszky Z, Buza K (2016) Classification of fMRI data using dynamic time warping based functional connectivity analysis. In: 2016 24th european signal processing conference (EUSIPCO). https://doi.org/10.1109/eusipco.2016.7760247. IEEE

  25. Meszlenyi R, Peska L, Gal V, Vidnyanszky Z, Buza K (2016) A model for classification based on the functional connectivity pattern dynamics of the brain. In: 2016 Third european network intelligence conference (ENIC). https://doi.org/10.1109/enic.2016.037. IEEE

  26. Meszlényi RJ, Buza K, Vidnyánszky Z (2017) Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture. Front Neuroinform 11:61. https://doi.org/10.3389/fninf.2017.00061. https://www.frontiersin.org/article/10.3389/fninf.2017.00061

    Article  Google Scholar 

  27. Meszlényi RJ, Hermann P, Buza K, Gál V, Vidnyánszky Z (2017) Resting state fMRI functional connectivity analysis using dynamic time warping. Front Neurosci 11:75. https://doi.org/10.3389/fnins.2017.00075. https://www.frontiersin.org/article/10.3389/fnins.2017.00075

    Article  Google Scholar 

  28. Parisot S, Ktena SI, Ferrante E, Lee M, Guerrero R, Glocker B, Rueckert D (2018) Disease prediction using graph convolutional networks: Application to autism spectrum disorder and Alzheimer’s disease. Med Image Anal 48:117–130. https://doi.org/10.1016/j.media.2018.06.001

    Article  Google Scholar 

  29. Rosa MJ, Portugal L, Hahn T, Fallgatter AJ, Garrido MI, Shawe-Taylor J, Mourao-Miranda J (2015) Sparse network-based models for patient classification using fMRI. NeuroImage 105:493–506. https://doi.org/10.1016/j.neuroimage.2014.11.021

    Article  Google Scholar 

  30. Saramäki J, Kivelä M, Onnela JP, Kaski K, Kertész J (2007) Generalizations of the clustering coefficient to weighted complex networks. Phys Rev E 75(2). https://doi.org/10.1103/physreve.75.027105

  31. Stam C, Jones B, Nolte G, Breakspear M, Scheltens P (2006) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17(1):92–99. https://doi.org/10.1093/cercor/bhj127

    Article  Google Scholar 

  32. Turner AH, Greenspan KS, van Erp TG (2016) Pallidum and lateral ventricle volume enlargement in autism spectrum disorder. Psychiatry Research Neuroimaging 252:40–45. https://doi.org/10.1016/j.pscychresns.2016.04.003

    Article  Google Scholar 

  33. Wang C, Xiao Z, Wu J (2019) Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data. Physica Medica 65:99–105. https://doi.org/10.1016/j.ejmp.2019.08.010

    Article  Google Scholar 

  34. Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, Zhong Q, Wang Y (2008) Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 30(2):638–649. https://doi.org/10.1002/hbm.20530

    Article  Google Scholar 

  35. Wang Q, Su TP, Zhou Y, Chou KH, Chen IY, Jiang T, Lin CP (2012) Anatomical insights into disrupted small-world networks in schizophrenia. NeuroImage 59(2):1085–1093. https://doi.org/10.1016/j.neuroimage.2011.09.035

    Article  Google Scholar 

  36. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393 (6684):440–442. https://doi.org/10.1038/30918

    Article  Google Scholar 

  37. Wee CY, Yap PT, Shen D (2016) Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks. CNS Neurosci Ther 22(3):212–219. https://doi.org/10.1111/cns.12499

    Article  Google Scholar 

  38. Xing X, Ji J, Yao Y (2018) Convolutional neural network with element-wise filters to extract hierarchical topological features for brain networks. In: 2018 IEEE International conference on bioinformatics and biomedicine (BIBM). https://doi.org/10.1109/bibm.2018.8621472. IEEE

  39. Zeng LL, Wang H, Hu P, Yang B, Pu W, Shen H, Chen X, Liu Z, Yin H, Tan Q, Wang K, Hu D (2018) Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine 30:74–85. https://doi.org/10.1016/j.ebiom.2018.03.017

    Article  Google Scholar 

Download references

Acknowledgments

This work is partly supported by National Natural Science Foundation of China Research Program 61672065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzhong Ji.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The gradients of the harmonic modularity regularization term

In this section, we try to give the gradients of the regularization term \(\frac {\partial \| F - D^{-1} A F \|_{2, 1}}{\partial F}\). To solve it, we give the gradients of matrix norm Lp,q instead, this norm is defined as

$$ \| X \|_{p,q} = \left[ \sum\limits_{j=1}^n \left( \sum\limits_{i=1}^m | X_{ij} |^p \right)^{\frac{q}{p}} \right]^{\frac{1}{q}} $$
(23)

In order to get the gradients, we need a few more definitions as follows

$$ \begin{array}{@{}rcl@{}} A : X &=& \text{tr} \left( A^T X \right) \\ X^{\odot 2} &=& X \odot X \end{array} $$
(24)

where \(\text {tr} \left (X \right ) = {\sum }_i X_{ii}\) indicates the trace of a matrix, AB is the Hadamard (element-wise) product. let \(A = \text {abs} \left (X \right ) \) where the absolute function is also element-wise, we can get

$$ \begin{array}{@{}rcl@{}} X \odot X &=& A \odot A \\ X \odot dX &=& A \odot dA \end{array} $$
(25)

Let N = ∥Xp,q, we can obtain the following equations

$$ \begin{array}{@{}rcl@{}} N^q &= &\sum\limits_{j=1}^n \left( \sum\limits_{i=1}^m | X_{ij}|^p \right)^{\frac{q}{p}} \\ &=&\begin{bmatrix} \left( {\sum}_{i=1}^m |X_{i1}|^p \right)^{\frac{q}{p}} & \left( {\sum}_{i=1}^m |X_{i2}|^p \right)^{\frac{q}{p}} & {\cdots} & \left( {\sum}_{i=1}^m |X_{in}|^p \right)^{\frac{q}{p}} \end{bmatrix}^T \\ && \quad \cdot \begin{bmatrix} 1 & 1 & {\cdots} & 1 \end{bmatrix} \\ &=& \left( \begin{bmatrix} {\sum}_{i=1}^m |X_{i1}|^p & {\sum}_{i=1}^m |X_{i2}|^p & {\cdots} & {\sum}_{i=1}^m |X_{in}|^p \end{bmatrix} \right)^{\odot \left( \frac{q}{p} \right)} : 1_n \\ &=& \left( \begin{bmatrix} 1 & 1 & {\cdots} & 1 \end{bmatrix} \cdot \begin{bmatrix} |X_{11}|^p & {\cdots} & |X_{1n}|^p \\ {\vdots} & {\ddots} & {\vdots} \\ |X_{m1}|^p & {\cdots} & |X_{mn}|^p \end{bmatrix} \right)^{\odot \left( \frac{q}{p} \right)} : 1_n \\ &=& \left( 1_m A^{\odot p} \right)^{\odot \left( \frac{q}{p} \right)} : 1_n \end{array} $$
(26)

Therefore,

$$ \begin{array}{@{}rcl@{}} q N^{(q-1)} dN &=& \frac{q}{p} \left( 1_m A^{\odot p} \right)^{\odot \left( \frac{q}{p} -1 \right) } \odot 1_m \left( p A^{\odot \left( p-1 \right)} \odot d A \right) : 1_n\\ \Rightarrow N^{(q-1)} d N &=& \left( 1_m A^{\odot p} \right)^{\odot \left( \frac{q}{p} -1 \right) } \odot 1_m \left( A^{\odot \left( p-1 \right)} \odot d A \right) : 1_n \\ &=& \left( 1_m A^{\odot p} \right)^{\odot \left( \frac{q}{p} -1 \right) } \odot 1_n : 1_m \left( A^{\odot \left( p-1 \right)} \odot d A \right) \\ &=& \left( 1_m A^{\odot p} \right)^{\odot \left( \frac{q}{p} -1 \right) } : 1_m \left( A^{\odot \left( p-1 \right)} \odot d A \right) \\ &=& 1_m^T \left( 1_m A^{\odot p} \right)^{\odot \left( \frac{q}{p} -1 \right) } : A^{\odot \left( p-1 \right)} \odot d A \\ &=& \left( 1_m^T 1_m A^{\odot p} \right)^{\odot \left( \frac{q}{p} -1 \right) } : A^{\odot \left( p-2 \right)} \odot A \odot d A \\ &= &\left( 1_m^T 1_m A^{\odot p} \right)^{\odot \left( \frac{q}{p} -1 \right) }\odot A^{\odot \left( p-2 \right)} : X \odot d X \\ \Rightarrow \frac{\partial N}{\partial X} &=& \left( 1_{m \times m} A^{\odot p} \right)^{\odot \left( \frac{q}{p} -1 \right) }\odot A^{\odot \left( p-2 \right)} \odot X \end{array} $$
(27)

Finally, we substitute the p,q to 2, 1 and get

$$ \frac{\partial \| X \|_{2, 1}}{\partial X} = \left( 1_{m \times m} A^{\odot 2} \right) ^{\odot -\frac{1}{2}} \odot X $$
(28)

Appendix B: Feature analysis

In a neural network model, the strength of the connections between neurons in two consecutive layers (weights) can quantitatively announce the contribution of each neuron in previous layer to the activation of neuron in the last layer. Therefore, we can conduct the relative importance values (RIVs) of neurons in l-th layer F(l) in a backward manner by well trained weights W(l) and F(l+ 1).

Here we summarize the calculation procedure of each layer in formulation. For the fully connected layer

$$ F^{(l)} = W^{(l)} F^{(l+1)} \in \mathbb{R}^{M_l \times 1} $$
(29)

where F(L) = [1,− 1]T indicate the RIVs in the last layer L for classification.

The RIVs of N2G layer \(F^{(l)} \in \mathbb {R}^{N \times M_l}\) can be obtained by

$$ F^{(l)} =|W^{(l)}| |F^{(l+1)}| $$
(30)

In the CNN-MM model, there are two N2G layers, where the second layer takes the node-level features as input, where node-level features consist of topological features and modular features. Therefore, the corresponding RIVs F(l) can be divided into two parts. Let the i-th row be \(F_i^{(l)} = [F_{i,1}^{(l)}, \cdots , F_{i, M_{l_1}}^{(l)}, F_{i, M_{l_1}+1}^{(l)}, {\cdots } , F_{i, M_l}^{(l)}]\), where \(M_{l_1}\) corresponds to the dimension of node-level topological features and the \(M_l - M_{l_1}\) represents that of node-level modular features. We can obtain the RIV of k-th modular structure by \(F_k^L={\sum }_{j=M_{l_1}+1}^{M_l} F_{k,j}^{(l)}\), which can be used to identify the discriminant power of each brain region from the perspective of modular structures.

For the E2N-EW layer

$$ F_r^{(l)} = | W_r^{(l)}| | \left( F_r^{(l+1)} \right)^T | $$
(31)

where \(F_r^{(l)}\), \(W_r^{(l)}\) and \(F_r^{(l+1)}\) indicate the r-th row of \(F^{(l)} \in \mathbb {R}^{N \times N \times M_l}\), \(W^{(l)} \in \mathbb {R}^{N \times N \times M_l \times M_l}\) and \(F^{(l+1)} \in \mathbb {R}^{N \times M_{l+1}}\)respectively. Based on the calculation procedure mentioned above, we can obtain the RIV of each edge in either the brain network A or the modular structure A(k).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J., Yao, Y. A novel CNN framework to extract multi-level modular features for the classification of brain networks. Appl Intell 52, 6835–6852 (2022). https://doi.org/10.1007/s10489-021-02668-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02668-w

Keywords

Navigation