Skip to main content
Log in

Zero-small sample classification method with model structure self-optimization and its application in capability evaluation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

To solve the problems of limited expression of feature information in a discrete evaluation sequence, the high cost of model optimization, and insufficient discrimination information to detect missing classes, a zero-small sample capability evaluation (ZES) method based on model structure self-optimization is proposed. Spatial transformation of the gram angle field was used to optimize the information richness and data correlation of the sample sequences. A multi-mechanism fusion strategy (MFS) was designed for self-optimization of the visual feature extraction model. Through self-adaptive global optimization of ten key parameters in the model, a computational model suitable for small samples and with self-learning ability was constructed. Sample semantic attributes and a visual-semantic feature mapping were constructed, and the unseen class labels were predicted according to cosine similarity. The experimental results verify the feasibility and effectiveness of the proposed method in the aspects of model adaptive optimization and evaluation of unseen samples and provide a new idea for constructing a comprehensive evaluation, prediction, and diagnosis system and method design in related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang YM, Ma L, Sun HY et al (2017) Programming, practice and innovation ability evaluation method based on fuzzy neural network. Res Explor Lab 36(02):18–22

    Google Scholar 

  2. Feng X, Wei YJ, Pan XL et al (2020) Academic emotion classification and recognition method for large-scale online learning environment—based on A-CNN and LSTM-ATT deep learning pipeline method. Inter J Env Res Pub Heal 17(6):1941. https://doi.org/10.3390/ijerph17061941

    Article  Google Scholar 

  3. Mohamadi S, Lattanzi D, Azari H (2020) Fusion and visualization of bridge deck nondestructive evaluation data via machine learning. Front Mater 7:576918. https://doi.org/10.3389/fmats.2020.576918

    Article  Google Scholar 

  4. Phan HC, Duong HT (2021) Predicting burst pressure of defected pipeline with Principal Component Analysis and adaptive Neuro Fuzzy Inference System. Int J Pres Ves Pip. https://doi.org/10.1016/j.ijpvp.2020.104274

  5. Fu ZY, Xiang T, Kodirov E et al (2018) Zero-shot learning on semantic class prototype graph. IEEE T Pattern Anal 40(8):2009–2022. https://doi.org/10.1109/TPAMI.2017.2737007

    Article  Google Scholar 

  6. Khan A, Sohail A, Zahoora U et al (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53(8):5455–5516. https://doi.org/10.1007/s10462-020-09825-6

    Article  Google Scholar 

  7. Zhang JM, Wang W, Lu CQ et al (2020) Lightweight deep network for traffic sign classification. Ann Telecommun 75(7-8):369–379. https://doi.org/10.1007/s12243-019-00731-9

    Article  Google Scholar 

  8. Wang Y, Yang J, Liu M et al (2020) LightAMC: lightweight automatic modulation classification via deep learning and compressive sensing. IEEE T Veh Technol 69(3):3491–3495. https://doi.org/10.1109/TVT.2020.2971001

    Article  Google Scholar 

  9. Tripathy RK, Bilionis I (2018) Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification. J Comput Phys 375:564–588. https://doi.org/10.1016/j.jcp.2018.08.036

    Article  MathSciNet  Google Scholar 

  10. Zhu YH, Zabaras N (2018) Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification. J Comput Phys 366:415–447. https://doi.org/10.1016/j.jcp.2018.04.018

    Article  MathSciNet  Google Scholar 

  11. Han Y, Sunwoo L, Ye JC (2020) k-space deep learning for accelerated MRI. IEEE T Med Imaging 39(2):377–386. https://doi.org/10.1109/TMI.2019.2927101

    Article  Google Scholar 

  12. Solomon O, Cohen R, Zhang Y et al (2020) Deep unfolded robust PCA with application to clutter suppression in ultrasound. IEEE T Med Imaging 39(4):1051–1063. https://doi.org/10.1109/TMI.2019.2941271

    Article  Google Scholar 

  13. Christodoulidis S, Anthimopoulos M, Ebner L et al (2017) Multisource transfer learning with convolutional neural networks for lung pattern analysis. IEEE J Biomed Health Inform 21(1):76–84

    Article  Google Scholar 

  14. Wang JP, Gou L, Zhang W et al (2019) DeepVID: deep visual interpretation and diagnosis for image classifiers via knowledge distillation. IEEE T Vis Comput Gr 25(6):2168–2180. https://doi.org/10.1109/TVCG.2019.2903943

    Article  Google Scholar 

  15. Xue JK, Shen B (2020) A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Control Eng 8(1):22–34. https://doi.org/10.1080/21642583.2019.1708830

    Article  Google Scholar 

  16. Ge ZJ, Wang XX, Xu ZS (2021) A novel order evaluation model with nested probabilistic-numerical linguistic information applied to traditional order grabbing mode. Appl Intell. https://doi.org/10.1007/s10489-020-02088-2

  17. Wang SX, Ge LJ, Cai SX et al (2018) Hybrid interval AHP-entropy method for electricity user evaluation in smart electricity utilization. J Mod Power Syst Cle 6(4):701– 711

    Article  Google Scholar 

  18. Barchielli A, Gregoratti M, Toigo A (2018) Measurement uncertainty relations for discrete observables: relative entropy formulation. Commun Math Phys 357(3):1253–1304. https://doi.org/10.1007/s00220-017-3075-7

    Article  MathSciNet  Google Scholar 

  19. Pelabon C, Hilde CH, Einum S et al (2020) On the use of the coefficient of variation to quantify and compare trait variation. Evol Lett 4(3):180–188. https://doi.org/10.1002/evl3.171

    Article  Google Scholar 

  20. Barra S, Carta SM, Corriga A et al (2020) Deep learning and time series-to-image encoding for financial forecasting. IEEE-CAA J Automatic 7(3):683–692. https://doi.org/10.1109/JAS.2020.1003132

    Article  Google Scholar 

  21. Sun C, Ma M, Zhao ZB et al (2019) Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing. IEEE Trans Industr Inform 15(4):2416–2425

    Article  Google Scholar 

  22. Tolabi HB, Ara AL, Hosseini R (2021) An enhanced particle swarm optimization algorithm to solve probabilistic load flow problem in a micro-grid. Appl Intell 51(3):1645–1668. https://doi.org/10.1007/s10489-020-01872-4

    Article  Google Scholar 

  23. Kaur G, Arora S (2018) Chaotic whale optimization algorithm. J Comput Des Eng 5(3):275–284. https://doi.org/10.1016/j.jcde.2017.12.006

    Google Scholar 

  24. Martinho-Corbishley D, Nixon MS, Carter JN (2019) Super-Fine attributes with crowd prototyping. IEEE T Pattern Anal 41(6):1486–1500. https://doi.org/10.1109/TPAMI.2018.2836900

    Article  Google Scholar 

  25. Hayashi T, Fujita H (2021) Cluster-based zero-shot learning for multivariate data. J Amb Intel Hum Comp 12(2):1897–1911. https://doi.org/10.1007/s12652-020-02268-5

    Article  Google Scholar 

  26. Boveiri HR, Elhoseny M (2020) A-COA: an adaptive cuckoo optimization algorithm for continuous and combinatorial optimization. Neural Comput Appl 32(3):681– 705

    Article  Google Scholar 

  27. Wang XS, Huang WW, Cheng YH (2020) Multisource domain attribute adaptation based on adaptive multikernel alignment learning. IEEE T Syst Man CY-S 50(5):1897–1908. https://doi.org/10.1109/TSMC.2018.2791603

    Article  Google Scholar 

  28. Long Y, Liu L, Shen FM et al (2018) Zero-shot learning using synthesised unseen visual data with diffusion regularization. IEEE T Pattern Anal 40(10):2498–2512. https://doi.org/10.1109/TPAMI.2017.2762295

    Article  Google Scholar 

  29. Feng YG, Yu J, Sang JT et al (2021) Survey on knowledge-based zero-shot visual recognition. J Softw 32(2):370–405. https://doi.org/10.13328/j.cnki.jos.006146

    MATH  Google Scholar 

  30. Changpinyo S, Chao WL, Gong B et al (2018) Classifier and exemplar synthesis for zero-shot learning. Int J Comput Vision 128(6). https://doi.org/10.1007/s11263-019-01193-1

  31. Long T, Xu X, Shen F et al (2018) Zero-shot learning via discriminative representation extraction. Pattern Recogn Lett 109:27–34. https://doi.org/10.1016/j.patrec.2017.09.030

    Article  Google Scholar 

  32. Zhao P, Wang CY, Zhang SY et al (2021) A zero-shot image classification method based on subspace learning with the fusion of reconstruction. Chin J Comput 44(2):409–421. https://doi.org/10.11897/SP.J.1016.2021.00409

    Google Scholar 

  33. Li X, Fang M, Li HK et al (2020) Zero shot learning based on class visual prototypes and semantic consistency. Pattern Recogn Lett 135:368–374. https://doi.org/10.1016/j.patrec.2020.04.029

    Article  Google Scholar 

  34. Hayashi T, Fujita H, Hernandez-Matamoros A (2021) Less complexity one-class classification approach using construction error of convolutional image transformation network. Inform Sci 560:217–234. https://doi.org/10.1016/j.ins.2021.01.069

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Funding

This work was supported by the Postgraduate Education Reform Research Project of Shanxi Province (No.2019JG171) and the Natural Science Foundation of Shanxi Province (No.201801D221179, No.201901D111259) and the Science and Technology Innovation Project of Higher Education in Shanxi Province (No.2019L0653) and the Foundation of Shanxi Province Engineering Research Center for Equipment Digitization and PHM (ZBPHM20201104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolu Bai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Bai, X., Pan, L. et al. Zero-small sample classification method with model structure self-optimization and its application in capability evaluation. Appl Intell 52, 5696–5717 (2022). https://doi.org/10.1007/s10489-021-02686-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02686-8

Keywords

Navigation