Skip to main content
Log in

A coordinated many-objective evolutionary algorithm using random adaptive parameters

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Selection strategy is an essential evolutionary component for many-objective evolutionary algorithms, including mating selection and environmental selection. However, there are still many challenges in evolution as the number of objectives increases, such as the conflict between diversity and convergence, and insufficient Pareto selection pressure. To address these problems, this paper proposes a coordinated many-objective evolutionary algorithm using random adaptive parameters (MaOEA-CO). Specifically, the algorithm adopts the coordinated selection mechanism as a new mating selection strategy that regulates the diversity and convergence weight of individuals through random adaptive parameters design, which can better balance the diversity and convergence of individuals at the edge of the Pareto front. Moreover, an environmental selection method based on coordination angle and Pareto distance indicators is designed. The angle indicator selects the two less diverse individuals from the whole population, and the Pareto distance indicator is used to remove the poor convergence individuals. We are ensuring population diversity while improving the selection pressure of the algorithm. The results of comparative experiments conducted on the standard test suite and Wilcoxon demonstrate the superiority of the MaOEA-CO algorithm in comparison with six state-of-the-art designs in terms of solution quality and computational efficiency. Besides, a many-objective coal model is applied to verify the performance of the MaOEA-CO algorithm further. The algorithm provides a better Pareto solution and promotes the development of coal enterprises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abido MA (2006) Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans Evol Comput 10(3):315–329

    Article  Google Scholar 

  2. Adra SF, Fleming PJ (2010) Diversity management in evolutionary many-objective optimization. IEEE Trans Evol Comput 15(2):183–195

    Article  Google Scholar 

  3. Bader J, Zitzler E (2011) Hype: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76

    Article  Google Scholar 

  4. Bi X, Wang C (2018) A niche-elimination operation based nsga-iii algorithm for many-objective optimization. Appl Intell 48(1):118–141

    Article  MathSciNet  Google Scholar 

  5. Bosman PA, Thierens D (2003) The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans Evol Comput 7(2):174–188

    Article  Google Scholar 

  6. Cai X, Hu Z, Chen J (2020) A many-objective optimization recommendation algorithm based on knowledge mining. Inf Sci 537:148–161

    Article  MathSciNet  Google Scholar 

  7. Cheng J, Yen GG, Zhang G (2015) A many-objective evolutionary algorithm with enhanced mating and environmental selections. IEEE Trans Evol Comput 19(4):592–605

    Article  Google Scholar 

  8. Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5):773–791

    Article  Google Scholar 

  9. Cui Z, Zhang J, Wu D, Cai X, Wang H, Zhang W, Chen J (2020) Hybrid many-objective particle swarm optimization algorithm for green coal production problem. Inf Sci 518:256–271

    Article  MathSciNet  Google Scholar 

  10. Deb K, Agrawal RB, et al. (1995) Simulated binary crossover for continuous search space. Compl Syst 9(2):115–148

    MathSciNet  MATH  Google Scholar 

  11. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: International conference on parallel problem solving from nature. Springer, pp 849–858

  12. Deb K, Goyal M, et al. (1996) A combined genetic adaptive search (geneas) for engineering design. Comput Sci Inf 26:30–45

    Google Scholar 

  13. Deb K, Jain H (2013) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  14. Deb K, Mohan M, Mishra S (2005) Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evol Comput 13(4):501–525

    Article  Google Scholar 

  15. Dulebenets MA (2020) Archived elitism in evolutionary computation: towards improving solution quality and population diversity. Int J Bio-Inspired Comput 15(3):135–146

    Article  Google Scholar 

  16. Hansen JA, Sund J, Tollemache D, Arefi A, Nourbakhsh G (2020) An enhanced breeding swarms algorithm for high dimensional optimisations. Int J Bio-Inspired Comput 15(3):181–193

    Article  Google Scholar 

  17. He Z, Yen GG (2016) Many-objective evolutionary algorithms based on coordinated selection strategy. IEEE Trans Evol Comput 21(2):220–233

    Article  Google Scholar 

  18. He Z, Yen GG, Zhang J (2013) Fuzzy-based pareto optimality for many-objective evolutionary algorithms. IEEE Trans Evol Comput 18(2):269–285

    Article  Google Scholar 

  19. Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. In: 2008 IEEE Congress on evolutionary computation (IEEE world congress on computational intelligence). IEEE, pp 2419–2426

  20. Karahan I, Koksalan M (2010) A territory defining multiobjective evolutionary algorithms and preference incorporation. IEEE Trans Evol Comput 14(4):636–664

    Article  Google Scholar 

  21. Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multiobjective optimization. Evol Comput 10(3):263–282

    Article  Google Scholar 

  22. Li K, Deb K, Zhang Q, Kwong S (2014) An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput 19(5):694–716

    Article  Google Scholar 

  23. Li T, Chen Z (2020) An ontology-based learning approach for automatically classifying security requirements. J Syst Softw 165:110566

    Article  Google Scholar 

  24. Li Y, Tian M, Wang Y, Zhang Q, Saxena DK, Jiao L (2020) A new replica placement strategy based on multi-objective optimisation for hdfs. Int J Bio-Inspired Comput 16(1):13–22

    Article  Google Scholar 

  25. Lin Q, Liu S, Zhu Q, Tang C, Song R, Chen J, Coello CAC, Wong KC, Zhang J (2016) Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans Evol Comput 22(1):32–46

    Article  Google Scholar 

  26. Liu Y, Gong D, Sun J, Jin Y (2017) A many-objective evolutionary algorithm using a one-by-one selection strategy. IEEE Trans Cybern 47(9):2689–2702

    Article  Google Scholar 

  27. Maltese J, Ombuki-Berman BM, Engelbrecht AP (2016) A scalability study of many-objective optimization algorithms. IEEE Trans Evol Comput 22(1):79–96

    Article  Google Scholar 

  28. Mohamed MS, Duan H (2020) Flight control system design using adaptive pigeon-inspired optimisation. Int J Bio-Inspired Comput 16(3):133–147

    Article  Google Scholar 

  29. Obayashi S, Sasaki D, Takeguchi Y, Hirose N (2000) Multiobjective evolutionary computation for supersonic wing-shape optimization. IEEE Trans Evol Comput 4(2):182–187

    Article  Google Scholar 

  30. Pamulapati T, Mallipeddi R, Suganthan PN (2018) i_{∖rm SDE} + —an indicator for multi and many-objective optimization. IEEE Trans Evol Comput 23(2):346–352

    Article  Google Scholar 

  31. Purshouse RC, Fleming PJ (2007) On the evolutionary optimization of many conflicting objectives. IEEE Trans Evol Comput 11(6):770–784

    Article  Google Scholar 

  32. Wang H, Jiao L, Yao X (2014) Two_arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans Evol Comput 19(4):524–541

    Article  Google Scholar 

  33. Wang R, Purshouse RC, Fleming PJ (2012) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evol Comput 17(4):474–494

    Article  Google Scholar 

  34. Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 17(5):721–736

    Article  Google Scholar 

  35. Yuan Y, Xu H, Wang B, Yao X (2015) A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(1):16–37

    Article  Google Scholar 

  36. Yuan Y, Xu H, Wang B, Zhang B, Yao X (2015) Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans Evol Comput 20(2):180–198

    Article  Google Scholar 

  37. Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  38. Zhang X, Tian Y, Jin Y (2014) A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 19(6):761–776

    Article  Google Scholar 

  39. Zitzler E (2001) Spea2: Improving the performance of the strength pareto evolutionary algorithm. Computer Engineering and Communication Networks Lab (TIK)

  40. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  41. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature. Springer, pp 832–842

  42. Zou J, Liu J, Yang S, Zheng J (2021) A many-objective evolutionary algorithm based on rotation and decomposition. Swarm Evol Comput 60:100775

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No.61806138, Key R&D program of Shanxi Province (High Technology) under Grant No. 201903D121119, Natural Science Foundation of Shanxi Province under Grant No. 201801D121127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjuan Cai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Zhang, J., Geng, S. et al. A coordinated many-objective evolutionary algorithm using random adaptive parameters. Appl Intell 52, 7248–7270 (2022). https://doi.org/10.1007/s10489-021-02707-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02707-6

Keywords

Navigation